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Abstract

The purpose of the present study is to explore the progression of type 1 diabetes (T1D) in Danish children 12 months after
diagnosis using Latent Factor Modelling. We include three data blocks of dynamic paraclinical biomarkers, baseline clinical
characteristics and genetic profiles of diabetes related SNPs in the analyses. This method identified a model explaining
21.6% of the total variation in the data set. The model consists of two components: (1) A pattern of declining residual b-cell
function positively associated with young age, presence of diabetic ketoacidosis and long duration of disease symptoms
(P = 0.0004), and with risk alleles of WFS1, CDKN2A/2B and RNLS (P = 0.006). (2) A second pattern of high ZnT8 autoantibody
levels and low postprandial glucagon levels associated with risk alleles of IFIH1, TCF2, TAF5L, IL2RA and PTPN2 and protective
alleles of ERBB3 gene (P = 0.0005). These results demonstrate that Latent Factor Modelling can identify associating patterns in
clinical prospective data – future functional studies will be needed to clarify the relevance of these patterns.
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Introduction

T1D is the end result of T-cell mediated autoimmune

destruction of the pancreatic b-cells. Several studies have

described the natural history of T1D with respect to b-cell failure

and glycaemic control in order to understand disease progression

[1–3]. In those studies the predominant factors associated with a

rapid loss of residual b-cell function are young age [1,2] and severe

diabetic ketoacidosis (DKA) at diagnosis [2,4]. The causal effect of

autoantibodies on residual b-cell function remain unclear as

conflicting results are reported [2,5]. However, a positive

association between the arginine variant of the ZnT8 autoanti-

bodies (ZnT8Arg) and the residual b-cell function has recently

been reported [6–8]. Genome wide association studies (GWAS)

have identified in excess of 40 regions with significant association

to T1D, but the functionality of these genes in disease mechanisms

is not addressed by GWAS studies. Few of the T1D susceptibility

genes (INS and PTPN22 genes) have so far been associated with

residual b-cell function and glycaemic control during the first year

after diagnosis in newly diagnosed children with T1D [9,10].

Thus, although the residual b-cell function has been extensively

studied, individual variation remains to be explained.

The complexity of T1D pathogenesis advocates for new

modelling methods in biomedical systems of equivalent complexity

[11,12], especially regarding gene-gene interactions (epistasis) [13].

The usage of Latent Factor Modelling for analysis of complex data is

an emerging field originating from genomics, metabolomics and

chemometric sciences and is gaining acceptance in clinical

research [14,15]. By applying the multi-block approach when

analysing closely monitored clinical cohorts instead of classical

regression analyses we may identify new associations between

biomarker patterns related to disease progression, corresponding

baseline characteristics and gene-gene interactions [16].

The aim of this study was to investigate patterns of clinical-,

paraclinical- and genetic characteristics during the first 12 months

after diagnosis in a Danish cohort of 129 children with newly

diagnosed T1D by applying Latent Factor Modelling.
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Materials and Methods

Subjects
The Danish Remission Phase Study is a prospective long-term

observational study conducted in four paediatric departments. A

total of 129 children and adolescents aged less than 17 years with

newly diagnosed T1D were enrolled in the study from April 2004

to August 2006 and followed for 12 months from onset of T1D,

defined as the first insulin injection. The detailed study design has

previously been described by Andersen et al [8]. The study was

performed according to the criteria of the Helsinki II Declaration

and was approved by the Danish National Committee on

Biomedical Research Ethics (Journal number: H-KA-04010-m).

Older patients and all parents or guardians gave written informed

concept. Data were transmitted anonymously by the centers;

patients were identified by center number and patient code.

