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Abstract

Outlier removal is a fundamental data processing task to ensure the quality of scanned point

cloud data (PCD), which is becoming increasing important in industrial applications and

reverse engineering. Acquired scanned PCD is usually noisy, sparse and temporarily inco-

herent. Thus the processing of scanned data is typically an ill-posed problem. In the paper,

we present a simple and effective method based on two geometrical characteristics con-

straints to trim the noisy points. One of the geometrical characteristics is the local density

information and another is the deviation from the local fitting plane. The local density based

method provides a preprocessing step, which could remove those sparse outlier and iso-

lated outlier. The non-isolated outlier removal in this paper depends on a local projection

method, which placing those points onto objects. There is no doubt that the deviation of any

point from the local fitting plane should be a criterion to reduce the noisy points. The experi-

mental results demonstrate the ability to remove the noisy point from various man-made

objects consisting of complex outlier.

Introduction

Scanning object with complex geometry and varying surface reflectiveness, the collected

scanned point cloud may contain extensive outliers, which are inevitable by-products of 3D

scanning [1–3]. As illustrated in Fig 1, we can see that it is prone to producing outliers and

noise in the PCD due to occlusion or sensor imperfections. The resulting point clouds are thus

often noisy, and this inevitably destroys fine details. Outlier points, usually unorganized, noisy,

sparse, and inconsistent in local point density, have geometrical discontinuities, arbitrary sur-

face shape with sharp features [4]. Sparse and dense outliers pose much more problematic

issues to the applications of the scanned point cloud, especially in 3D shape analysis [5], object

modeling [6] and object recognition [7]. Therefore, how to remove outliers from scattered

point cloud data is the main focus of this paper.

Compared to the common manual removal process, which is time consuming and relies

on the operator’s experience, it is highly desirable to develop an automatic outlier removal

method. However, automatic and effective removal of outliers is challenging since the scanned

object is unavailable and the estimation of the object surface shape would be inaccurate in the

presence of extensive outliers.
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In this paper, the outliers are classified into three categories: sparse outlier, isolated out-

lier and non-isolated outlier. We proposed an automatic method to remove those outliers

based on local density and local projection. The sparse outlier can be detected easily accord-

ing to low local point density. Although isolated outlier often formed clusters because of

high point density, the local density may have a lower value when the local area is large

enough. The two types of noise both can be detected and removed by the method based on

local density. However, the non-isolated outlier is close to the model, we proposed to project

those outliers locally onto the original object through the local fitting plane. Different from

other denoising methods, the procedure does not remove noisy point but project noisy

point onto the local fitting plane to make the model more regular. We can obtain the noise-

free model through the two methods and prove that our method is effective to denoise the

point cloud model.

Related work

Scanned PCD acquired is usually polluted by noise for the existence of the scanner system’s

inherent error and aircraft’s shock. In this research, the purpose of outlier removal is to iden-

tify and remove outliers efficiently in scanned PCD. Outliers can be removed by applying a

spatial depth-pass filter to the 3D point data [8]. Many scholars home and abroad do research

on this problem that is sorted in two kinds: discontinuous operators-based method and surface

fitting-based method.

Discontinuous operators-based method

Wang et al. [9] utilized a distance-based deviation factor to detect sparse outlier and then

detected small outlier clusters using region growing. Rusu et al. [10] proposed an efficient

approach to detect sparse outlier, which correspond to low point densities. In practice, how-

ever, the local density of scanned PCD for good surface points can be non-uniform and

incomplete. Chenot [11] proposed a new method to aberrant outliers on a wider range of

blind separation instances. Based on sparse signal modeling, it makes profit of an alternate

reweighting minimization technique that yields a robust estimation of the sources and the

mixing matrix simultaneously with the removal of the spurious outliers. Shao et al. [12] recon-

structed dense depth maps from sparse point clouds and used them to remove points that are

in significant visibility conflict and to augment the input point cloud. Similarly, a free space

