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Abstract The rhizome of Gastrodia elata (GE), a herb medicine, has been used for treatment of
neuronal disorders in Eastern Asia for hundreds of years. Parishin C is a major ingredient of GE. In this
study, the i.c.v. injection of soluble Aβ1–42 oligomers model of LTP injury was used. We investigated the
effects of parishin C on the improvement of LTP in soluble Aβ1–42 oligomer–injected rats and the
underlying electrophysiological mechanisms. Parishin C (i.p. or i.c.v.) significantly ameliorated LTP
impairment induced by i.c.v. injection of soluble Aβ1–42 oligomers. In cultured hippocampal neurons,
soluble Aβ1–42 oligomers significantly inhibited NMDAR currents while not affecting AMPAR currents
and voltage-dependent currents. Pretreatment with parishin C protected NMDA receptor currents from the
damage induced by Aβ. In summary, parishin C improved LTP deficits induced by soluble Aβ1–42
oligomers. The protection by parishin C against Aβ-induced LTP damage might be related to NMDA
receptors.
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1. Introduction

The rhizome of Gastrodia elata Blume (GE) is a traditional herb
medicine which has been commonly used in Eastern Asia for
centuries. It is widely used especially for treatment of headache,
dizziness, epilepsy, stroke and dementia. GE has been reported to
have therapeutic effects on animal models of Alzheimer's disease
(AD), including improvements in spatial memory deficits and Aβ
deposit in the hippocampus1. In clinical studies, the GE extract has
been used to treat vascular dementia and showed improvement on
cognition in the patients2. Parishin C is known as major
component of GE3. As shown in Fig. 1, parishin C is bis-
gastrodin citrates constituted of two gastrodin molecules esterified
with two terminal carboxyl groups of citric acid. Previous studies
demonstrated that parishins improved animal performances in a
variety of cognitive-behavioral tests, such as step-down test,
passive avoidance task and the Morris water maze task3–5. We
found that parishin C was more potent than other parishins or
gastrodin.

AD is the most common type of dementia in aging adults.
Learning and memory declines progressively and can linger for
many years. Beta-amyloid (Aβ) is one of the most important
pathological features in AD patients and animal models, including
Aβ plaques and soluble Aβ oligomers6. Recent studies focused on
soluble Aβ oligomers, which were thought to correlate with
disease progression better than insoluble fibrillary plaques7–9. To
mimic symptoms of AD and investigate the effects of the parishin
C, the soluble Aβ oligomers–induced cognitive deficits animal
model was employed in our study.

Long-term potentiation (LTP) recording is a well-known and
widely documented model for investigating the synaptic basis of
learning and memory10–12. The induction of LTP is affected by
changing activity of ion channels, including voltage-dependent ion
channels such as Naþ, Ca2þ and Kþ channels as well as ionotropic
glutamate receptors. Functional N-methy-D-aspartate receptors
(NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropio-
nic acid receptors (AMPARs) are essential for LTP induction13,14.

Therefore, in the present study we focused on the electrophy-
siological mechanisms of parishin C in protection of LTP after
Aβ1–42 injection into the cerebral ventricle of rats. We presently
performed LTP in vivo recordings and whole cell patch clamp
recordings for voltage-dependent ion channels and NMDA recep-
tors in cultured neurons.
2. Materials and methods

2.1. Animals

Male Wistar rats (240–260 g) were used in the LTP recordings.
Rats were housed in a temperature- and light-controlled environ-
ment (23 7 1 1C and 12 h light cycle), with free access to food
Figure 1 Chemical structures of gastrodin and parishin C.
and water. They arrived at least 3 days before the experiments and
were handled carefully. All the experiment procedures were
performed in accordance with the guidelines for the care and use
of laboratory animals and were approved by the Animal Care
Committee of Peking Union Medical College and Chinese
Academy of Medical Sciences.

