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The comparison of censored 
quantile regression methods 
in prognosis factors of breast 
cancer survival
Akram Yazdani1,2, Mehdi Yaseri2, Shahpar Haghighat3, Ahmad Kaviani4 & Hojjat Zeraati2*

The Cox proportional hazards model is a widely used statistical method for the censored data 
that model the hazard rate rather than survival time. To overcome complexity of interpreting 
hazard ratio, quantile regression was introduced for censored data with more straightforward 
interpretation. Different methods for analyzing censored data using quantile regression model, 
have been introduced. The quantile regression approach models the quantile function of failure time 
and investigates the covariate effects in different quantiles. In this model, the covariate effects can 
be changed for patients with different risk and is a flexible model for controlling the heterogeneity 
of covariate effects. We illustrated and compared five methods in quantile regression for right 
censored data included Portnoy, Wang and Wang, Bottai and Zhang, Yang and De Backer methods. 
The comparison was made through the use of these methods in modeling the survival time of 
breast cancer. According to the results of quantile regression models, tumor grade and stage of the 
disease were identified as significant factors affecting 20th percentile of survival time. In Bottai 
and Zhang method, 20th percentile of survival time for a case with higher unit of stage decreased 
about 14 months and 20th percentile of survival time for a case with higher grade decreased about 
13 months. The quantile regression models acted the same to determine prognostic factors of breast 
cancer survival in most of the time. The estimated coefficients of five methods were close to each 
other for quantiles lower than 0.1 and they were different from quantiles upper than 0.1.

Abbreviations
AFT  Accelerated failure time
BCS  Breast conserving surgery
MRM  Modified radical mastectomy
QR  Quantile regression

In many medical studies, the outcome of interest is the time to event. For instance, in cancer, the event of interest 
is death or the relapse of illness, and in transplantation, the rejection of transplanted organ can be considered 
as the event. In case of the uncertainty of time for study inclusion and the incidence of an event in some studied 
units, time is regarded as the censored  data1. The Cox proportional hazards (Cox) model is a widely used statisti-
cal method for the censored data. However, this model is limited by the assumption of a constant hazard ratio 
(HR) over time (i.e., proportionality), and models the hazard rate rather than the survival time  directly2. Also, 
the complexity of the HR estimate interpretation was recognized as a problem in the Cox models. To overcome 
this limitations, other methods such as accelerated failure time (AFT) models and censored quantile regression 
(CQR) models were introduced for censored data with a more straightforward  interpretation3. The AFT model 
is a model that assumes that a treatment or an exposure either extends or reduces the time to the development 
of event. Although the AFT model allows a direct interpretation of covariate effects on event time, it requires a 
strong assumption of homogeneous treatment  effect4. The AFT model can only capture location shifts effects, 
and hence may fail to capture heterogeneity of covariate effects. The CQR model does not require the assumption 
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of a homogeneous covariate effect, while the effect estimates have the same straightforward interpretation as 
those in AFT  model3. A censored quantile regression model is a model of the quantile function of failure time 
and investigates the covariate effects in different quantiles. In this model, the covariate effects can be changed for 
patients with different risks and is a flexible model for controlling the heterogeneity of covariate effects. Further, 
the failure time can be predicted by CQR model and the progression of a disease can be  predicted4.