Fig 1. Two examples of laser scanning scene. A and B are respectively the artwork image and its point cloud in [6]. C and D display the indoor scene image and its

ccorresponding point cloud data.

https://doi.org/10.1371/journal.pone.0201280.g001
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constraint was used to clean up depth maps in [13]. Unfortunately, non-isolated outlier clus-

ters were not considered. Also methods based on robust descriptor and wavelet transform are

also effective to reduce the noisy points. Zhang et al [14] proposed a distance-based method to

detect the outliers. Tola et al. [15] used a robust descriptor for large-scale multi-view stereo

matching in order to reduce the amount of outliers in the computed point cloud. The parame-

terization-free projection operator [16] results in a resampled point cloud by means of point

projections, but onto a multivariate median, being more robust to noise and able to detect out-

liers. By taking into account the point density, the method was extended to deal with sharp fea-

tures [17] and a high level of non-uniformity [18].

Surface fitting-based method

Carsten et al. [19] presented a new method for anisotropic fairing of a point sampled surface

using an anisotropic geometric mean curvature flow. Desbrun et al. [20] developed methods to

rapidly remove rough features from irregularly triangulated data intended to portray a smooth

surface. The main task is to remove undesirable noise and uneven edges while retaining desir-

able geometric features. Zeng et al. [21] combined the Moving Least Square surface fitting with

Lagrange operator to implement point cloud filtering. Zheng et al. [22] proposed a point cloud

filtering method based on variable radius circle and B-spline fitting, the filtering precision of

the algorithm is improved 1 to 5 times of the traditional methods, it can be used for the city,

mountains and forest. Weyrich et al. proposed three novel methods to detect outliers including

the plane fitting criterion, mini-ball criterion and nearest-neighbor reciprocity criterion [23].

Shao et al [24] presents a novel outlier removal method which is capable of fitting ellipse in

real-time under high outlier rate.

All methods mentioned above have the advantage of implementation friendly. The outlier

removal methods based on discontinuous operators aforementioned generally focus on a cer-

tain type of outliers and are inapplicable to other types of outliers. It is more robust in sparse

outlier detection and removing small clusters of outliers. But points on the edges also have a

high proportion of unidirectional neighbors and will be detected. Non-isolated outliers are

usually ignored. Although method based on surface fitting can deal with non-isolated outliers,

it is too complicated and too time-consuming to be applied, and it also requires the continuity

of data.

In the paper, we give two algorithms to response various types of outliers. The method

based on local density have handled on isolated outlier cluster and sparse outlier and the

method based on local projection can well trim non-isolated outliers. At the same time, small

maintenance overhead is inevitable when we adopt the two methods.

Overview

The input to our method is the raw scan of 3D object and real scene, represented as unorga-

nized point clouds. Generally, the scanning data collected from reality are often noisy, uncer-

tainty and incomplete. Lots of denoising methods exits, yet less can successfully deal with all

type of noisy point. In order to achieve this goal, we propose a novel outlier removal method

on the basis of two visual characteristics. Analyzing different kinds of noisy points, we raise

different methods to solve the corresponding issue. Fig 2 displays the overview of our proposed

algorithm, highlighting our method and the processing steps. Our algorithm essentially con-

sists of local density based and local projection based method.

Our denosing algorithm removes outliers from a set of input point clouds {pi|i = 1, 2, . . ., N}

by analyzing different category of outliers and their distribution.
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Outlier Distribution Analysis. A method considering the outlier distribution and the dis-

tance distribution is proposed to detect those outliers that could be easily found in object.

Isolated outlier clusters and sparse outlier removal. Local density based method was pro-

posed to detect and remove the isolated outlier clusters and sparse outlier.

Detailed non-isolated outlier removal. In order to remove the remaining outliers from the

detected shapes, a criterion is provided by the deviation of any point from the plane that fitted

by its neighborhoods (we called it local fitting plane). According to the deviation information

we project the noisy points to local fitting plane to trim the model.