2.2. Drugs and materials

Parishin C was provided by Professor Jiangong Shi (HPLC purity
498%, Institute Meteria Medica). NMDA, MK-801, memantine
and Aβ1–42 were purchased from Sigma–Aldrich Chemicals Inc.
(St Louis, MO, USA). All drugs were dissolved in saline and
freshly prepared before use.

2.3. Soluble Aβ1–42 oligomers preparation

Soluble Aβ1–42 oligomers were prepared as reported pre-
viously15,16. Aβ1–42 was dissolved to 1 mmol/L with hexafluoro-
isopropanol (HFIP, Sigma), separated into aliquots, and was
stored at –80 1C after evaporation of HFIP. Soluble Aβ1–42
oligomers were prepared freshly before use. The peptide was
resuspended in DMSO to 5 mmol/L, and diluted by cold F12
medium to yield a 100 μmol/L stock solution, then incubated at
4 1C for 24 h. The preparation was then centrifuged at 14,000� g
for 10 min at 4 1C. The supernatants were kept at 4 1C and further
used for electrophysiological experiments. Solvents processed
meanwhile were used as control.

2.4. Hippocampal neuron culture

Rat hippocampal neurons were isolated and cultured from Wistar
rats on postnatal day 0–1 according to protocols modified from
Kaech and Banker17. Hippocampi were isolated and incubated in
trypsin (0.1%) for 30 min. Neurons were initially cultured in
DMEM with 10% fetal bovine serum and 10% horse serum on
poly-D-lysine coated glass coverslips. After 4 h the medium was
removed and changed to Neurobasal-A with B27 medium (2%).
Then culture medium was half-changed every 3 days. 10 μmol/L
cytosine arabinoside (AraC) was added on day in vitro (DIV) 2,
and removed on DIV 3. Whole cell recordings were performed
between DIV 9–14.

2.5. LTP recordings in vivo

The rats were anesthetized with urethane (20%, 1.3 g/kg, i.p.) and
then positioned in a stereotaxic frame. The skull was exposed and
two holes were drilled for the placement of electrodes. A stainless
bipolar stimulating electrode was placed in the perforant path
(7.5 mm posterior to bregma, 4.2 mm lateral to the midline, 2.8–
3.5 mm ventral). A recording electrode was placed in the dentate
gyrus of the same side (3.8 mm posterior to bregma, 2.0 mm
lateral to the midline, 3.0–3.5 mm ventral). A separate hole (1 mm
posterior to bregma, 1.2 mm lateral to the midline, 3.5 mm ventral)
was drilled to allow a guide cannula for intracerebroventricular
(i.c.v.) injection of drugs or soluble Aβ1–42 oligomers. Silver wire
was fixed to the bone or skin and used as reference and ground.
The population spike (PS) was obtained from the dentate gyrus in
response to stimulation in the perforant path at a frequency of
0.033 Hz with single constant current pulse (100 μs in duration).
The PS was collected and amplified by TDT RA16PA amplifier
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and digitized by TDT RX7-5 processor (Tucker-Davis Technolo-
gies, USA). The depth of both electrodes was adjusted until the
maximal response was observed. At that point, the intensity of the
test stimuli was adjusted until it evoked about 40% of the
maximum response of PS amplitude. LTP was induced by high
frequency stimuli (HFS) delivered at 100 Hz, 10 stimuli, repeated
10 times at an interval of 300 ms. Pulse width stayed the same
with the test stimuli, and intensity doubled.

Stable baseline PS responses were recorded for at least 15–
20 min prior to drug applications. Soluble Aβ1–42 oligomers
(1 nmol/L in 5 μL) or vehicle or drugs were injected i.c.v. at
1 μL/min. After injection, the cannula remained in place for 5 min
before starting injections. Thus it took 10 min for injection of one
drug. Volume of drugs or soluble Aβ1–42 oligomers was calculated
based on the volume of rat cerebrospinal fluid, which was
estimated about 500 μL according to previous reports18,19.
2.6. Whole cell patch clamp recordings

Whole cell patch clamp recordings were performed using EPC-10
amplifier (HEKA Elektronik, German) at room temperature.