HbA1c, Insulin Dose Adjusted HbA1c (IDAA1c) and Partial
Remission

HbA1c was measured at disease onset, 1, 3, 6, 9, and 12 months

after diagnosis (61 week). Capillary samples for HbA1c analysis

were centrally measured using Bio-Rad HbA1c sample preparation

kit (Bio-Rad Laboratories, Munich, Germany) as described by

DCCT [1]. Normal range for the assay was 4.4–6.3% (about 0.3%

higher than the DCCT method). Daily insulin dose (U/kg) was

recorded 1, 3, 6, 9 and 12 months after diagnosis. IDAA1c was

calculated as IDAA1C = HbA1c (percent)+[4 x insulin dose (units

per kilogram per 24 h)]. Partial remission was defined as an

IDAA1C #9 as described by Mortensen et al [17].

Residual b-cell Function
After 1, 3, 6 and 12 months of diabetes (61week) a mixed meal

tolerance test (MMTT) was performed to stimulate endogenous C-

peptide and proinsulin release as previously described [8]. The

included children received 6 ml/kg (maximum 360 ml.), accord-

ing to DCCT standards [1], of BOOSTH Original Drink (237 ml

or 8 FL OZ containing 41 g carbohydrate, 10 g protein and 4 g

fat, 240 kcal in all from Novartis Medical Health, Inc., Minne-

apolis, MN, USA (www.boost.com/nutritional-drinks/boost-

original). Serum samples were stored on dry ice at 220 uC until

shipment to Steno Diabetes Centre. Stimulated serum C-
peptide was analysed by a fluoroimmunometric assay as

previously described [2]. Stimulated serum proinsulin was

analysed by a sandwich ELISA assay as described by Kaas et al

[18]. There were 129 patients who contributed with at least one

measurement.

Glucagon, Glucose-dependent Insulinotrophic
Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1)

Glucagon, GIP and GLP-1 were all measured centrally after

extraction of plasma with 70% ethanol (vol/vol, final concentra-

tion) [19]. There were 129 patients who contributed with at least

one measurement.

Autoantibodies
The conventional T1D autoantibodies were measured in serum

samples: Islet Cell autoantibodies (ICAs) by use of immuno-

fluorescence assay [20]; insulin autoantibodies (IAAs), anti-

bodies against Glutamic Acid Decarboxylase (GADAs) and

Insulinoma-associated Antigen-2 (IA-2A) by use of specific

radiobinding assays [21]. The cut-off values for ICA, IAA, GADA

and IA-2A positivity were 2.5 Juvenile Diabetes Foundation units

(JDFU), 2.80 relative units (RU), 5.36 RU and 0.43 RU,

respectively. Zinc transporter 8 autoantibodies (ZnT8Abs)
were measured on serum samples by use of specific radio binding

assays (RBA) for each variant (arginine (ZnT8Arg), tryptophan

(ZnT8Trp) and glutamine (ZnT8Gln)) and the triple mix assay

(ZnT8tripleAb) as described previously [8]. ZnT8Ab positivity was

defined as titer values $ 60 U/ml, 58 U/ml and 65 U/ml and 58

U/ml for ZnT8Arg, ZnT8Trp, ZnT8Gln and ZnT8tripleAb,

respectively. There were 129 patients who contributed with at least

one measurement.

HLA Typing
Time-resolved fluorometry was used for identification of HLA-

DQB1 alleles (02, 0301, 0302, 0304, 0602, 0603, and 0604) as

described in details [22]. The HLA-DQB1 genotyping risk score

was as follows: ’very high risk’ included only DQB1*0302-

DQB1*02 heterozygous individuals, ’high risk’ included

DQB1*0302/*0302, 0302/X, 02/02, and 02/X, ’moderate risk’

included DQB1*0302/0301, 0302/0603, 02/0301, 02/0603, and

XX, and ’low risk’ included DQB1*0302/0602, 02/0602, 0301/

X, 0603/X, where X are all other DQB1 alleles. Patients were

subdivided into three HLA risk groups (very high, high and

moderate/low) according to their HLA-DQB1 genotype [23]. 125

children were HLA genotyped, the genotype distribution was: very

high risk n = 48, high risk n = 55 and moderate/low risk n = 22.

