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Abstract

Interactions between genes can have important consequences for how selection shapes sequence variation at these genes.

Specifically, genes that have pleiotropic effects by affecting the expression level of many other genes may be under stronger selective

constraint. We used coexpression networks to measure connectivity between genes and investigated the relationship between gene

connectivity and selection in a natural population of the plant Capsella grandiflora. We observed that network connectivity was

negatively correlated with genetic divergence due to stronger negative selection on highly-connected genes even when controlling

for variation in gene expression level. However, the presence of local regulatory variation for a gene’s expression level was also

associated with reduced negative selection and lower gene connectivity. While it is difficult to disentangle the causal relationships

between these factors, our results show that both connectivity and local regulatory variation are important factors for explaining

variation in selection between genes.
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Introduction

Variation in quantitative traits results from the combined ef-

fects of the environment and genetic variation at many genes

(Lynch et al. 1998), and the ways in which these genes interact

can influence how selection shapes genetic variation.

Specifically, genes that have pleiotropic effects on multiple

traits are likely to be under stronger negative selection than

genes with less pleiotropy (Orr 2000; Stern and Orgogozo

2008). Similarly, genes with reduced pleiotropy may be

more subject to weaker evolutionary constraint and thus be

more free to adapt (Orr 2000; Stern and Orgogozo 2008).

While these hypotheses are intuitively appealing, we lack

data on the importance of pleiotropy in shaping genetic var-

iation on a genome-wide scale. One way to estimate the plei-

otropy of genes on a genome-wide scale is to use information

about the strength of connections between a focal gene and

other genes in a gene network, called “network connectivity”

(Langfelder and Horvath 2008). The reasoning here is that

genes with higher connectivity are more likely to be pleiotropic

than genes with low connectivity (He and Zhang 2006).

A large body of work has shown that amino acid diver-

gence is affected by network properties, including the number

of protein–protein interactions (Fraser et al. 2002; Lemos et al.

2005; Luisi et al. 2015), protein-network centrality (Hahn and

Kern 2005), pathway position (Rausher et al. 1999; Ramsay

et al. 2009; Eanes 2011), metabolic network connectivity

(Vitkup et al. 2006), regulatory network centrality (Jovelin

and Phillips 2009), and coexpression network connectivity

(Jordan et al. 2004; Carlson et al. 2006) although this pattern

is certainly not observed in all cases for all types of networks

(Pál et al. 2006; Hahn et al. 2004; Jordan et al. 2003). Reduced
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amino acid divergence in highly connected genes has been

interpreted to be due to either stronger constraint on well-

connected genes (Hahn and Kern 2005; Ramsay et al. 2009)

or more frequent positive selection in genes on the network

periphery (Kim et al. 2007; Luisi et al. 2015). Both of these

explanations are possible, but they are difficult to disentangle

using divergence-based approaches. The development of

techniques that use both polymorphism and divergence to

infer the strength of positive and negative selection hold

promise for distinguishing between the relative roles of posi-

tive and negative selection in shaping divergence (Keightley

and Eyre-Walker 2007; Eyre-Walker and Keightley 2009).

In this study we investigate the strength of negative and

positive selection across gene coexpression networks con-

structed from natural variation for gene expression level. A

coexpression network is an undirected graph where the

nodes correspond to different genes, and genes that exhibit

a significant correlation in expression level are connected.

Gene connectivity is calculated as the sum of the strengths

of correlations between a focal gene and all other genes

(Langfelder and Horvath 2008). Coexpression networks can

be generated using expression data collected across tissues or

environments in the same genotype (Sekhon et al. 2014;

Schmid et al. 2005; Walley et al. 2016), or using expression

data from a population of genetically-distinct individuals

(Mähler et al. 2017; Porth et al. 2013; Swanson-Wagner et al.

2012;Ayrolesetal.2009;Oldhametal.2006;Leeetal.2004)or

a combination of varying genotypes and environments or tis-

sues (Childs et al. 2011; Ficklin et al. 2010; Pierson et al. 2015).