For the original data with various outliers in Fig 2(A), the method based on local density

information is used to remove isolated outlier clusters (in Fig 2(B)) and sparse outlier (in Fig

2(C)). After the two steps, the data would be further trimmed (in Fig 2(D)) by the local projec-

tion based method.

Sparse outlier and isolated outliers removal

Outlier distribution analysis

In this work, our outlier removal method is developed to effectively identify sparse outlier, iso-

lated outlier clusters, and non-isolated outlier clusters in scanned point clouds, demonstrated

in Fig 3.

Sparse outlier are erroneous measurement points with low local point density.

Isolated outlier have high local point density and are relatively separated from the scanned

data.

Non-isolated outlier are attached to the scanned surface and cannot be easily separated.

In Fig 3, the outliers marked by red box belong to sparse outlier whose point density is

smaller than others. Also the density of the isolated outlier clusters is remarked by blue box. So

the two kinds of noisy point will be removed according to the density information. The non-

isolated outlier in green box is near to the model. We will not remove these noisy points but

project them to the local fitting plane. Using different strategies to deal with different kinds of

noisy points we can achieve final denoising.

Fig 2. Overview of our method.

https://doi.org/10.1371/journal.pone.0201280.g002
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Local density analysis

In this section, we detail the density estimation applied to remove the isolated outlier clusters

and sparse outlier. The scattered point cloud denoted as P = {p1, p2, p3, . . ., pN}, finding the

optimal neighborhood of each point is important for computing the local covariance matrix of

each point. The distribution of mobile laser point clouds has variable point densities because

of occlusion, varying scanning angles, and varying distances to the laser scanner. Let the k
Nearest Neighbor points of pi be KNN(pi), i.e. Q = {q1, q2, q3, . . ., qk}. Our algorithm removes

inconsistent points from point cloud P by analyzing their geometric information and density.

To determine the density information, each point originating from scanning data has to be

examined over the k nearest neighborhood. The local density is obtained by calculating the

average distance of pi to its k nearest neighborhood qj(j = 1, . . ., k). The average distance of pi

is defined as

�di ¼ 1=k �
Pk

j¼1
distðpi; qjÞ ð1Þ

where i = 1, 2, . . ., k and dist(pi, qj) is the Euclidean distance between pi and qj. The local den-

sity function LD(pi) of pi is defined as Eq 2:

LDðpiÞ ¼
1

k

X

qj2KNNðpiÞ

exp ð
� distðpi; qjÞ

�di

Þ ð2Þ

where k is the number of nearest neighborhood, �di is the average distance between pi and qj.

Fig 3. Different outlier distribution.

https://doi.org/10.1371/journal.pone.0201280.g003
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The probability of point belongs to outlier can be defined as Eq 3:

proðpiÞ ¼ 1 � LDðpiÞ ð3Þ

pro(pi) 2 [0, 1]. The greater the value of pro(pi), the more likely it is to be outliers.

Then we will decide whether the point pi would be kept based on the local density pro(pi).

We retain the point pi if it satisfies the following condition that

proðpiÞ < d ð4Þ

During the test, an appearance was found that the threshold δ was not fixed for all models.

δ is different for different models because different models have complex settings in the scan-

ning process. In practice, we choose δ as a fixed ration of �di , i.e. d ¼ 0:1 � �di .

The pseudo code of our sparse outlier and isolated outlier removal algorithm is defined

in Algorithm 1. Setting proper threshold δ for the probability of point belongs to outlier and

removing those points beyond the threshold δ, the model can discard the isolated outlier clus-

ter and sparse outlier.

Fig 4 illustrate the effect of δ on a simulation study. We show a denoised point cloud with

different δ. When δ = 0.0025, most of the points in bear model are deleted. When δ = 0.0075,

the outlier removal method does not work.