Genotyping
In total 125 children were genotyped for 51 single nucleotide

polymorphisms (SNPs) from different genomic loci chosen from

T1D and T2D GWAS. Genotyping was done using Taqman allele

discrimination (KBioscience, Hoddesdon, UK). The 31 selected

T1D SNPs were: [24]: INS (rs3842753 and rs689), PTPN22

(rs2476601), PTPN2 (rs478582 and rs1893217), IFIH1

(rs1990760), IL2RA (rs11594656), KIAA0350 (rs12708716), SHSB3

(rs3184504), ERBB3 (rs2292239), TAF5L (rs3753886), ICAM1

(rs1799969), SORCS1 (rs1358030), UBASH3A (rs9976767), BACH2

(rs3757247), CTSH (rs3825932), C1QTNF6 (rs229541), IL6

(rs1800795), PDCD1 (rs11568821), BNC2 (rs566369), IL10

(rs3024505), IL7 (rs6897932), TNFAIP3 (rs2327832), SKAP2

(rs7804356), CTRB1/CTRB2 (rs7202877), GSDMB/ORMDL3

(rs2290400), CTLA4 (rs231775 and rs3087243), RNLS

(rs10509540), GLIS3 (rs7020673), PRKCQ (rs11258747). The 20

selected T2D SNPs were: [25]: SLC30A8 (rs13266634), KCNJ11

(rs5215), TCF7L2 (rs7901695 and rs7903146), CDKN2A/2B

(rs564398 and rs10811661), IGFBP2 (rs4402960), CDKAL1

(rs10946398), HHEX/IDE (rs5015480 and rs1111875), WFS1

(rs10010131), ADAMTS9 (rs4607103), PPARG (rs1801282),

THADA (rs7578597), CDC123/CAMK1D (rs12779790), FTO

(rs9939609), JAZF1 (rs864745), NOTCH2 (rs10923931),

TSPAN8/LGR5 (rs7961581) and HNF1B (rs4430796).

Statistical Methods
Conventional statistical methods. Data are descriptively

presented as median and range for non-normally distributed

parameters and mean 6 standard deviation (SD) for normally

distributed parameters. Non-normally distributed parameters were

analysed on logarithmic scale. The analyses were performed using

SAS (version 9.2, SAS Institute; Cary, NC, USA) and R (http://

mirrors.dotsrc.org/cran/).

Latent factor models for analysis of complex data – multi-

block approach. The data are organized as three individual

data blocks schematized generically in Figure 1: Block I:

Paraclinical markers such as number of insulin injections, fasting

blood glucose, stimulated blood glucose (SBG), daily insulin dose

per kg, body mass index (BMI), HbA1c, IDAA1c, insulin

Complex Multi-Block Analysis of New Onset T1D
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antibodies, autoantibodies: GADA, ICA, IA-2A, ZnT8Arg,

ZnT8Trp, ZnT8Gln and ZnT8tripleAB and serum level of

stimulated: C-peptide, proinsulin, glucagon, GIP and GLP-1

measured 1, 3, 6 and 12 months after diagnosis. Block II: Clinical

and paraclinical markers registered at onset (baseline): Number of

weeks before diagnosis with polyuria and polydipsia, pubertal

status, blood glucose, standard bicarbonate (HCO3
-), gender, age,

DKA (HCO3
- #15 mmol/L), severe DKA (HCO3

- #5 mmol/L),

HLA risk groups and HbA1c. Block III: T1D and T2D related

genetic polymorphisms as described above.

The aim of the analysis was to extract biologically intuitive

patterns reflected in the different data blocks. We used a multi-

block procedure, Coupled Matrix Tensor Factorization [26,27], to

derive common components/factors. The method is an extension

of the well-known methods for factorization of matrices (Latent

Factor Models), Principal Component Analysis (PCA), and higher order

arrays, PARAallel FACtor analysis (PARAFAC). The large number of

variables in population-based cohorts is significantly prone to

spurious discoveries, for which reason correction for multiple

testing is often applied, e.g. Bonferroni correction. The Latent Factor

Modelling account for multiple testing by reducing the dimension-

ality in a way similar to principal component analysis [28].