We take the second approach, investigating coexpression in a

population sample, measured in one environment and tissue

type, and constructing coexpression networks that summarize

expression variation between individuals.

Connectivity measured in coexpression networks gener-

ated using a population sample will likely reflect, at least in

part, genetic variation for gene regulation that segregates in

the population. Large-effect cis-regulatory variants can reduce

correlations in expression between the genes they regulate

and other genes, so the presence of cis-regulatory variants

may influence measurements of gene connectivity. Similarly,

expression level may correlate with measures of connectivity.

Because both expression level (Zhang and Yang 2015) and the

presence of cis-regulatory variants (Steige et al. 2017; Li et al.

2014) have been linked to selection, accounting for these

factors will be important for using coexpression networks to

understand selection and pleiotropy.

Here, we evaluate the relationship between coexpression

network connectivity and both positive and negative selection

in the plant Capsella grandiflora. We find that connectivity is

negatively correlated with amino acid divergence and show

that this correlation is driven by stronger negative selection on

highly connected genes, even when controlling for gene ex-

pression level. However, the relationship between negative

selection and connectivity is confounded by the presence of

local regulatory variation, which both reduces connectivity as

measured using coexpression networks and is associated with

lower levels of negative selection. Our results are consistent

with two possibilities: first, highly connected genes are under

stronger negative selection and thus tolerate less local regula-

tory variation and, second, that genes under stronger negative

selection tolerate less regulatory variation and so appear to be

better connected in regulatory networks.

Materials and Methods

Measuring Expression

We used leaf expression data from a population sample of 99

individuals of C. grandiflora reported in Josephs et al. (2015)

and an additional 48 individuals, first reported here. All indi-

viduals descend from a sample of ~400 plants collected from a

single population located near Monodendri, Greece (popula-

tion Cg-9 from St. Onge et al. 2011). We grew an individual

seed collected from each wild parent in the University of

Toronto greenhouses and conducted independent random

crosses to generate the seeds used in the studies. These

seeds were sterilized, transferred to sterile plates for stratifica-

tion and germination, and transplanted to pots and grown in

a growth chamber in standard conditions (additional protocol

details are available described in Josephs et al. 2015).

Four weeks after transplanting, leaf tissue from all 147 in-

dividuals was collected and immediately flashes frozen in

liquid nitrogen. All samples were collected sequentially. We

extracted RNA from two or three samples per plant using

plant RNA extraction kits (Sigma) and used a Qubit spectro-

photometer to quantify RNA concentration so that the sam-

ples from each plant could be pooled such that each pool

contained equal amounts of RNA from each sample. All

RNA was sequenced at the Genome Quebec Innovation

Centre in an Illumina HiSeq. The 99 individuals previously re-

ported in Josephs et al. (2015) were sequenced on two flow

cells with eight samples per lane (additional samples were

sequenced and not reported here) with 100 bp long paired-

end reads. The RNA from the previously unreported 48 indi-

viduals was sequenced in one flow cell with seven or eight

samples per lane (again, additional samples were sequenced

and were not included in this analysis). All RNAseq reads from

these 48 individuals were 100 bp long and single ended. To

avoid confounding effects from different mapping accuracy

for paired- and single-end reads, we randomly selected one

read per pair from paired-end data from the original 99 indi-

viduals to use for further analysis.

All sequence data were mapped using Stampy 1.0.21

(Lunter and Goodson 2011) with default settings to an

exon-only reference generated from the Capsella rubella ref-

erence genome (Josephs et al. 2015; Slotte et al. 2013).

Capsella rubella and C. grandiflora diverged between

50,000 and 100,000 years ago and sequence divergence
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between C. grandiflora and C. rubella is comparable to se-

quence diversity within C. grandiflora (Brandvain et al.

2013), making the C. rubella genome an appropriate refer-

ence genome here. We measured expression level for each

gene by counting the number of reads that mapped to each

gene using the HTSeq.scripts.count feature from HTSeq and

we normalized for sequencing depth by dividing by the

median expression level for each individual (Anders et al.