For conditionally random right censoring, various approaches have been proposed that the most practical of 
them include:  Portnoy5, Peng and  Huang6, Wang and  Wang7, Bottai and  Zhang8, Yang et al.9 and De Backer et al.10 
methods. Portnoy generalized the Kaplan–Meier method to estimate quantile of survival time with a recursively 
weighted estimation algorithm under the global linearity assumption of the conditional quantile  functions5. Peng 
and Huang presented another method based on Nelson-Aalen estimator of cumulative hazard function requiring 
linearity assumption like Portnoy’s method and present the result closed to Portnoy  method6. To overcome the 
linearity assumption, Wang and Wang developed a method by non-parametrically estimating the conditional 
survival distribution via kernel  smoothing7. In 2010, Laplace regression was introduced as a parametric method 
for modeling the conditional quantile of censored data by Bottai and  Zhang8. They assumed error term follow 
asymmetric Laplace distribution and considered the Laplace regression model as a method for modeling the 
conditional quantiles of survival time. Nevertheless, this parametric assumption, shared by other methods in 
quantile regression (Liu and  Botta11,  Farcomeni12, Lee and  Neocleous13, Yuan and  Yin14), has been shown assump-
tion asymmetric Laplace distribution for error term, not to influence the results of the model under different data 
distributions. It was indicated in simulation studies that correct coverage and shorter computation time obtained 
with Laplace regression model compared with other alternative  methods8. Yang et al. to estimate quantiles of 
survival time, employed a variation of the data augmentation algorithm 9. Base on the general principle of data 
 augmentation15, in the algorithm, they first, impute censored values from the quantile functions then using the 
imputed values fit the quantile model. De Backer et al. investigate a new procedure for modeling right-censored 
data with a linear quantile  regression10. They used “check” loss function that stems from the influential work of 
Koenker and  Bassett16, to circumvent the formulation of conditional quantiles. The assumptions and features of 
these models are summarized in Table 1.

The most of existing methods of estimation for censored quantiles are limited to right censored data. This 
paper has concentrated on the outcome data that were right censored, as this was the main feature of our moti-
vating dataset. Subsequent work has greatly expanded the applicability of these methods to competing  risks17–19, 
recurrent  events20,21, various censoring  types17,22 and other settings. For example, Yang et al. proposed a new 
method for different forms of censoring including doubly censored and interval censored  data9. Narisetty (2018) 
introduced a new approach for the cure rate quantile regression  model23. Chen developed quantile regression 
estimators and proposed a quantile regression method with time-varying  covariates24.

Recent years, use of quantile regression has increased in cancer research. Base on PubMed search, there are 
more than 200 publications on applications of quantile regression related to cancer research from 2015 to 2021. 
Breast cancer is the most common type of cancer after the lung cancer and the most common cause of death from 
cancer among  women25. In 2000, there were 10 million new cases of breast cancer, i.e. 25% of all cancer cases 
around the world, and, it is expected to reach 15 million in  202526. The five-year survival rate of breast cancer 
range from less than 40% to 80% in low-income to high-income countries around the  world27. Knowledge of 
the survival-associated predictors in breast cancer has an important role in the process of treatment and patient 
care. Age at diagnosis, tumor size, grade, type of auxiliary treatment (radiotherapy, stage of disease, number of 
involved lymph nodes, chemotherapy, hormone therapy), type of surgery (Modified radical mastectomy (MRM) 

Table 1.  Assumptions and features Cox, AFT, Portnoy, Wang and Wang, Bottai and Zhang, Yang and De 
Backer methods.

models Assumptions Advantages Disadvantages

Cox method Proportional hazard
No need to consider a specific probability distri-
bution for the survival time;
Can used in many types of survival model

The effect of the included
covariates is multiplicative
The complexity of the HR estimate interpretation

AFT method
The effect of a covariate is to accelerate or decel-
erate the life course of a disease by some constant
Needs homogeneous covariates effect

direct interpretation of covariate effects on event 
time
Can used in many types of survival model

Error term follow a specific probability distribu-
tion
Failing to capture heterogeneity of covariate 
effects

Portnoy method The model at lower quantiles are all linear 
(global-linearity)

The effect of covariates is not restricted to be 
constant
No distributional assumptions about the regres-
sion error term

The ’global’ linearity assumption

Bottai and Zhang method
The residuals follow a
asymmetric Laplace distribution
require -linearity assumption

The effect of covariates is not restricted to be 
constant
Correct coverage and shorter computation time

Error term follow a Laplace distribution

Wang and Wang method Require a locally linear quantile regression Not require global-linearity assumption Requires estimating the true distribution of the 
outcome variable

Yang method Operates under the assumption that all the 
quantile functions are identifiable

Can handle different forms of censoring
the estimator can achieve significant efficiency 
gains over the existing methods

It runs a risk of finding estimates even for non-
identifiable quantile functions

De Backer method Require a locally linear quantile regression Consistency and asymptotic normality of 
estimator

Restrict to the estimation of the classical linear 
regression model
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and Breast conserving surgery (BCS), metastasis and recurrence have been identified as the most important risk 
factors of breast cancer  survival28,29.