In order to simplify the factors a sparsity constraint was imposed

with the result that variables with small contribution are set to

zero. Hereby the individual factors only reflect a subset of the

variables and are therefore easier to interpret. Thus, from the

chosen model based on the three data blocks a number of relevant

components are extracted. Each component describes a certain

pattern of variation and may be reflected in several modes

(biomarkers over time, baseline characteristics and genes).

Therefore, all components are parts of the same model reflecting

different association patterns between the data blocks. Examina-

tion of the biomarker mode reveals which biomarkers are related to

the component, and examination of the time mode reveals how this

pattern progress over time, see Figure 1 ‘Biomarkers’. Here

variable A has a high positive so called loading and B a high

negative loading; this means that these two variables, in this

pattern, are opposite correlated. The inclusion of the timely

development indicates that A increases and B decreases over time.

Further, the pattern is extracted such that profiles in ‘Baseline

characteristics’ and ‘Genes’ are simultaneously estimated. In

figure 1 ‘Genes’, G1 is therefore positively associated- whereas

G2 is negatively associated with this pattern in the biomarker

development. Likewise baseline variable B1 is positively associated

with the pattern (to highlight a few).

Validation. The multi-block model was internal validated by

pattern to pattern association via random permutation testing,

which estimates the significance of the associations between the

data-blocks in the true model.

The multi-block model was validated further by the use of two

different approaches for external validation: i) split half consistency

and ii) replication in an independent cohort. A split half analysis

mitigates the process of estimating the same model in two

independent datasets by splitting the data into two equally sized

portions followed by building of two independent models. These

are compared in terms of pattern estimates by either correlation

coefficients (for baseline and biomarker variables) or selectivity

patterns for genes (by homogeneity testing). Split half analysis is

based on models built on reduced data with a resulting loss of

statistical power. Optimally the results can be reproduced in an

independent cohort. The Hvidoere Remission Phase Cohort

including 275 newly diagnosed children with T1D collected

through 18 paediatric centres in Europe and Japan represent an

independent, but slightly different cohort [2]. The same blood

samples were collected as for the cohort presented in this study (the

Danish Remission Phase Cohort) 1, 6 and 12 months after

diabetes onset. An independent model is built on these data and

compared to the model built on the Danish Remission Phase

Cohort in a similar fashion as for the split half analysis.

For further methodological details see appendix S1.

Results

Demographic and Clinical Characteristics
Data were obtained from 129 patients, 63 girls (mean age

10.2 yrs) and 66 boys (mean age 9.9 yrs), 95% were Caucasian.

Clinical information including anthropometric data, ethnicity,

pubertal status, symptoms prior to diagnosis and metabolic status

(DKA, stimulated blood glucose and HbA1c) are summarized in

Table 1 according to age group.

The median level of stimulated C-peptide was unchanged

from 1 to 3 months, but subsequently decreased from 3 to 12

months after clinical disease onset (Table 2). The association

between age and stimulated C-peptide is shown in Figure 2A for

each individual. Regression analysis revealed an increasing

positive significant effect of age to stimulated C-peptide through-

out the study period (P#0.0001). Mean HbA1c and IDAA1c
declined from disease onset, reached a nadir 3 months after

diagnosis, and increased thereafter continuously throughout the

study period (Table 2). The association between age and HbA1c

and IDAA1c, respectively, is shown in Figure 2B and 2C for each

individual. Only 21.1% of the very young children (,5 years) were

in partial remission (IDAA1c #9) 3 months after diagnosis,

whereas 74.3% and 68.9% of the children in the two oldest age

groups (5–10 years and .10 years) were in partial remission at this

time point (P = 0.0002) (Figure 2C).

Figure 1. Diagram of a single factor/component from a -block
model examining biomarkers over time (Biomarkers) in
relation to baseline characteristics (Baseline) and Genetic
background (Genes). The pattern indicates that e.g. the biomarker
A increases- and the biomarker B decreases over time. This pattern is
e.g. related to high values of the baseline characteristics B1 and high
number of risk alleles for gene G1 and low number of risk alleles for
gene G2.
doi:10.1371/journal.pone.0064632.g001
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Latent Factor Modelling (multi-block analyses)
The three data blocks were modelled by a two component

multi-block model describing 21.6% of the total variation in the

block of dynamic paraclinical biomarkers. These components were

assigned ‘b-cell function’ and ‘ZnT8Ab’. The first component

reflects data from all three data blocks, whereas the second

component only reflects data from the dynamic biomarker- and

gene blocks.

