
The PARIGA Server for Real Time Filtering and Analysis of
Reciprocal BLAST Results
Massimiliano Orsini1*, Simone Carcangiu1, Gianmauro Cuccuru1, Paolo Uva1, Anna Tramontano2

1 CRS4 Bioinformatics Laboratory, Science and Technology Park Polaris, Pula, Italy, 2 Department of Physics, La Sapienza University of Rome, Rome, Italy

Abstract

BLAST-based similarity searches are commonly used in several applications involving both nucleotide and protein
sequences. These applications span from simple tasks such as mapping sequences over a database to more complex
procedures as clustering or annotation processes. When the amount of analysed data increases, manual inspection of BLAST
results become a tedious procedure. Tools for parsing or filtering BLAST results for different purposes are then required. We
describe here PARIGA (http://resources.bioinformatica.crs4.it/pariga/), a server that enables users to perform all-against-all
BLAST searches on two sets of sequences selected by the user. Moreover, since it stores the two BLAST output in a python-
serialized-objects database, results can be filtered according to several parameters in real-time fashion, without re-running
the process and avoiding additional programming efforts. Results can be interrogated by the user using logical operations,
for example to retrieve cases where two queries match same targets, or when sequences from the two datasets are
reciprocal best hits, or when a query matches a target in multiple regions. The Pariga web server is designed to be a helpful
tool for managing the results of sequence similarity searches. The design and implementation of the server renders all
operations very fast and easy to use.

Citation: Orsini M, Carcangiu S, Cuccuru G, Uva P, Tramontano A (2013) The PARIGA Server for Real Time Filtering and Analysis of Reciprocal BLAST Results. PLoS
ONE 8(5): e62224. doi:10.1371/journal.pone.0062224

Editor: Niall James Haslam, University College Dublin, Ireland

Received December 25, 2012; Accepted March 19, 2013; Published May 7, 2013

Copyright: � 2013 Orsini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: These authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: orsini@crs4.it

Introduction

The BLAST program is at the base of a plethora of sequence

similarity studies from genomics to proteomics. Ortholog-based

function prediction [1], detection of the presence of similar

domains in different proteins [2] and of common exons among

alternatively spliced isoforms [3,4], analysis of the presence of

common regulatory signals in potentially functionally related

proteins or genes [5,6] are just some of most common problems

that can be answered by carefully analysing the results of different

database searches.

BLAST related tools are available both for downloading [7,8]

and by web applications [9,10]. While the former is a more flexible

scenario and allows users to perform searches against local

customized databases, the latter usually just permits to query

available databases (e.g. nr, uniprot, ESTdb, etc.), but generally

provides a more structured result report. The first solution

generally requires additional packages or ad-hoc solutions to

manage and post-process BLAST results especially for long and

complex queries. Several stand-alone tools are available (some

examples are: Bioperl [11], Moulder [12], Zerg [13], Museqbox

[14]). They run locally, offer both simple and complex ways of

filtering results (mainly on the basis of parameters such as as e-value,

similarity, etc.) and return parsed results as flat files or in a

spreadsheet format. These packages generally have good perfor-

mances in terms of speed and flexibility but require a certain level

of computer knowledge. They have to be installed and often work

in a command line fashion. Alternatively, some stand-alone tools

as NOBLAST-JAMBLAST [15] and Batch Blast Extractor [16]

provide a graphical interface to manage the results; they also run

locally, are platform independent and do not require any

computer knowledge. NOBLAST-JAMBLAST requires a

MySQL server to be installed. This allows the user to sort and

filter BLAST results and to perform queries on them via a

graphical interface. An additional class of programs (BOV [17],

PLAN [18], nuclearBLAST [19]) are available via web (or require

a web server installation on Linux platform), let the users upload

their own BLAST results as plain text files, and provide a user-

friendly environment to filter and analyse the results. These

applications generally work by storing BLAST results in a

relational database, which, contrary to the case of NOBLAST-

JAMBLAST [15] is not accessible to the user.

Available packages and web services are designed to simplify the

use of database search tools for both programmatic and manual

usage and all of them have specific features that make them

appropriate for specific applications. However, so far, no tool is

available for reciprocal blasting of two user defined sequences

dataset and for an easy mining of results in an efficient and user

friendly fashion. Yet, this is not an uncommon need in biology

[20–25].