2015). We did not detect interactions between GC content,

expression level, and lane (Josephs et al. 2015). Genes with a

median expression of 0 were removed from the analysis, leav-

ing a total of 20,570 genes. For comparisons of expression

level with divergence and selection we divided read count by

gene length, measured as the number of nucleotides in the

coding sequence, to make expression level comparable be-

tween genes.

Measuring Gene Connectivity

The R package, WGCNA version 1.34 (Langfelder and Horvath

2008), running under R version 2.15.1 (R Core Team 2015)

was used to calculate gene connectivity values using the

C. grandiflora expression data. We conducted a network anal-

ysis using the following adjacency function: aij ¼ jcorðxi; xjÞj,

where cor(xi,xj) is the correlation of gene expression in the ith

and jth gene. Preliminary coexpression analysis showed that

one individual was a strong outlier, so we removed it and

reran the analysis on the remaining 146 individuals. Total con-

nectivity for each gene was calculated as the sum of connec-

tion strengths (aij) between the focal gene and all other genes.

We report and plot the average correlation coefficient per

gene (the sum of correlation coefficients divided by the total

number of genes) for interpretability.

Measuring Divergence and Relating It to Other
Parameters

Divergence measurements from each gene were previously

published in Williamson et al. (2014) and detailed methods

are included there. Briefly, we found orthologs between the

C. rubella reference genome and its two closest available out-

groups: Neslia paniculata and Arabidopsis thaliana and aligned

the protein sequences of these orthologs. These alignments

were used to calculate dN and dS using codeml in PAML in a

model where divergence was allowed to vary in the lineage

leading to C. rubella (Yang 2007). Nine genes with zero syn-

onymous substitutions were removed from the analysis so that

dN /dS could be calculated.

We conducted Spearman correlations between connectiv-

ity and divergence and connectivity and expression for each

gene (N = 13,211) using R’s cor.test() function (R Core Team

2015). Partial Spearman correlations between connectivity

and divergence while accounting for expression were con-

ducted with the pcor.test() function from the ppcor library in

R. For both sets of correlations, we also conducted 1,000

permutations that randomized gene connectivity levels and

compared observed correlation coefficients with those gener-

ated from permuted data. Following Drummond et al. (2006),

a principal component analysis for dS, mean expression level

(log transformed), and connectivity was conducted in R using

the prcomp() function, with scaling. We also used the R lm()

function to construct a linear model for how principal compo-

nents predict variation in dN. We normalized the matrix of

principal component loadings by squaring each value and nor-

malizing such that all rows and columns summed to 1. These

normalized principal component loadings show how much

variance in each principal component was explained by dS,

connectivity, and expression.

We also investigated genes with and without eQTLs using

eQTLs located within 5 kb of the genes they regulate, identi-

fied at an FDR<0.1 from Josephs et al. (2015). We tested for a

difference in dN /dS and connectivity between genes with and

without eQTLs using a Wilcoxan test with the wilcox.test()

function from R (R Core Team 2015).

Measuring Positive and Negative Selection

The strength of positive and negative selection in the C. gran-

diflora genome was measured using single nucleotide poly-

morphism (SNP) data from 178 individuals collected from the

same population described above and previously reported in

Josephs et al. (2015) and Sicard et al. (2015). 146 of these 178

individuals overlap with the individuals used to generate coex-

pression networks and measure gene expression levels.

The methods for DNA extraction, sequencing, and geno-

typing are fully described in Josephs et al. (2015). Briefly, DNA

was extracted from leaves by either a CTAB based protocol or

by DNeasy Plant Mini Kit (Qiagen). We obtained whole

genome sequences from each individual through 100 cycles

of paired end sequencing in a Hiseq 2000 with Truseq libraries

(Illumina) and three individuals were sequenced per lane. SNP

genotypes were called following GATK Best Practices for

Variant Quality Recalibration circa GATK 2.7 (DePristo et al.