Component 1: Identification of Baseline Clinical
Characteristics and Genetic Profiles Related to Declining
‘b-cell Function’ (dynamic paraclinical biomarker block)

The first association pattern from the multi-block analyses is

shown in Figure 3A. This component describes a dynamic pattern

of biomarkers related to declining b-cell function reflected as a

decline of stimulated C-peptide and proinsulin in combination

with an increase of stimulated blood glucose, glucagon and insulin

dose per kg bodyweight during the first 12 months after onset

(Figure 3A (I)). This component is denoted ‘b-cell function’. The

‘b-cell function’-component is associated with a pattern of baseline

clinical characteristics consisting of young age, DKA, low standard

bicarbonate, high level of blood glucose and duration of symptoms

(polyuria and polydipsia) (Figure 3A (II)). The described associa-

tion between the pattern of dynamic biomarkers and the

corresponding pattern of baseline characteristics of the ‘b-cell

function’-component are significant (P = 0.0004). Furthermore, the

‘b-cell function’-component is associated with a genetic pattern of

multiple number of risk alleles of T1D associated SNPs from the

insulin VNTR region (INS (rs3842753 and rs689) and the RNLS

(rs10509540) together with T2D associated SNPs in WFS1

(rs10010131) and CDKN2A/2B (rs564398) genes and protective

alleles of the T2D associated SNP (rs7961581) in the TSPAN8-

LGR5 gene (P = 0.006) (Figure 3A (III).

Component 2: Identification of Genetic Profiles Related
to the Dynamic ZnT8Ab Profile

The second component, denoted ‘ZnT8Ab’-component, de-

scribes the development of ZnT8Abs (reflected as high levels of

ZnT8Arg, ZnT8Trp, ZnT8Gln and ZnT8TripleAb) combined

with low levels of stimulated glucagon (Figure 3B). This pattern

increases until 6 months after diagnosis, and subsequently

stabilizes (Figure 3B (I)). The ‘ZnT8Ab’-component is strongly

related to a genetic profile of risk alleles of SNPs in the T1D

related genes: TAF5L (rs3753886), HNF1B (rs4430796), IL2RA

(rs11594656) and PTPN2 (rs1893217) in combination with the

T2D associated SNP: CDKAL1 (rs10946398); and protective alleles

of the T1D associated gene ERBB3 (rs2292239) (P = 0.0005)

(Figure 3B (III)). The ‘ZnT8Ab’-component was not found to be

correlated to age or any other of the baseline characteristics

(P.0.5).

External Validation of the Multi-block Model
In the split half analysis the components were compared

between the two strata. Especially the biomarker profiles in

relation to the ‘b-cell function’-component and ‘ZnT8Ab’-

component, were consistent (P = 0.002 and P = 0.0001). The

selection of genes in the split-half procedure were to some extend

inconsistent (P = 0.2) but these analyses were especially hampered

by the loss of modelling power by reducing the data with 50%.

Comparison with a model based on the Hvidoere Cohort (n = 275)

revealed, that the first component (‘b-cell function’) is consistent

(P = 0.009), with a similar baseline pattern (P = 0.0028), including

a fair overlap in genes selected for this component (P = 0.08).

However, the pattern of the second component (‘ZnT8Ab’) was

not strong enough to be revealed by a two component model

based on the Hvidoere Cohort.