For sodium currents: the internal solutions contained (in mmol/
L): CsF 140, NaCl 10, EGTA 1, HEPES 10 (300–310 mOsm with
sucrose, pH 7.25). The external solution contained (in mmol/L):
NaCl 140, MgCl2 1, CaCl2 1, CdCl2 0.2, HEPES 10, Glucose 10, 4-
aminopyridine (4-AP) 5 (310–330 mOsm with sucrose, pH 7.4).
After whole cell recordings were assessed, membrane potential was
clamped at –80 mV. Sodium currents were activated by 50 ms pulse
from –80 to þ40 mV in 10 mV steps.

For potassium currents: the internal solutions contained (in
mmol/L): KCl 140, EGTA 10, CaCl2 1, HEPES 10 (300–
310 mOsm with sucrose, pH 7.25). The external solution con-
tained (in mmol/L): Choline Cl 140, KCl 5, MgCl2 1, CaCl2 1,
HEPES 10, Glucose 10 (310–330 mOsm with sucrose, pH 7.4).
After whole cell recordings were assessed, membrane potential
was clamped at –70 mV. For potassium currents activation, firstly
holding potential was depolarized to –110 mV for 250 ms, then
was applied 250 ms pulse from –40 to þ60 mV in 10 mV steps.

For calcium currents: the internal solutions contained (in mmol/L):
CsCl 130, EGTA 10, HEPES 10, ATP-Mg 5 (300–310 mOsm with
sucrose, pH 7.25). The external solution contained (in mmol/L):
Choline Cl 130, MgCl2 1, BaCl2 10, HEPES 10, Glucose 10, TTX 1,
4-AP 5 (310–330 mOsm with sucrose, pH 7.4). After whole cell
recordings were assessed, membrane potential was clamped at
–90 mV. Calcium currents were activated by 200 ms pulse from
–50 to þ50 mV in 10 mV steps.

For NMDAR and AMPAR currents: the internal solution
contained (in mmol/L): K-gluconate 140, NaCl 10, CaCl2 1,
EGTA 10, HEPES 10, ATP-Mg 5, GTP-Na 0.2 (310–320 mOsm
with sucrose, pH 7.25 with KOH). The external solution contained
(in mmol/L): NaCl 150, KCl 5, CaCl2 2, MgCl2, 1, Glucose 10,
HEPES 10 (320–330 mOsm with sucrose, pH 7.4 with NaOH).
0.1 μmol/L TTX was added when used. Patch pipettes were pulled
from glass capillaries with resistance 3–4 MΩ. The junction
potential was close to 14 mV and corrected. After whole cell
recordings were accessed the membrane potential was clamped at
–70 mV. After membrane rupture, 5 min were allowed for
equilibration between neuron and the internal solution. Currents
were sampled at 10 kHz by Pulse v6.74 (HEKA). Series resistance
and capacitance were monitored throughout the experiments. Data
were discarded if series resistance and capacitance were changed
by 420%. NMDAR and AMPAR currents were evoked by
pressure application system. A glass capillary (tip diameter 2–
5 μm) containing 100 μmol/L NMDA and 10 μmol/L glycine or
3 μmol/L AMPA was positioned at a distance of 10–20 μm to the
somata of the neuron. A picospritzer (PV830, WPI, USA) was
used to apply a pressure of 2–5 psi for 2 s duration to elicit
currents at an interval of 2 min. Tetrodotoxin (TTX), soluble
Aβ1–42 oligomers and other drugs were bath perfused.