2011) using a high confidence truth set generated by filtering

SNPs for concordance with common variants (<0.11) in a

species-wide sample of C. grandiflora as well as suspect re-

alignments (transposable elements, centromeres, 600 bp in-

tervals containing extreme Hardy Weinberg deviations, 1 kb

intervals that showed evidence of three or more SNPs in a

reference-to-reference mapping of 150 bp paired end reads

from the reference genome line). For population genetic anal-

ysis, we downsampled to 320 alleles by randomly classifying

alleles as missing, which allowed retention of 94.2% of sites.

We used SNP genotypes to estimate the strength of posi-

tive and negative selection across gene categories. For this

analysis, divergence was measured from an outgroup, N. pani-

culata, aligned to C. rubella using LastZ with chaining, as de-

scribed in (Haudry et al. 2013). We used the Joint Genome

Institute’s gene annotation of the C. rubella reference genome
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to identify 0-fold degenerate and 4-fold degenerate sites

within genes. We assigned genes into equally-sized categories

based on connectivity values (low, medium–low, medium–

high, and high) and calculated site frequency spectra (SFS)

and divergence at 0-fold degenerate and 4-fold degenerate

sites within these categories. We used SFS and divergence to

estimate the fraction of 0-fold degenerate sites within each

category under negative selection and measures of positive

selection, � and!, using 4-fold sites as a neutral reference and

the methods described in Eyre-Walker and Keightley (2009)

and Keightley and Eyre-Walker (2007). 1,000 bootstraps were

conducted by resampling the genes included within each cat-

egory with replacement. We used these bootstraps to con-

struct 95% confidence intervals (Eyre-Walker and Keightley

2009) and tested for significant differences between the high-

est and lowest connectivity categories by randomly pairing

bootstraps and calculating the proportion of pairs where

one category was larger than the others. We compared boot-

straps for six variables (�, !, and 4 NeS categories) in two

datasets (all genes and the subset of genes described

below), making 12 comparisons total, so we multiplied

P values by 12 to account for multiple testing.

Positive and negative selection were also evaluated on a set

of 2,449 genes chosen from a limited range of expression

levels (-5.8 to -3.8 reads/(median read count per lane�gene

length)). This region was chosen based on visual inspection of

a plot of connectivity and expression level (fig. 1C). In this

subset, gene expression level was not correlated with connec-

tivity in a spearman test conducted in R with cor.test

(�= –0.00555, P = 0.784). We used the same connectivity cat-

egory cutoffs as in the full analysis, so the number of genes in-

cluded in the connectivity categories were 305, 582, 735, and

827for low,medium–low,medium–high,andhigh respectively.

Results

We analyzed genome-wide gene expression data from the

leaves of 146 C. grandiflora individuals from one large popu-

lation grown in common garden. The expression data from 99

of these individuals have been previously reported (Josephs

et al. 2015). For the previously unreported 47 individuals,

we generated ~1.3 billion single-end RNAseq reads, with a

median of 26.7 million reads per individual (range: 19.4–44.3

million). Of these, a median of 94.2% reads mapped to genes

(range: 93.1–94.9%).

Connectivity is Negatively Correlated with
Nonsynonymous Divergence

Total connectivity values for each gene were calculated as the

sum of correlation coefficients with all other genes.

Connectivity is negatively correlated with dN (�=�0.195,

P<2.2�10�16, see supplementary fig. S1A, Supplementary

Material online), dS (�=�0.145, P< 2.2�10�16, see supple-

mentary fig. S1B, Supplementary Material online), and dN/dS

(�=�0.135, P< 2.2�10�16, fig. 1A). The observed correla-

tions between connectivity and dN, dS, and dN /dS were stron-

ger than any of the correlations observed in 1,000

permutations (see supplementary fig. S2A, B, C,

Supplementary Material online).

Expression level is also negatively correlated with dS

(�=�0.104, P<2.2�10�16, see supplementary fig. S1C,

Supplementary Material online), dN (�= -0.333,

P<2.2�10-16, see supplementary fig. S1D, Supplementary

Material online), and dN/dS (�=�0.289, P< 2.2�10-16, fig.