Discussion

‘b-cell Function’-component
The present study applies multi-block methodology based on Latent

Factor Modelling (appendix S1) with the aim of identifying

associating clinical, paraclinical and genetic patterns in a well

characterized cohort of children with newly diagnosed T1D. We

suggest applying this modelling method to address one of the

largest challenges in post-GWA studies, the association between

disease-related risk loci and metabolic/clinical phenotypes. The

first component extracted from the model, ‘b-cell function’, reflects

a well-known pattern between stimulated C-peptide, age [1–3]

and metabolic derangements [4]. When applying multi-block analysis

we did, however, identify less well described relations between

clinical observations, as duration of symptoms and decline of b-cell

function, indicating the importance of early diagnosis of the

disease. The cohesion between stimulated C-peptide and proin-

sulin is supported by previous reports [2,18,29]. We refine the

dynamic pattern of declining b-cell function represented by

stimulated C-peptide and proinsulin with the combination of

Table 1. Clinical and demographic data at onset and 1 month (`) after diagnosis by age groups: *P,0.05.

Age ,5 yrs 5$ Age ,10 yrs Age $10 yrs

Number (male/female) 14/5* 14/22 38/36

Mean age (range) (yrs) 3.2 (0.6–4.9) 7.9 (5.2–9.8) 12.8 (10.1–16.6)

Mean BMI (range) (kg/m2)` 16.3 (13.4–20.4) 16.6 (13.4–20.6) 19.5 (14.6–29.9)

Prepubertal (%) 19 (100) 34 (97.1) 21 (36.8)

White Caucasian (%) 19 (100) 33 (91.7) 71 (97.3)

Family history of T1D (%) 5 (26.3) 2 (5.6) 9 (12.2)

Mean duration of polyuria (weeks) 3.7 (1–14) 3.4 (1–16) 4 (0–24)

Mean duration of polydipsia (weeks) 3.7 (1–14) 3.5 (1–16) 3.9 (0–24)

DKA at diagnosis (%) 5 (26) 7 (20) 7 (10)

Mean HbA1c (SD, range) (%) 9.73 (1.16, 7–11.6) 11.35 (1.86, 7.5–14.5) 12.24 (2.31, 7.8–18.5)

Mean blood glucose (SD) (mmol/liter) 31.8 (10.1) 27.1 (10.1) 24.9 (6.8)

doi:10.1371/journal.pone.0064632.t001
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increased stimulated blood glucose levels and daily insulin dose

per kg [18].

This ‘b-cell function’-pattern is associated with a genetic profile

of T2D related genes including multiple risk alleles of the SNPs in

the WFS1 and CDKN2A/2B [25] genes and protective alleles of the

SNP in the TSPAN8/LGR gene [25], together with multiple

numbers of risk alleles of the SNP in the T1D related gene RNLS

[24] and the two SNPs (rs3842753 and rs689) from the insulin

VNTR region. The SNPs from the insulin VNTR region has been

documented to contribute to T1D susceptibility [30] and

preservation of b-cell function [9] supporting the present findings,

whereas the relation of the other genes with the residual b-cell

function is novel. The HLA risk genotypes were not present in the

genetic pattern of the ‘b-cell function’-component, although they

are important determinants of earlier disease onset [31]. HLA

genotypes do, however, not seem to predict residual b-cell function

[2] and, thus, we would not expect a contribution of the HLA

genotypes in the genetic pattern of the ‘b-cell function’-component

model. The ‘b-cell function’-component is estimated between all

three data blocks (biomarkers, baseline characteristic and genetic

background), whereby the genetic fingerprint also associates to the

described pattern of baseline characteristics. From this analysis it is

not possible to conclude whether the genetic background results in

earlier disease onset, and only indirectly predicts a more rapid b-

cell destruction, or if the genes alone reflect a certain profile of b-

cell destruction. However, conventional regression analyses (data

not shown) indicate that the genetic effect is mediated through

younger age at onset, since the predictive C-peptide effect

disappears when adjusting for age. Thus, multiple risk alleles of

SNPs from the WFS1, CDKN2A/2B and RNLS genes may predict

earlier onset of T1D probably due to a more rapid b-cell

destruction following the first b-cell damage. These findings

confirm a recent work by Howson et al [32], where polymophisms

in the RNLS gene were associated with earlier onset of T1D.