Algorithm 1 Non-isolated outlier removal algorithm
1: Input: Three dimensional scanned PCD with various outliers
2: Output: sparse outlier and isolated outlier removal results
3: for all point pi in P do
4: search the k nearest neighborhood of pi, i.e. KNN(pi)
5: calculate the local density LD(pi) of pi
6: compute the probability pro(pi)
7: end for
8: sort the pro(pi) in ascending order
9: compare the first N number of pro(pi)
10: for i = 1: N
11: if pro(pi) > δ
12: then delete pi as outliers
13: end for

Fig 4. Different δ in our method.

https://doi.org/10.1371/journal.pone.0201280.g004
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Non-isolated outlier removal

The non-isolated outlier is very close to the surface of object, it is difficult to remove from the

object since it may often cause errors or even remove the original point in object. We proposed

a method that converting these outliers to object surface points. In this section, we will illus-

trate how to project those non-isolated outlier onto their corresponding fitted plane. Fitting

local plane is the crux of the method based on local projection in local neighborhood, which

we called it local fitting plane.

Local fitting plane

A plane is parameterized by its normal vector n = {nx, ny, nz} and any given point on the

plane. In order to obtain the local fitting plane, we first compute its normal vector.

Generally, the principle components analysis (PCA) is performed by computing the eigen-

values and eigenvectors to evaluate the normal vector of plane. A minimal ellipsoid is obtained

by enclosing the k nearest neighborhood of a point pi. Let �p be the centroid and M be the 3 × 3

covariance matrix defined as Eq 5:

M ¼
1

k

Xk

i¼1
ðpi � �pÞðpi � �pÞT ð5Þ

where pi 2 P, λ0, λ1 and λ2 are the eigenvalues of M and λ0� λ1� λ2. In essence, λ0, λ1 and λ2

respectively represent the length of the three semi-principal axes of the ellipsoid in 3D. The

eigenvector of the smallest eigenvalue is the approximation of normal vector at the vertex pi. �p
is the center point of k nearest neighborhood of point pi. The local fitting plane Li can be repre-

sented accordingly.

Detailed non-isolated outlier removal

In this section, the target is to project those outlier points onto the local plane Li. Fig 5 displays

the local fitting plane Li of point pi and the process of putting forward the neighboring point qj

to the local plane.

The normal vector n = {nx, ny, nz}, knk = 1 and a given point p0 can parameterize the plane

Li. The deviation of qj from the plane Li is given by Eq 6:

dispiqj
¼ ðqj � p0Þ � n ð6Þ

Then projection of point qj onto the corresponding fitted plane is to push qj along the

opposite direction of normal vector n. The projected qj
0 is defines as Eq 7:

qj
0 ¼ ðqj � dispiqj

� nÞ ð7Þ

Algorithm 2 Non-isolated outlier removal algorithm
1: Input: Three dimensional scanned point cloud data with various

outliers
2: Output: non-isolated outlier removal
3: for all point pi(i = 1, 2, . . ., N) in P do
4: search the k nearest neighborhood qj(j = 1, 2, . . ., k)
5: fitting a local plane Li for pi and qj
6: compute the deviation dispiqj

of pi, qj from plane Li
7: project qj onto the corresponding fitted plane Li
8: the projected point qj0 is the new coordinate of qj
9: end for
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The key step is to fix the local fitting plane and the rationality of the fitting plane depends

on the value of k (k Nearest Neighbor). A bigger k may cause deformation of the model and a

smaller k may offer an invalid fitting plane and an invalid projection. Fig 6 shows the results

with different k.

Fig 5. Local fitting plane and projection of point.

https://doi.org/10.1371/journal.pone.0201280.g005

Fig 6. The selection value of k. A: pending data. B: k = 4. C: k = 10. D: k = 50.

https://doi.org/10.1371/journal.pone.0201280.g006
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Experimental results

We experimentally evaluate our method primarily using scanned point cloud contain various

categories of noise. The datasets used in our experiments include:

1. A gallery of models in Fig 7 is chosen from Princeton shape Database and variety of Gauss-

ian noise is added in the models.