1B). In addition, expression level is positively correlated with

connectivity (�=�0.405, P< 2.2�10-16, fig. 1C) suggesting

that expression level could explain observed divergence pat-

terns. Partial correlations that account for expression level still

show a significant, although weaker, relationship between

connectivity and dN (�=�0.070, P< 2� 10-15) and dS

(�=�0.112, P< 2�10�25), and dN/dS (�=�0.0202,

P<0.05). The observed partial correlations between connec-

tivity and dN and dS were stronger than any of the correlations

observed in permuted data and the observed partial correla-

tion between connectivity and dN/dS was stronger than all but

8 of 1,000 permutations (see supplementary fig. S2D, E, F,

Supplementary Material online).

Experimental noise in measuring expression can make it

difficult to fully remove expression’s effects in a partial corre-

lation, potentially generating a spurious correlation between

dN or dS and connectivity (Drummond et al. 2006). To ensure

that our conclusion that connectivity affects divergence is not

the result of this process, we conducted a principal compo-

nent analysis to identify independent sources of variation in

the explanatory variables dS, expression level, and connectiv-

ity. A linear model based on the three principal components

and all possible interactions explains ~22.8% of the variation

in dN (table 1). The first principal component (PC1) explains

11.9% of the variation in dN and was determined by connec-

tivity, ds, and expression level (see supplementary fig. S3,

Supplementary Material online). The loadings of dS, expression

and connectivity on PC1 suggest that dS contributes positively

to dN while connectivity and expression level contribute neg-

atively to dN (table 1).

Connectivity Affects Positive and Negative Selection

Reduced divergence in highly connected genes could be

caused either by stronger negative selection or weaker positive

selection on highly connected genes. To investigate these al-

ternatives, we ranked all genes that were expressed in

C. grandiflora leaf tissue and included in the previous analyses

(N = 12,896) by connectivity level and divided these genes into

four equally-sized categories: low connectivity, medium–low

connectivity, medium–high connectivity, and high connectivity

(N = 3,246 for each category). We estimated the proportion of

0-fold degenerate sites in these categories that are under
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various strengths of negative selection (Eyre-Walker and

Keightley 2009).

Negative selection acts more strongly on genes with higher

connectivity than lower connectivity (fig. 2A). For example,

0.150 (95% CIs: 0.147–0.156) of 0-fold degenerate sites in

genes in the lowest connectivity category are effectively neu-

tral (NeS<1) while 0.116 (95% CIs: 0.113–0.126) of 0-fold

degenerate sites in genes in the highest connectivity category

are effectively neutral (P<0.05, fig. 2A). There was no evi-

dence that positive selection differs between genes with dif-

ferent connectivities. The proportion of fixations driven to

positive selection, �, is 0.400 (95%CIs: 0.238–0.431) in the

lowest connectivity category and 0.460 (95% CIs: 0.404–

0.474) in the highest connectivity category (P>0.05, fig. 2C)

and the rate of fixations driven by positive selection relative to

neutral divergence, ! is not significantly different in genes
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FIG. 1.—Correlations between protein divergence, connectivity, and expression. Each point represents one gene. (A) dN/dS correlates negatively with

connectivity (�=�0.135, P< 2.2� 10�16). In this and subsequent panels, we plot the fitted line from a linear model for visualization but statistical

significance was determined using Spearman correlations. (B) dN /dS correlates negatively with expression (�=�0.289, P< 2.2�10-16). Expression is plotted

on a log scale. (C) Expression (also on a log scale) correlates positively with connectivity (�= 0.405, P< 2.2� 10-16). The window of expression level used to

pick the subset of genes where expression does not correlate with connectivity is shown with a horizontal black line. (D) Within a subset of genes indicated in

(C), expression and connectivity are not correlated (�= –0.00555, P = 0.784).
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with high connectivity (0.0874, 95% CIs: 0.0431–0.0985)

than genes with low connectivity (0.0860, 95% CIs:

0.0734–0.0940, P>0.05, fig. 2D).