This led us to develop a powerful tool, named PARIGA (it

comes from the Sardinian idiom: ‘‘a pair of’’), that, given two user

selected protein and/or nucleotide datasets, performs all-vs-all

reciprocal BLAST searches [7] using each member of the first set

as a query and the second set as the target database and vice versa

and permits to quickly filter and analyze the results. It enables the

user to interrogate and compare intra- and inter- BLAST results

by performing logical operations on them. Moreover, the web

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e62224

implementation allows directly the parsing of BLAST results. The

action of filtering is performed in real-time and it is completely

reversible since it acts at level of results visualization; thus, it does

not require additional computational steps and it does not provoke

loss of data at each filtering phase.

Methods

In our system, the BLAST outputs are stored in a python-

serialized-objects relational database by a dedicated version of a

python package named BlaSTorage [26]. In short, the system

works by generating and manipulating a universal data structure, a

JSON (JavaScript Object Notation) object, which is a lightweight

data-interchange format, for each of the BLAST outputs

generated with the Blast+ implementation [27]. The JSON object

does not contain the alignments (the largest part of the outputs),

while a dynamic generation of javascript code is used to keep the

size of these objects rather small. Furthermore, searches, ranking

and filtering operations can be performed on the client rather than

on the server side thereby substantially improving the speed of

response. In other words, the technical implementation of the

system is such that the interactions between the user and the server

are kept to a minimum. Although, in principle, the allowed size of

the dataset is unlimited, in the current release we encourage an

upper limit on the size of the two input files (an amount of 1000

proteins of about 300 residues each corresponds to about 100 MB

of transferred JSONs), but it should be noted that this is only due

to the limitations in the browser capability of displaying large

amount of data (client-side), rather than to the computational load

(server-side).

Results and Discussion

The two datasets can be uploaded by the user who can select the

desired traditional BLAST parameters (word size, expected e-value,

gap-open and extension, etc.). The visualization of each of the BLAST

results is very similar to the standard tabular BLAST output with

the possibility of retrieving the alignment by clicking on the entry

name. Summary table, statistics and a graphical summary of

matches can be viewed by clicking on the appropriate icon in the

table header. Two additional columns have been added to the

traditional schema, named coverage and inv-cov. These indicate the

fraction of the query and the subject involved in the alignment,

respectively. Two novel key functionalities have been implement-

ed. First of all, the results can be visualized and filtered in real time

according to parameters such as similarity, coverage, e-value etc.

(Figure 1, left panel). Second, since results are stored in a hidden

database structure, the user can easily perform logical operations

on them by simply selecting one of the options COMMON,

CROSS and MULTIPLE (Figure 1, right panel, and schema in

Figure 2).

Filtering Results
By clicking the open filter button a form will appear where the

user can insert the upper and lower limits for the desired

parameters (eg. similarity between 40% and 80%). This will cause

a refresh of the results page where only the results satisfying the

imposed set of parameters will be displayed. Also graphical results

will be updated according to the filters. Multiple filtering criteria

can be applied simultaneously. While both full raw and

summarized Blast results can be downloaded by the link on the

top of the page, the real time filtered table can be exported by

clicking on the ‘‘Export Table’’ icon in the table header.

COMMON Searches
The COMMON option allows the visualization of the hits of

one dataset that are shared among the BLAST results of selected

entries in the other dataset. The selection of the entries can be

done via checkboxes or by typing the numbers corresponding to

the indexes of the entries of interest. The system visualizes the

results as a table where each hit is linked to the corresponding

alignment, plus the BLAST parameters and the relative position of

each hit in the query search.

The possible applications of this option include the possibility of

identifying proteins sharing a similar domain or, conversely, to

identify multiple domains present in the same set of proteins. It can

also be used to ask which exons are present in which set of

transcripts and their range of similarity, which could give insights

into their mechanism of evolution. If a sequence sets is composed

of putatively co-expressed or co-regulated genes and the other by

regulatory sequences, the user can use this option to identify which

sequences share the same regulatory sequences or, on the

contrary, which regulatory sequences are present in which

transcripts.

CROSS Searches
The CROSS option allows the user to highlight and retrieve

cases where two entries of the two input datasets are reciprocally

matched as query-subject pair in the BLAST searches. One

obvious application of this option is the detection of orthologous

genes or proteins by allowing the quick identification of protein of

gene pairs that represent the best hit for each other. Given the

suggested upper limit in the number of input sequences, this search

can be applied to the whole proteomes of small organisms (eg.

bacteria), while for the eukaryote orthologue prediction a smaller

set of sequences enriched in potential candidates has to be used.