2. Several real indoor scene data are also selected.

3. Datasets from [6] are also selected, including DRAGON, TORCH, and STATUE models.

We first describe the experimental setting of our method and then demonstrate the results

using our method. Meanwhile we summarize the performance of our algorithm where accu-

racy and completeness errors as well as runtime.

Experimental setting. Our method is implemented using C++ and run on a desktop PC

with an Intel I7-6700 CPU (quad core, 3.4 GHz) and AMD Radeon R5 340X graphics card.

Results on 3D models

We run our algorithm to six 3D models: chair, table, bird, monster, bear, and Nail. We demon-

strate the experimental results of our method for those models in Fig 7. Fig 8(A) is table model

which contains all kinds of outliers, after the local density based processing, isolated outlier

is deleted greatly in Fig 8(B) and 8(C). The final data in Fig 8(D) having been trimmed after

using local projection based method. It can show that our method is very efficient for denois-

ing of point cloud data.

Figs 9–13 demonstrate respectively the experimental results for chair, bird, monster and

bear model. In addition, to test the robustness of our method we run our method to two

scanned real-life indoor scenes with 146044 points and 153218 points respectively. These real-

life scenes contain a variety of object clutters and more outliers. Figs 14 and 15 demonstrate

the two original scenes and the outlier removal results.

Fig 7. 3D models from Princeton shape Database. A: Original model. B: point cloud model with outliers.

https://doi.org/10.1371/journal.pone.0201280.g007
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Comparison against other denoiser

We compare our outlier removal method with two alternative methods (radius-based method

and statistics-based method) in Point Cloud Library respectively. We evaluate the quality of

our outlier removal system by running it on the six test models and test scenes S1, S2, and

Fig 8. Outlier removal for table model. A: Table model with different outliers, B: isolated outlier removal, C: sparse outlier are removal, D: non-isolated outlier removal

result.

https://doi.org/10.1371/journal.pone.0201280.g008

Fig 9. Outlier removal for chair model. A: Chair model with different outliers, B: isolated outlier removal, C: sparse outlier removal, D: non-isolated outlier removal

result.

https://doi.org/10.1371/journal.pone.0201280.g009
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output the final point clouds after removing different outliers in Figs 16–23. As shown in these

figures, when there are sparse outlier and isolated outlier, both methods could obtain reason-

ably good removal results. When the non-isolated outliers exist, however, the quality of results

decreases significantly. In contrast, our method produces good result even for indoor cluttered

scenes.

Fig 10. Outlier removal for bird model. A: Bird model with different outliers, B: isolated outlier removal, C: sparse outlier removal, D: non-isolated outlier

removal result.

https://doi.org/10.1371/journal.pone.0201280.g010

Fig 11. Outlier removal for bear model. A: Bear model with different outliers, B: isolated outlier is removed, C: sparse outlier is removed, D: non-isolated

outlier removal result.

https://doi.org/10.1371/journal.pone.0201280.g011
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Fig 24 plots the running time of our method for all the 3D models in the paper. For compar-

ison, we also plot the results of a radius-based method and statistics-based method. The statis-

tics-based method takes less time than ours, but the quality of outlier removal result is weak.

As shown in Fig 25, it plots the running time of our method for two indoor scenes S1 and S2.