Variation in expression level could also explain stronger

negative selection in highly connected genes, because expres-

sion level is correlated with connectivity and genes with higher

expression in leaf tissue in C. grandiflora experience stronger

negative selection (Williamson et al. 2014). To control for ex-

pression level, we examined a subset of our data in which

expression level and connectivity were not correlated and
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FIG. 2.—Estimates of negative and positive selection in genes of different connectivity categories, for all genes and for a subset of genes where

expression is not correlated with connectivity. (A) The proportion of sites found in each bin of negative selection strength, separated by connectivity category

for all genes (12,896 genes). (B) The proportion of sites located in the subset of genes (2,449 genes) where expression is not correlated with connectivity

found in each bin of negative selection strength, separated by connectivity category. (C) The proportion of sites fixed by positive selection (�), and (D) the rate

of adaptive substitution (!). Error bars represent 95% confidence intervals.

Table 1

Parameters and Results from Principal Components Analysis

PC1 PC2 PC3 All

% variation in dN explained 11.13 7.47 0.78 22.79

P value <0.001 <0.001 <0.001

Direction of effect + + –

Contributions to PCs

dS 0.309 �0.948 �0.074

Expression level �0.665 �0.271 0.696

Connectivity �0.680 �0.166 �0.715
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repeated our analysis of selection on this subset of genes using

the same connectivity values to define categories as in the

analysis of all expressed genes (N = 2,449, fig. 1C, D). Within

this subset, negative selection was stronger on genes with

higher connectivity values, although this effect was somewhat

weaker than in the entire dataset: 0.0968 (95% CIs: 0.0877–

0.0968) of sites in the lowest connectivity category were ef-

fectively neutral (NeS<1) while only 0.0800 (95% CIs:

0.0746–0.0862) of 0-fold degenerate sites in the highest con-

nectivity category were neutral (P<0.05, fig. 2B). In addition,

both measures of positive selection, � and !, do not differ

between connectivity categories (P> 0.05, fig. 2C, D).

Local Regulatory Variation is Related to Connectivity and
Selection

Many genes have local expression quantitative trait loci

(eQTLs) that segregate within the population of C. grandiflora

(Josephs et al. 2015). The presence of local eQTLs may reduce

the correlation across genes between gene expression levels,

thus reducing coexpression network connectivity which de-

pends on the strength of these correlations. We separated

genes into those with and without at least one eQTL located

within 5 kB of the transcript, as identified in Josephs et al.

(2015). We observed that the presence of an eQTL reduced

gene connectivity: mean correlation coefficient for genes

without eQTLs is 0.321 (n = 8,806) and the mean correlation

coefficient for genes with eQTLs is 0.291 (n = 4,090),

(P< 2.2� 10�16, fig. 3A). Even within the set of genes with

eQTLs, connectivity appears to relate to the strength of the

association: a gene’s connectivity level is negatively correlated

with the significance of the association for the most significant

eQTL, measured as the negative log 10 of the P value

(P< 2.2� 10�16, �= -0.276, fig. 3B).

Genes with an eQTL also show evidence of reduced con-

straint: dN /dS is higher in genes with an eQTL (dN /dS = 0.201)

than genes without an eQTL (dN /dS = 0.189, P = 9.9�10�9).

The differences in divergence between genes with an eQTL

and genes without an eQTL are driven by stronger negative

selection on genes without an eQTL. Specifically, 0.167 of 0-

fold degenerate sites in genes with eQTLs evolve neutrally

(NeS< 1, 95% CIs: 0.163–0.171) while 0.136 of 0-fold de-

generate sites in genes without eQTLs evolve neutrally (95%

CIs: 0.134–0.138, fig. 4A). Estimates of positive selection, �

and ! do not differ between the two categories (fig. 4B, C).