2.7. Data analysis

For LTP recordings, PS amplitudes were analyzed using Matlab
v7.1 (Mathworks) as previously reported18. Briefly, every data
point was calculated as average of 10 PS amplitude values in
5 min. The baseline was calculated as average of PS amplitude
30 min before HFS, and each time point was calculated as
percentage of the baseline values. LTP was induced successfully
if PS amplitudes after HFS increased 30% than baseline. LTP
values expressed here are those at 55–60 min after HFS, unless
stated otherwise. NMDAR currents and AMPR currents were all
normalized to the first current evoked and all results were shown
in a relative way. All data were expressed as mean7SEM.
Difference between groups was detected by two-way ANOVA
with repeated measures in LTP recordings. Subsequently, the
student's t test or one-way ANOVA was performed in other
experiments. The results are statistically significant when P value
was less than 0.05.
3. Results

3.1. Soluble Aβ1–42 oligomers inhibited NMDAR-dependent LTP
induction

The rats were anesthetized and then positioned in a stereotaxic
frame. The population spike (PS) was obtained from the dentate
gyrus in response to stimulation in the perforant path. LTP was
induced by high frequency stimuli (HFS, described before) success-
fully and it could be abolished by 5 mg/kg MK-801 (i.p.,
95.7719.7% vs. control 196.7720.5%, Po0.05, n¼4–5,
Fig. 2A and 2C). MK-801 is a noncompetitive blocker of NMDA
receptors20. This indicated that the LTP from the perforant pathway
to the dentate gyrus (PP-DG) was NMDAR-dependent. Soluble
Aβ1–42 oligomers were given i.c.v. in rats 60 min before HFS as
shown in Fig. 2D, which significantly inhibited LTP induction
(148.776.5% vs. control group 195.179.6%, Po0.05, n¼5,
Fig. 2B and 2D). Memantine (10 mg/kg, i.p.), an open channel
uncompetitive inhibitor of NMDA receptors21, (clinically used for
treatment of AD) given before Aβ injection significantly ameliorated
Aβ-induced inhibition of LTP (186.6712.6% vs. Aβ1–42 group
148.776.5%, Po0.05, n¼5, Fig. 2B and 2D). These results
suggested that Aβ-induced inhibition of LTP was related to NMDA
receptors.

3.2. Parishin C ameliorated the suppression of LTP induced by
Aβ1–42

Parishin C 20 mg/kg was given i.p. two days consecutively and then
given a third time before the LTP recordings as shown in Fig. 3A
and 3B. Attenuation of LTP mediated by soluble Aβ1–42 oligomers
was significantly ameliorated by parishin C (179.078.4% vs.



Figure 2 Memantine rescued inhibition of LTP induced by soluble Aβ1–42 oligomers in rats. (A) and (B) showed original traces of PS before (1)
and after (2) HFS. (C) 5 mg/kg MK-801 abolished HFS induced LTP (control group n=4; MK-801 group n=5). (D) 2 μmol/L soluble Aβ1–42
oligomers significantly inhibited LTP (vs. control group, Po 0.05), and 10 mg/kg memantine administrated i.p. in advance rescued this inhibition
(control group n=7, Aβ1–42 group n=5, memantine group n=5). Data were shown as mean ± SEM, nPo0.05 vs. control group, #Po 0.05 vs.
Aβ1–42 group.