MULTIPLE Searches
Finally, the MULTIPLE option is used to verify whether one of

the queries matches more than one region on the same entry of the

second dataset. Also in this case, the potential applications are

many and diverse, for example the detection of targets of the same

microRNA, the identification of binding sites for multiple

microRNAs on the same target gene or the detection of multiple

protein domains in the same protein sequence. We also included a

button to quickly filter all the queries which do not have multiple

hits on the same subject, in order to guarantee a fluid navigation

among results.

Detailed examples of the three options, including screenshots,

are shown in Text S1. Several additional features complete the

web application: it is possible to export the raw Blast results as text

files, to perform a self-Blast simply leaving empty the second

dataset (in this case the entries of the first dataset will be blasted

against the dataset itself). Finally, the results of COMMON,

CROSS and MULTIPLE searches, run across the entire dataset,

are summarized in tables shown in pop-up windows.

Ongoing Work
As we mentioned, even though theoretically this application is

unlimited in terms of size of the datasets, we strongly suggest an

upper limit of 5000 submitted sequences to ensure reasonable

computational times since the visualization step strongly depends

upon the user client. In our tests Pariga successfully run with

20,000 vs 20,000 blasts, although it required more than 60 minutes

for the display of the results). This is most likely not a serious

limitation since people dealing with larger dataset (e.g. at the

genome scale) are unlikely to perform visual and interactive

PARIGA, Boosting Reciprocal BLAST

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e62224

inspection of the BLAST results and prefer ad-hoc solutions to

parse and manage Blast output according to the question. We

developed Pariga with the aim of helping biologist dealing with

small datasets, where Blast results have to be extensively explored.

For larger datasets, command line solutions (i.e. based on database

frameworks) could be more suitable. Moreover, for these tasks the

Pariga engine can be applied [26]. We plan to develop the system

further, by adding the possibility of performing TBLASTX and

Figure 1. Real Time Filtering and Logical Operations. (Left) Real Time Filtering. Differently from other available tools, filtering of the
returned results can be done in real time with PARIGA. By clicking the filter button, a form will appear where the user can insert the desired values (or
ranges) and only filtered results will be shown. Four icons on the table header will show, from left to right, a graphical summary of the hits
distribution on the query sequence, the results table, a Blast summary table and the Blast statistics. (Right) Logical Operations. The main result
page will show three buttons that allow the user to perform logical operations between the two groups of results as described in the text.
doi:10.1371/journal.pone.0062224.g001

Figure 2. Pariga logical schema. Central columns represent the original input files, while results are indicated in the columns on the side. Boxes
indicate logical operations that can be performed on the results. As an example: COMMON: which sequence(s) of the dataset B is(are) shared in BLAST
results of sequence A2 and A3 of the dataset A? CROSS: once sequence A1 is selected from dataset A, in which results of the dataset B does it appear?
MULTIPLE: which sequence of dataset A appears more than once (i.e. matches more than one region) in the results of sequence B2 of dataset B?
doi:10.1371/journal.pone.0062224.g002

PARIGA, Boosting Reciprocal BLAST

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e62224

TBLASTN [8] searches and to extend its applicability to whole

genome analysis by moving most of the computations to the server

side.

Conclusions
Similarity searches in protein and nucleotide sequence data-

bases represent the starting point and often the foundation of

many biological discoveries. We developed a tool to manage,

query and compare results from reciprocal BLAST analysis.

Availability
http://resources.bioinformatica.crs4.it/pariga/.

Supporting Information

Text S1 Pariga tutorial including two case studies with
screenshots.

(PDF)

Author Contributions

Conceived and designed the experiments: MO SC. Performed the

experiments: MO SC GC PU. Analyzed the data: MO SC GC PU.

Contributed reagents/materials/analysis tools: GC PU. Wrote the

manuscript: MO AT. Revised the manuscript: GC PU AT. Developed

and implemented the core algorithm: MO SC.

References

1. Moreno-Hagelsieb G, Latimer K (2008) Choosing BLAST options for better

detection of orthologs as reciprocal best hits. Bioinformatics 24: 319–324.
2. Bryson K, Cozzetto D, Jones DT (2007) Computer-assisted protein domain

boundary prediction using the DomPred server. Curr Protein Pept Sci 8: 181–
188.

3. Pospisil H, Herrmann A, Bortfeldt RH, Reich JG (2004) EASED: Extended
Alternatively Spliced EST Database. Nucleic Acids Res 32: D70–74.