Overall, there is a general association between levels of con-

straint, connectivity and the presence of cis-regulatory varia-

tion as detected using the presence of local eQTLs. However,

the direction of causality for these relationships is unclear.

Discussion

This study investigated the relationship between connectivity

and selection in the plant C. grandiflora. Connectivity is
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FIG. 3.—Genes with local eQTLs have lower connectivity. (A) Black dots show mean connectivity, gray dots are values for each individual gene. Genes

without an eQTL were randomly sampled to have the same number of observations as genes with an eQTL (n = 4,090). Standard errors are too small to be

plotted. (B) For genes with at least one significant eQTL, connectivity is negatively correlated with the significance of the association for the strongest eQTL,

measured as the negative log of the P value for the association test.
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negatively associated with dN /dS, and this pattern is driven by

stronger negative selection on highly connected genes.

However, the extent of local regulatory variation, inferred by

the presence of eQTLs near genes, also affects both connec-

tivity and the strength of negative selection. Disentangling the

ultimate cause of these relationships is difficult and we see

two possible explanations for the observed relationship be-

tween connectivity, selection, and regulatory variation. First,

the presence or absence of eQTLs could drive the observed

relationship between connectivity and selection because

genes under weaker negative selection may be better able

to tolerate eQTLs which then, in turn, leads to reduced con-

nectivity observed in these genes. Second, reduced constraint

due to network connectivity could affect both levels of nega-

tive selection and the ability of genes to tolerate local regula-

tory variation.

How Methods of Network Inference Shape Evolutionary
Conclusions

Our ability to distinguish between potential explanations for a

correlation between connectivity and selection is mediated by

our choice to use coexpression to measure connectivity.

Coexpression networks are a useful tool for investigating reg-

ulatory networks using commonly available expression data.

They differ from many other types of network inference such

as protein–protein interaction networks, metabolic pathways,

and gene regulatory networks, in that they can be estimated

using observations from interactions that occur in vivo and do

not require manipulative experiments. Because of this, coex-

pression networks have been used for a number of purposes,

such as identifying genes important for tissue differentiation

and other processes (Pierson et al. 2015; Ayroles et al. 2009),

investigating adaptive divergence in expression (Koenig et al.

2013; Swanson-Wagner et al. 2012; Oldham et al. 2006), and

understanding the forces maintaining variation within popu-

lations (Mähler et al. 2017). However, coexpression networks

do not provide information about causality: high connectivity

between two genes could result from the expression level of

one gene affecting that of the other or from both genes re-

sponding to another stimulus.

In addition, coexpression network inference depends di-

rectly on the variation present in the sample used because

connections can only be observed when there is some sort

of expression regulation that differs between samples.

Coexpression networks generated using a population

sample collected at one time point, as done in this study,

will be especially sensitive to the presence of cis-regulatory

variation, compared with those generated using samples of

the same genotype measured across tissues or conditions. It is

unclear how sensitive coexpression networks are to sample

choice, but the role of network position in shaping expression

divergence has been shown to differ between coexpression

networks generated using expression data from response to

different stimuli (Des Marais et al. 2016). Overall, while coex-

pression networks are a useful tool for investigating connec-

tivity, it is important to remember that coexpression does not

imply causality and that sample choice can influence outcome.

The Underlying Causes of Variation in Divergence

Most previous work on the relationship between connectivity

and selection has focused on amino acid divergence, making it

difficult to separate the effects of positive and negative selec-

tion. By using polymorphism to investigate the distribution of

fitness effects and an extension of the McDonald–Kreitman

test to estimate positive selection, we were able to demon-

strate that reduced divergence in highly connected genes is

driven by negative selection. Previous applications of this ap-

proach have also shown that negative selection is often a key

determinant of between-gene variation in divergence

(Williamson et al. 2014; Hodgins et al. 2016). However,

genes under stronger negative selection within species may

also experience stronger positive selection between species, a

situation that would be undetectable looking at divergence

alone (Arunkumar et al. 2013). Clearly, further disentangling

the relative roles of positive and negative selection in shaping

dN /dS will continue to be important for future work investi-

gating the mechanisms responsible for variation in selection

between genes.