Figure 3 Effects of parishin C on inhibition of LTP induced by soluble Aβ1–42 oligomers in rats. (A) showed original traces of PS before (1) and
after (2) HFS in four groups. (B) Parishin C 20 mg/kg was given i.p. for two days before LTP recordings and was given i.p. 10 min before i.c.v.
injection of 2 μmol/L soluble Aβ1–42 oligomers. (C) Parishin C 10 μmol/L was given i.c.v. before 2 μmol/L soluble Aβ1–42 oligomers injection.
HFS was performed 60 min after injection of soluble Aβ1–42 oligomers in all experiments. Parishin C improved LTP induction significantly after
Aβ treatment (P o 0.05). Data were shown as mean ± SEM, control group n=7, Aβ1–42 group n=5, pC (i.p.) group n=5, pC (i.c.v.) group n=5,
nP o 0.05 vs. control group, #Po0.05 vs. Aβ1–42 group.
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Figure 4 Parishin C had no effects on normal LTP and ion channels.
(A) Upper traces of PS before (1) and after (2) HFS in two groups.
Parishin C 20 mg/kg given i.p. 30 min before HFS did not influence
the baseline and LTP induction in normal rats (control group n=8, pC
group n=7). (B) Perfusion of 10 μmol/L parishin C for 10 min had no
effects on AMPAR currents in primary cultured hippocampal pyr-
amidal neurons. The bars above current recordings show pressure
injection of 1 s, 3 μmol/L AMPA (n=3). (C) Perfusion of 10 μmol/L
parishin C for 10 min had no effects on NMDAR currents in primary
cultured hippocampal pyramidal neurons. The bars above current
recordings show pressure injection of 1 s, 100 μmol/L NMDA
and 10 μmol/L glycine (n=5). Data were shown in mean±SEM.
The amplitudes of all currents were normalized to the first evoked
at –70 mV.
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Aβ1–42 group 148.776.5%, Po0.05, n¼5). Furthermore, parishin
C 10 μmol/L (given i.c.v. followed by Aβ1–42 injection via i.c.v.)
also effectively protected Aβ1–42 induced reduction of LTP
(210.2722.1% vs. Aβ1–42 group 148.776.5%, Po0.05, n¼5,
Fig. 3C). The results indicated parishin C had protective effects
against Aβ-induced damage of LTP.
3.3. Effects of parishin C on ion channels on normal cultured
rat hippocampal neurons

The above results demonstrated that parishin C is a potent
compound for improving LTP deficits caused by Aβ. Further
mechanisms of parishin C on LTP and relevant receptors
were studied. In LTP recordings, PS amplitudes prior to
HFS represented the basic synaptic transmission. The data
showed that 20 mg/kg parishin C given i.p. did not influence
either basic synaptic transmission or LTP induction in normal rats
(Fig. 4A).

NMDA receptors and AMPA receptors are the main glutamate
receptors responsible for excitatory postsynaptic ion channel
currents, and they are essential for basic synaptic transmission
and LTP formation14,22. Our results showed that parishin C at
10 μmol/L had no influence on either of these ion channel currents
in hippocampal pyramidal neurons (Fig. 4B and C).

The effects of parishin C on voltage-dependent channels
were also studied. At 10 μmol/L, parishin C had no effect
on the currents of sodium channels, potassium channels or
calcium channels of neuronal cells (Fig. 5A–C). The I–V (current
and voltage relationship) curves obtained before and after
parishin C treatment did not differ for each channel.
These results demonstrated that parishin C did not
affect the major voltage-dependent ion channels under normal
conditions.
3.4. Parishin C rescued attenuation of Aβ1–42 on NMDAR
currents

The above results showed that Aβ reduced the activity of
NMDAR-dependent LTP but had no effects on PS before HFS.
Parishin C also had no effects on AMPAR currents and NMDAR
currents, while parishin C protected against the effects of Aβ.
The results demonstrated that the mechanism of parishin C might
be related to interactions between Aβ and NMDA receptors.
Then we studied the effects of Aβ on AMPAR and NMDAR
currents in primary cultured hippocampal pyramidal neurons as
well as the role of parishin C in this system. As shown in Fig. 6A
and C, perfusion of 2 μmol/L Aβ1–42 oligomers did not influence
AMPAR currents. However 2 μmol/L soluble Aβ1–42 oligomers
reduced NMDAR currents to 71.075.0% of control (vs. before
perfusion 93.674.0%, n¼5, Po0.05, Fig. 6B and D). The
currents did not recover during washout, and continued to
decline to 44.177.1% (vs. Aβ1–42 group, Po0.05, Fig. 6D). In
the following experiments, parishin C was perfused 10 min in
advance and continued during Aβ1–42 perfusion (Fig. 6B and D).
The NMDAR currents inhibited by Aβ1–42 were attenuated by
parishin C. Since parishin C had no effects on NMDAR currents
(Fig. 4C and 6D), these results suggested that parishin C
protected NMDA receptors from the damage of Aβ, and
subsequently protected against LTP suppression.