The present study aimed to compare quantile regression methods included Portnoy, Wang and Wang, Bottai 
and Zhang, Yang and De Backer methods with Cox and AFT models. The comparison was made through the use 
of these methods in modeling the survival time of breast cancer using the data collected from Imam Khomeini 
hospital, Tehran, Iran.

Methods
Data description. The present study aimed to determine the factors affecting breast cancer survival using 
CQR models. The studied data included 800 females patients with breast cancer (based on breast cancer pathol-
ogy diagnosis) referring to Imam Khomeini Hospital, Tehran, Iran during 1996–2005. The required data were 
extracted from patients’ files. The latest condition of the patient was informed via phone contact.

This study was approved by the Ethics Committee of School of Public Health & Allied Medical Sciences-
Tehran university of Medical Sciences (approval ID: IR.TUMS.SPH.REC.1397.212) and was carried out according 
to relevant guidelines and regulations. The informed consent was obtained from all participants.

The event of interest was death from breast cancer, and the survival time was defined as the duration (months) 
from diagnosis to death due to breast cancer. The prognostic factors included age at diagnosis (year), type of sur-
gery (Modified radical mastectomy (MRM) and Breast conserving surgery (BCS), tumor grade (grade 1–3), and 
stage of disease (Stage 1–4) based on the seventh edition of the TNM classification. The p-values less than 0.05 
were considered to be significant. The analysis was performed using STATAversion 12 and quantreg package in R.

Models. Quantile regression is a statistical technique intended to inference about conditional quantile func-
tions. This method offer a mechanism for estimating models for the conditional median function, and the full 
range of other conditional quantile functions.

Let T denote the failure time and X̃ = (X1,X2, . . . ,Xp)
T , denote a p × 1 vector of covariates. let  QY(θ|X̃ ) 

= inf{t: Pr(Y ≤ t|X̃ ) ≥ θ }, denote the θ th conditional quantiles of Y = log(T), (or another monotone transfor-
mation of T) given X̃ , where θ ∈ (0, 1) . For randomly censored data, let C denote time to censoring and let 
T̃ = min(T, C)andδ = I(T ≤ C) . The observed data consist of n i.i.d replicates of ( ̃T, δ,X) , denoted by ( ̃Ti , δi ,Xi) , 
i = 1,…, n. Define Ỹ = log(T̃) , Ỹi = log(T̃i).

The linear QR model takes the form

where 0 < θL < θU < 1, and β(θ) is a vector of unknown regression coefficients that represents the change in the 
θ th conditional quantile of Y given a one-unit change in the corresponding  covariate30. When θL = θU , model 
(1) is referred to as a locally linear quantile regression model. When θL < θU , model (1) referred to as a globally 
linear quantile regression model.

The most applying methods during the recent years are  Portnoy5, Wang and  Wang7, Bottai and  Zhang8, Yang 
et al.9 and De Backer et al.10 methods. In the following, we present a brief overview of methodological framework 
for these models.

Portnoy method. Portnoy5, using Efron’s31 interpretation of Kaplan–Meier as shifting mass of censored 
observations to the right, proposed an estimation algorithm under the standard random right censoring assump-
tion to estimate β(θ).