Fig 12. Outlier removal for monster model. A: Monster model with different outliers, B: isolated outlier is removed, C: sparse outlier is removed, D: non-isolated

outlier removal result.

https://doi.org/10.1371/journal.pone.0201280.g012

Fig 13. Outlier removal for Nail model. A: Nail model with different outliers, B: isolated outlier is removed, C: sparse outlier is removed, D: non-

isolated outlier removal result.

https://doi.org/10.1371/journal.pone.0201280.g013
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Fig 14. Outlier removal for indoor scene S1. A: Original Indoor scene S1, B: Outlier removal result.

https://doi.org/10.1371/journal.pone.0201280.g014

Fig 15. Outlier removal for indoor scene S2. A: Original Indoor scene S2, B: Outlier removal result.

https://doi.org/10.1371/journal.pone.0201280.g015

Fig 16. Comparison result for table data between our outlier removal method and the classic two method. A: Our methods, B:

Statistics-based method; C: Radius based method.

https://doi.org/10.1371/journal.pone.0201280.g016
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We can see that our method takes less time than the other two methods when the point num-

ber of object increase significantly. Our outlier removal method is robust, making it particu-

larly effective for removing different kinds of outliers.

In Figs 26–28, we compare our method with other point cloud denonising method in [6].

We can see that the fine detailed information (such as smooth boundary) are retained for

DRAGON model in Fig 28(C). For the TORCH model, our method can remove the noise

without missing any point in data, however the method in [6] would lead to data missing.

Fig 17. Comparison result for chair data between our outlier removal method and the classic two method. A: Our methods, B:

Statistics-based method; C: Radius based method.

https://doi.org/10.1371/journal.pone.0201280.g017

Fig 18. Comparison result for bear data between our outlier removal method and the classic two method. A: Our methods, B:

Statistics-based method; C: Radius based method.

https://doi.org/10.1371/journal.pone.0201280.g018
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Fig 19. Comparison result for bird data between our outlier removal method and the classic two method. A: Our methods, B: Statistics-based method; C: Radius

based method.

https://doi.org/10.1371/journal.pone.0201280.g019

Fig 20. Comparison result for monster data between our outlier removal method and the classic two method. A: Our methods, B: Statistics-based method; C: Radius

based method.

https://doi.org/10.1371/journal.pone.0201280.g020
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Performance analysis

We summarized the performance of our algorithm, where accuracy and completeness errors

as well as the running time were measured. Table 1 reports timing and some related statistics

of our algorithm running over different models. The value are, from left to right, the model,

the number of original data N, the number after removing the isolated outlier clusters N− i,
the number after removing the sparse outlier is N− s, the total time that method takes t and the

ratio of detected noise Pc ¼ 1 �
N� s

N .

Fig 21. Comparison result for Nail data between our outlier removal method and the classic two method. A: Our methods, B: Statistics-based method; C: Radius

based method.

https://doi.org/10.1371/journal.pone.0201280.g021

Fig 22. Comparison result for indoor scene S1 between our outlier removal method and the classic two method. A: Statistics-based method; B: Radius based

method; C: Our methods.

https://doi.org/10.1371/journal.pone.0201280.g022
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To access the results more quantitatively, we measured the bias of the reconstructed

meshes from ground truth results. We evaluate the accuracy and completeness of each mesh

according to the metrics used in [25]. We measured errors in terms of accuracy (in world

units) and completeness (in percent), using an accuracy threshold of 90%, and a complete-

ness threshold of 0.005 world units. Table 2 shows the accuracy and completness of 3D mod-

els after using our methods. Tables 3 and 4 illustrates the timings and parameter setting in

our method.

We give the complexity of two key algorithmic components. The complexity is O(NßlogN)

for the local density based method, with N being the number of points in an object, and

O(NlogN) for the local projection based method.