‘ZnT8Ab’-component
The second component ‘ZnT8Ab’ describes a pattern of

ZnT8Abs, which is negatively associated with glucagon levels.

The positive association between the different ZnT8Abs is

described earlier [6,8], whereas the association between ZnT8Abs

and glucagon is novel. A significantly positive association between

ZnT8Arg and stimulated C-peptide 3, 6 and 12 months after

diagnosis has previously been found in the present cohort [8],

being in accordance with other studies [6,7]. The association

pattern between stimulated C-peptide and the baseline character-

istics is, however, much stronger, which is why C-peptide is not

present in the ‘ZnT8Ab’-component. The association between

ZnT8Abs and glucagon indirectly supports the association

between ZnT8Arg and stimulated C-peptide and the intra-islet

hypothesis [33], since high level of stimulated C-peptide combined

with low level of stimulated glucagon may reflect an ongoing

suppressive effect of local insulin directly on the a-cell [34]. Indeed

the b-cell function declines approximately 50% from 1 to 12

months after diagnosis, while the a-cell function increase by 17%

during the same period of time [34]. Furthermore, b-cell derived

zinc has been shown to exert an inhibitory effect on glucagon

secretion although controversy still exists [35]. As free zinc level is

higher in ZnT8 over-expressing cells [36], high levels of ZnT8Abs

may reflect a higher level of zinc in the islets. Thus, the findings in

the present study support the hypothesis that glucagon secretion is

sensitive to suppression by b-cell derived zinc in a complex

interplay with other factors, although the exact role of ZnT8 in a-

cells and also the ZnT8Abs remains uncertain.

The ‘ZnT8Ab’-component was associated with a genetic

fingerprint based on SNPs closest to TAF5L, HNF1B, CDKAL1

and ERBB3 genes, which are all expressed in b-cells (www.

t1dbase.org). No studies have found this combined genetic

association with ZnT8Abs [37], but there are studies relating

TAF5L [38] and ERBB3 [39] to T1D and CDKAL1 [40] and

HNF1B [41] to T2D. We did not find the SLC30A8 gene to be

present in the genetic pattern of the ‘ZnT8Ab’-component,

Figure 2. The course of stimulated C-peptide (pmol/L), HbA1c

(%) and IDAA1c for each child during the 12 months follow-up
colored according to age. A. Raw values of stimulated C-peptide
(pmol/L). Stimulated C-peptide was lowest in the youngest age groups.
B. Raw values of HbA1c (%). The HbA1c level in the very young age
group was lower at onset compared with the older age groups. C. Raw
values of IDAA1c. The children with points below the black are in partial
remission at that time point defined as IDAA1c #9. Very few of the very
young children were in partial remission during the 12 months follow
up (21.1% after 3 months).
doi:10.1371/journal.pone.0064632.g002
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Table 2. Stimulated C-peptide (pmol/L), HbA1c (%) and IDAA1c during 12 months follow up.

1 month 3 mths 6 mths 9 mths 12 mths

Median C-peptide
(range) (pmol/L)

628 (10–1934) 594 (10–1982) 490 (10–1797) – 285.5 (10–2205)

Mean HbA1c (SD) (%) 9.3 (61.2) 7.0 (60.86) 7.3 (61.2) 7.5 (61.2) 7.7 (61.32)

Mean IDAA1c (SD) 11.0 (61.7) 8.7 (61.4) 9.5 (61.9) 10.3 (61.9) 10.7 (62.0)