Figure 5 10 μmol/L parishin C had no effects on voltage-dependent
currents in cultured hippocampal neurons of rats. (A) parishin C
(10 μmol/L) had no effects on voltage-dependent total sodium currents
(n = 5), holding potential =–80 mV. (B) parishin C (10 μmol/L) had
no effects on voltage-dependent total outward potassium currents (n =
3), holding potential = –70 mV. (C) parishin C (10 μmol/L) had no
effects on voltage-dependent total calcium currents (n = 3), holding
potential =–90 mV. Data are shown in mean ± SEM.
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4. Discussion

GE is widely used in China and many Asian countries as a
traditional drug and food supplement for improving learning and
memory as well as protection of brain function. Recently, it was
found that an active fraction isolated from the crude extract of GE
contained parishin, parishin B and parishin C, improved the
performance of rodents in scopolamine-induced cognitive defi-
cits3–5. In the present study we aimed at the pharmacological
effects of parishin C on cognitive disorders and LTP impairment
induced by Aβ, as well as the electrophysiological mechanisms
related to NMDA receptors.

In accordance with behavioral tests3–5, our results indicated that
parishin C is a potent agent for improving learning and memory.
Parishin C given i.p. had no effects on normal rats, but it protected
LTP deficits induced by soluble Aβ1–42 oligomers. Parishin C
(10 μmol/L) delivered directly into the brain via i.c.v. also restored
the LTP inhibition by soluble Aβ1–42 oligomers. This indicated
that parishin C might cross brain blood barrier to protect the
central nervous system. In our previous studies, we investigated
dose-dependent effects of parishin C on scopolamine mediated
inhibition of LTP in vivo. In this study, the high dose (20 mg/kg)
of parishin C was selected to observe the electrophysiological
mechanisms. The patch clamp recordings indicated that the
nootropic effects of parishin C might be involved in protection
of NMDA receptors from the injury of Aβ.

Although the mechanisms of AD are not well understood, Aβ is
believed to be centrally involved. Compared with Aβ plaques,
soluble Aβ oligomers correlate more strongly with AD-type
dementia7. Previous reports demonstrated that soluble Aβ oligo-
mers impaired functions of synapse23,24. AMPA and NMDA
receptors are both important glutamate receptors in CNS synapses,
and both are required in learning and memory procession and LTP
formation25–27. NMDA receptor activation needs both glutamate
and membrane depolarization, in order to reverse Mg2þ block25.
AMPAR currents are the main form of spontaneous and fast
excitatory synaptic transmission, while NMDA receptors are
essential for induction of LTP14. Thus in our research, firstly,
we demonstrated that LTP in our system was NMDA-receptor-
dependent, and that the inhibitory effects of Aβ might be related to
NMDA receptors. Secondly, Aβ had no effects on baseline PS, but
significantly inhibited LTP induction. Thirdly, acute Aβ perfusion
had no effects on AMPAR currents, but it irreversibly inhibited
NMDAR currents. Results in vivo and in vitro are identical, which
indicate that acute Aβ administration modulates NMDA receptors
and inhibits LTP induction.

In the following, whether soluble Aβ1–42 oligomers–induced
impairment of LTP could be prevented by parishin C was
investigated. Parishin C neither had effects on basic synaptic
transmission, nor on LTP levels in normal rats. It also had no
effects on NMDAR currents or AMPAR currents, or voltage-
dependent channels in normal cultured hippocampal neurons.
However, parishin C attenuated soluble Aβ1–42 oligomers–induced
inhibition of LTP given via i.p. and i.c.v. Furthermore, it was
interesting that the Aβ1–42-induced reduction of NMDAR currents
in primary cultured hippocampal neurons, but did not affect the
AMPAR currents at the same concentration. Parishin C obviously
prevented Aβ-induced attenuation of NMDAR currents. Therefore
we suggested that actions of parishin C might be related to NMDA
receptors. It may decrease the toxicity of soluble Aβ1–42 oligomers
on the receptors. Soluble Aβ1–42 oligomers–induced dysfunction