Fig 23. Comparison result for indoor scene S2 between our outlier removal method and the classic two method. A: Statistics-based method; B: Radius based

method; C: Our methods.

https://doi.org/10.1371/journal.pone.0201280.g023

Fig 24. Running time comparison result for six 3D models.

https://doi.org/10.1371/journal.pone.0201280.g024
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Limitation

As our method rely on the points distribution and need to calculate the local density of points,

our method might fail for very dense outliers exist. When there are denser outliers, it may lead

to deformation of object after removing the outliers. To eliminate this problem, we plan to

Fig 25. Running time comparison result for two indoor scene data.

https://doi.org/10.1371/journal.pone.0201280.g025

Fig 26. Comparison results on TORCH and DRAGON models. A: Datasets, B: Point cloud; C: Our outlier removing method. D: Wolff et al. [6].

https://doi.org/10.1371/journal.pone.0201280.g026
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Fig 28. Detail comparison results. A: TORCH model, B: DRAGON model; C: STATUE model. (left: our method, right: method in [6]).

https://doi.org/10.1371/journal.pone.0201280.g028

Fig 27. Comparison results on STATUE model. A: Datasets, B: Point cloud; C: Our outlier removing method. D: Wolff et al. [6].

https://doi.org/10.1371/journal.pone.0201280.g027

Table 1. Timings and statistical data of point model by our method.

model N N− i N− s t Pc

table 15845 15433 14968 0.05 0.055

chair 17623 17113 16565 0.06 0.060

bird 13180 12742 12470 0.04 0.054

monster 28246 27510 26588 0.08 0.059

bear 15365 14931 14461 0.05 0.059

Nail 15009 14655 14507 0.05 0.033

https://doi.org/10.1371/journal.pone.0201280.t001

Table 2. Performance analysis of our algorithm on 3D models.

model Accuracy Completeness

table 0.004197 93.4%

chair 0.00303 100%

bird 0.004293 93.6%

monster 0.002769 97.3%

bear 0.002205 100%

Nail 0.005783 87.3%

https://doi.org/10.1371/journal.pone.0201280.t002
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adopt learning-based strategy that could estimate and distinguish the outlier from original

points.

Conclusion

In this paper, a robust method is presented in this paper to effectively remove isolated outlier,

sparse outlier, and non-isolated outlier from scanned objects in point cloud. The local density

and the deviation from the local fitting plane provide a fundamental way. The local density

based method can remove sparse outlier and isolated outlier. The deviation of point from the

local fitting plane should be a criterion to reduce the non-isolated outlier. Experimental results

demonstrate the ability to remove complex outliers from various man-made objects. As dem-

onstrated, the presented method is able to achieve robust results in removing three types of

outliers and preserving distinct geometric features such as sharp edges in a scanned point

cloud.

Supporting information

S1 Data. Indoor scene S1.

(OBJ)

S2 Data. Indoor scene S2.

(OBJ)

Acknowledgments

The author would like to thank the anonymous reviewers for their valuable comments.

Author Contributions

Conceptualization: Xiaojuan Ning, Yinghui Wang.

Funding acquisition: Xiaojuan Ning.

Resources: Xiaojuan Ning.

Table 3. Timings and parameter setting of 3D model.

Model Original Data Number After Removal Time(s) k δ

TORCH 3604726 2946940 2421.391 50 0.05

DRAGON 5601652 4815690 514.392 400 0.1

STATUE 5849643 4767875 789.507 100 0.0005

https://doi.org/10.1371/journal.pone.0201280.t003

Table 4. Parameter setting in our method.

Model k (sparse outlier and isolated outlier removal) δi k (non-isolated outlier removal)

table 80 0.005 10

chair 75 0.004 10

bird 70 0.003 10

monster 50 0.0015 10

bear 50 0.0035 10

nail 50 0.0015 10

https://doi.org/10.1371/journal.pone.0201280.t004

An efficient ORM for PCD

PLOS ONE | https://doi.org/10.1371/journal.pone.0201280 August 2, 2018 20 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201280.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201280.s002
https://doi.org/10.1371/journal.pone.0201280.t003
https://doi.org/10.1371/journal.pone.0201280.t004
https://doi.org/10.1371/journal.pone.0201280


Software: Fan Li.

Visualization: Ge Tian.

Writing – original draft: Xiaojuan Ning, Fan Li.

Writing – review & editing: Xiaojuan Ning.

References
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