doi:10.1371/journal.pone.0064632.t002

Figure 3. Multi-block analyses: A. ‘b-cell function’-component: (I) Pattern of the paraclinical biomarkers forming the ‘b-cell function’-
component and the progression of this biomarker pattern during the first 12 months after diagnosis. (II) The pattern of baseline (the time of
diagnosis) characteristics predictive for the biomarker pattern of the ‘b-cell function’-component over time (p = 0.001), were long duration of
symptoms, younger age and DKA and consequently high blood glucose and low level of standard bicarbonate. (III) The pattern of type 1- and T2D
associated SNPs associated with the biomarker pattern of the ‘b-cell function’-component over time (I) (p = 0.006) and the pattern of baseline
characteristics in (II). The best genetic predictors for the biomarker pattern of the ‘b-cell function’-component over time were a combination of more
risk alleles of the INS (rs689 and rs3842753), RNLS (rs10509540), WFS1 (rs10010131) and CDKN2A/2B (rs564398) variants; and less risk alleles of the
TSPAN8-LGR5 (rs7961581) variant. B. ‘ZnT8’-component: (I) Pattern of biomarkers forming the ‘ZnT8-component’ and the progression of this
biomarker pattern during the first 12 months after diagnosis. (II) This component was not significantly associated with baseline characteristics. (III)
The pattern of T1D and T2D associated SNPs associated with the biomarker pattern of the ‘ZnT8’-component over time (I) (p = 0.0005). The best
genetic predictors for the biomarker pattern of the ‘ZnT8Ab’-component were a combination of more risk alleles of the IFIH1 (rs1990760), TAF5L
(rs3753886), HNF1B (TCF2, rs4430796), IL2RA (rs11594656), PTPN2 (rs1893217) and CDKAL1 (rs10946398) variants; and less risk alleles of the ERBB3
(rs2292239) variant.
doi:10.1371/journal.pone.0064632.g003
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although we know there is a very strong correlation between the

rs1326634 SNP of the SLC30A8 gene and the subtype of ZnT8Ab,

such that the CC genotype carriers have higher ZnT8Arg and vice

versa [6,8]. Since the ‘ZnT8Ab’-component describes a pattern of

increasing levels of both the ZnT8Arg and ZnT8Trp autoantibod-

ies, we would not expect to find an effect of the SLC30A8 gene.

Validation
As the statistically methods in the present study are novel the

work is validated both by internal (permutation testing), simulated

external (split half analysis), and true external (reproducibility in

Hvidoere) validation. Internal validation is by far the most used

validation method where a central statistics is tested based on the

data from which it is estimated (e.g. the p-values for a correlation

coefficient). A slightly more rigorous form is the use of a simulated

external validation, where central statistic is estimated in a part of

data, say 80%, and then tested in the remaining part (20%) and

the most rigorous procedure is to try to reproduce the results in

new independent data. The internal approach reveals pattern to

pattern significant association for all components. The split half

analysis further verifies that the biomarker profiles in relation to

the ‘b-cell function’-component and ‘ZnT8Ab’-component, were

consistent, whereas the selection of genes in the split-half

procedure were to some extend inconsistent. However, the split-

half procedure was especially hampered by the loss of modelling

power by reducing the data by 50%. The external validation by

comparison with a model based on an independent dataset (the

Hvidoere Cohort) revealed, that the first component (‘b-cell

function’) is consistent, whereas the pattern of the second

component (‘ZnT8Ab’) was not strong enough to be revealed by

a two component model based on the Hvidoere Cohort. However,

only the ZnT8Trp and the ZnT8Arg are available in the Hvidoere

Cohort, for which reason we cannot expect this component to be

revealed in this cohort.

In conclusion, complex Latent Factor Modelling based on data

from a clinically well characterized Danish cohort of children and

adolescents with newly diagnosed T1D can describe disease

progression patterns and identify biomarker-genetic interacting

partners in complex data. Thus, the present study proposes a novel

method for linking patterns of genetic risk loci with clinical

phenotypes. The study also supports novel hypothesis linking some

of the low-risk genes to earlier onset of T1D and indirectly to more

aggressive b-cell destruction after the first autoimmune insult.

Furthermore, these findings indicate association patterns for

disease progression and generate new hypotheses, which need to

be confirmed in other cohorts or tested in in vitro assays using cell

culture systems. The unravelling and understanding of the natural

history of T1D during the remission phase is crucial as a significant

number of patients still retain a considerable residual b-cell mass at

this time point and might therefore benefit from immunomodu-

latory intervention therapy enhancing b-cell survival and regen-

eration.
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