In addition to observing negative correlations between dN

and dN /dS and connectivity, we observed a significant nega-

tive correlation between dS and connectivity that persisted
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of sites fixed by positive selection, and (C) the rate of adaptive substitution.
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after controlling for expression level with a partial correlation.

There are a number of factors that could explain this result.

First, there may be some relationship between mutation rate

and connectivity that decreases dS in highly connected genes.

There is limited evidence that the mutation rate varies across

site types and genomic region in A. thaliana (Ossowski et al.

2010) and that mutation rates are higher in certain sequence

motifs in alga (Ness et al. 2015). In addition, genomic features

like exons and DNAase hypersensitivity sites appear to have

higher mutation rates in humans (Michaelson et al. 2012;

Francioli et al. 2015). Similar patterns in plants could contrib-

ute to a relationship between mutation rate and gene expres-

sion and/or connectivity. Second, there may be stronger

selection on synonymous sites in highly connected genes

due to selection on codon usage (Qiu et al. 2011;

Hershberg and Petrov 2008) or mRNA folding (Park et al.

2013). If this is the case, then heterogeneity in dS will reflect

variation in synonymous constraint, not mutation rate varia-

tion, and so dividing by dS could explain why connectivity and

dN /dS are more weakly correlated than connectivity and dN.

Third, background selection in an ancestral species can be an

important determinant of variation in divergence between loci

(Phung et al. 2016). Stronger background selection at con-

strained genes in the species ancestral to C. grandiflora,

N. paniculata, and A. thaliana could reduce neutral divergence

between these species at constrained genes, potentially gen-

erating a correlation between dS and connectivity. Further

work will be needed to fully explain why dS correlates with

connectivity in C. grandiflora.

The Relationship between Pleiotropy and Selection

We set out to understand whether highly pleiotropic genes

are under stronger evolutionary constraint and used coexpres-

sion network connectivity as a measure of pleiotropy. There is

a long history of thought on pleiotropy (Stearns 2010) and

many conflicting definitions for pleiotropy (Paaby and

Rockman 2013). Different definitions of pleiotropy have the

potential to lead to differing conclusions about the relation-

ship between pleiotropy and selective constraint. Our ap-

proach is not consistent with all definitions. Specifically,

pleiotropy in our study is measured as the number of addi-

tional genes whose expression could be altered by variation in

expression of the focal gene and we cannot make further

conclusions about whether these genes ultimately contribute

to the same or different traits.

Our results are consistent with a relationship between plei-

otropy and negative selection: genes with higher connectivity

are under stronger negative selection in C. grandiflora.

However, this conclusion is confounded by the presence of

local regulatory variation. Regulatory variation could drive var-

iation in connectivity if genes with local regulatory variants

appear to be less connected. Alternatively, regulatory variation

could result from variation in constraint if genes under strong

constraint with pleiotropic effects on the expression of other

genes are less likely to be able to tolerate local regulatory

variants. Distinguishing between these two possibilities will

require additional experimental and analytical approaches

for identifying genes with pleiotropic effects.

A number of approaches have been used to investigate the

evolutionary significance of pleiotropy on a genomic scale,

including investigations of GWAS variants that affect multiple

traits (Pickrell et al. 2016) and experiments showing that sta-

bilizing selection acts more strongly on mutations that affect

multiple expression traits through comparisons of standing

genetic variation and mutation variation (McGuigan et al.

2014a, 2014b). An additional way forward could be taking

advantage of QTLs measured in the same lines across environ-

ments. If selective constraint on pleiotropic loci is widespread,

QTLs with effects in multiple environments should be at lower

frequency than those with more limited effects in the same

way that QTLs with large effects on single traits are at lower

frequency than those with small effects (Josephs et al. 2015).

Using eQTLs for this analysis may be especially powerful

because it would allow the investigation of hundreds to thou-

sands of phenotypes and allow integration with network-

based approaches.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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