4. Sorek R, Ast G, Graur D (2002) Alu-containing exons are alternatively spliced.

Genome Res 12: 1060–1067.
5. Steinhauser D, Junker BH, Luedemann A, Selbig J, Kopka J (2004) Hypothesis-

driven approach to predict transcriptional units from gene expression data.
Bioinformatics 20: 1928–1939.

6. Tharakaraman K, Mariño-Ramı́rez L, Sheetlin S, Landsman D, Spouge JL

(2005) Alignments anchored on genomic landmarks can aid in the identification
of regulatory elements. Bioinformatics (Suppl 1): i440–448.

7. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. J Mol Biol 215: 403–410.

8. McGinnis S, Madden TL (2004) BLAST at the core of a powerful and diverse

set of sequence analysis tools. Nucleic Acids Res 32: W20–25.
9. Ncbi BLAST website. Available: http://blast.ncbi.nlm.nih.gov/. Accessed 2013

Apr 8.
10. The UniProt Consortium (2012) Reorganizing the protein space at the Universal

Protein Resource (UniProt). Nucleic Acids Res. 40: D71–D75.
11. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, et al. (2002) The

Bioperl toolkit: Perl modules for the life sciences. Genome Res. 12: 1611–8.

12. Blast library. Available: http://stein.cshl.org/software/boulder/. Accessed 2013
April 8.

13. Paquola AC, Machado AA, Reis EM, Da Silva AM, Verjovski-Almeida S (2003)
Zerg: a very fast BLAST parser library. Bioinformatics, 19: 1035–1036.

14. Xing L, Brendel V (2001) Multi-query sequence BLAST output examination

with MuSeqBox. Bioinformatics, 17: 744–5.
15. Lagnel J, Tsigenopoulos CS, Iliopoulos I (2009) NOBLAST and JAMBLAST:

New Options for BLAST and a JAVA Application Manager for BLAST results.
Bioinformatics, 25: 824–826.

16. Pirooznia M, Perkins EJ, Deng Y (2008) Batch Blast Extractor: an automated

blastx parser application. BMC Genomics, (Suppl 2): S10–14.

17. Gollapudi R, Revanna KV, Hemmerich C, Schaack S, Dong Q (2008) BOV–a

web-based BLAST output visualization tool. BMC Genomics 15 414–419.

18. He J, Dai X, Zhao X (2007) PLAN: a web platform for automating high-

throughput BLAST searches and for managing and mining results. BMC

Bioinformatics, 8: 53–62.

19. Diener SE, Houfek TD, Kalat SE, Windham DE, Burke M, et al. (2005)

Alkahest NuclearBLAST: a user-friendly BLAST management and analysis

system. BMC Bioinformatics 6: 147–151.

20. Sen A, Thakur S, Bothra AK, Sur S, Tisa LS (2012) Identification of TTA

codon containing genes in Frankia and exploration of the role of tRNA in

regulating these genes. Arch Microbiol 194: 35–45.

21. Ghamsari L, Balaji S, Shen Y, Yang X, Balcha D, et al. (2011) Genome-wide

functional annotation and structural verification of metabolic ORFeome of

Chlamydomonas reinhardtii. BMC Genomics 12 (Suppl 1): S24–32.

22. Mica E, Gianfranceschi L, Pe’ ME (2006) Characterization of five microRNA

families in maize. J Exp Bot 57: 2601–12.

23. Hahn P, Bose J, Edler S, Lengeling A (2008) Genomic structure and expression

of Jmjd6 and evolutionary analysis in the context of related JmjC domain

containing proteins. BMC Genomics 9: 293–318.

24. Steward GF, Preston CM (2011) Analysis of a viral metagenomic library from

200 m depth in Monterey Bay, California constructed by direct shotgun cloning.

Virol J 8: 287–300.

25. Moon EK, Chung DI, Hong YC, Ahn TI, Kong HH (2008) Acanthamoeba

castellanii: gene profile of encystation by ESTs analysis and KOG assignment.

Exp Parasitol 119: 111–116.

26. Orsini M, Carcangiu S (2013) BlaSTorage: a fast package to parse, manage and

store BLAST results. Source Code Biol Med. 8: 4.

27. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. (2009).

BLAST+: architecture and applications. BMC Bioinformatics 10: 421.

PARIGA, Boosting Reciprocal BLAST

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e62224