Figure 6 Parishin C protected against inhibition of NMDAR currents by 2 μmol/L soluble Aβ1–42 oligomers but not AMPAR currents in primary
cultured hippocampal neurons. Holding potential was –70 mV and external solution was with 0.1 μmol/L TTX, and without Mg2+. (A) Bath
perfusion of 2 μmol/L soluble Aβ1–42 oligomers for 10 min had no effects on AMPAR currents. Short bar means pressure injection of 3 μmol/L
AMPA. (B) Bath perfusion of 2 μmol/L soluble Aβ1–42 oligomers for 10 min inhibited NMDAR currents, and the inhibition continued during
wash. Parishin C (10 μmol/L) perfusion 10 min beforehand prevented Aβ’s inhibitory effects. Short bar meant pressure injection of 100 μmol/L
NMDA and 10 μmol/L glycine. (C) The AMPAR currents were not changed during soluble Aβ1–42 oligomers perfusion (n=3). (D) Soluble Aβ1–42
oligomers significantly inhibited NMDAR currents but it was rescued by perfusion of parishin C (Aβ1–42 group n=5, pC+ Aβ1–42 group n=6).
nPo0.05 vs. currents before perfusion, #Po0.05 vs. Aβ1–42 group. Data are mean±SEM. The amplitudes of all currents were normalized to the
first evoked at –70 mV.
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of NMDA receptors might involve various pathways. For example,
Aβ disrupts calcium homeostasis28, and influences phosphoryla-
tion of NMDA receptors, especially on NR2A and NR2B
subunits18,29,30. In addition, Aβ might down-regulate surface
expression of NMDA receptors in the synapse31. NMDA receptors
have been suggested as an important target of Aβ32,33, and they are
closely related to the inhibition of LTP34–38. In our study we used
NMDAR antagonist D-APV, NMDA receptor subtype NR2A
antagonist NVP-AAM077 and NR2B antagonist Ro 25-6981.
Parishin C could not reverse inhibitory effects of APV, NVP-
AAM077 or Ro 25-6981 (data not shown). Aβ and parishin C
might bind to specific sites on the receptors other than the binding
sites of APV, NVP-AAM077 and Ro 25-6981. It is possible that
parishin C binds to NMDA receptors and prevents Aβ binding to
the receptors.

The reports of AMPA receptors in AD were conflict. Tu et al.33

showed that the expression of AMPA receptors was down-regulated in
AD. Tozzi et al.39 found that AMPA receptors were not changed while
the NMDAR/AMPAR ratio decreased in hippocampus in AD animals.
In our study, soluble Aβ1–42 oligomers were perfused to the cells
during the experiments and it did not change the amplitude of
AMPAR currents. It has been known that basic synaptic transmissions
are mainly mediated by AMPA receptors. In our studies MK-801 did
not influence baseline, but blocked the potentiation induced by HFS. A
previous report showed that AMPAR currents decreased after
incubation of neurons with Aβ for three days40. Another study
showed the effects of Aβ25–35 on AMPA receptors in an experiment
with brain slices 41. Therefore, different experimental conditions and
Aβ forms might affect the expression and function of AMPA
receptors.

The effects of parishin C might be attributed to its molecular
structure, which is a long chain. This might allow parishin C
to be associated with targeted protein(s) more efficiently than
gastrodin. This structural advantage could explain its potent
pharmacological effects. Taking together, parishin C might bind
to NMDA receptors and inhibit the binding and injury of Aβ to the
receptors. Further research about the mechanisms of parishin C are
needed.
5. Conclusions

We studied the effects of parishin C on LTP deficits induced by
soluble Aβ1–42 oligomers. Inhibition of ion channel currents by Aβ
which were mediated by NMDA receptors could be prevented by
parishin C. Therefore, parishin C could be a potent compound for
treating neuronal degenerative diseases.
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