The grid-based procedure presented in Neocleous et  al.32 defines a grid of θ -values, gn , as, for 
0 < θ1 < θ2 < · · · < θK = θU) . Let �gn� = max{θr − θr−1 : r = 1, 2, . . . , R} . We will adopt the grid gn through-
out this section. β(θ1) is estimated from applying uncensored QR when no censoring occurs below the θ1 th con-
ditional quantile of T. Then,  β(θr+1) is a value of b (b is a vector of unknown regression coefficients) minimizing 
sequentially for r = 1, 2,…, R, by

where Y∗ is an extremely large value, ρθ(x) = x{θ − I(x < 0)}, and G is the set of indices of censored observa-
tions that have been previously crossed. The weight wr+1,i = (θr+1 − θl)/(1− θl) , approximates the conditional 
probability Pr

(

Ci < Ti < exp{Xiβ(θr+1)}|Ci < Ti,Xi

)

 , based on the estimates for β(θ1), β(θ2) . . . , β(θr)5.

Bottai and Zhang method. Bottai and  Zhang8, to estimator β(θ) considered a regression model where 
the error term is assumed to follow asymmetric Laplace distribution. They explored its use in the estimation 
of conditional quantiles of a continuous outcome variable given a set of covariates in the presence of random 
censoring.

They supposed that exists a fixed r-dimensional parameter vector β(θ) such that

where εi is an independent and identically distributed residual whose θ th quantile equals zero ( P(εi ≤ 0|xi) = θ).
Let Ti conditionally on Xi , follows a form of asymmetric Laplace distribution with probability density function

(1)QY(θ|X) = X
T
β(θ), θ ∈ (θL, θU )

(2)min

{

∑

i/∈G

ρθ

(

Ỹi − X
T
i b

)

+
∑

i∈G

[wr+1,iρθ

(

Ỹi − X
T
i b

)

+ (1− wr+1,i)ρθ

(

Y
∗ − X

T
i b

)

]

}

(3)Ti = X
T
β(θ)+ εi
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where σ(θ) ∈ (0,∞) , µi = X
T
β(θ).

In the presence of censored observations, the likelihood function is proportional to

The maximum likelihood estimators for the parameters are defined as maximizes of l(β(θ), σ(θ)|Ti) . They used 
algorithm proposed by Nelder and  Mead33, to estimate parameters and inference on the parameters obtained by 
bootstrapping the point estimates for quantile of  interest8.

Wang and Wang method. A locally weighted method was proposed by Wang and  Wang7 to estimate a 
locally linear quantile regression model, which assumes that θL = θU , in model (1), i.e.

Wang and  Wang7, for random censoring, by twisting the idea of the self-consistent Kaplan–Meier  estimator31, 
proposed to modify the standard quantile loss function. The fundamental idea of Wang and  Wang7 is to redis-
tribute the probability mass (Pr(Ti > Ci|Ci,Xi)) , of the censored cases to the right through a local weighting 
 scheme7. An estimator of  β(θ) can be obtained by minimizing the following objective function of β:

where F0(t|x) ≡ Pr(T > t|X = x) is known and

Wang and  Wang7 proposed to minimize the objective function (5), when  F0(t|x)  is unknown, with F0() 
replaced by the Beran’s local Kaplan–Meier  estimator34, ̂F(.),

where N(t) = I
(

Ỹ ≤ t, δ = 1
)

, and Bnk(x) is a sequence of nonnegative weights adding up to 1, for example, 
Nadaraya Watson’s type weight, Bnk(x) = K( x−xk

hn
)/

∑n
i=1 K(

x−xi
hn

) , where K () is a density kernel function and 
hn is a positive bandwidth converging to 0 as n → ∞7.

De Backer method. De Backer et  al.10 proposed to estimate model (4) based on a minimum distance 
loss function, given by 

∑n
i=1{1−

̂F(Xi
τβ(θ)|Xi)− θ}

2 . They further suggested using a smooth double kernel 
version of ̂F(.|Xi) . Let Yu

i  denote the i-th order statistic of the uncensored responses, nu =
∑n

i=1 δi , and let 
H∗(t) =

∫ t
−∞

K(u)du , for some kernel density K . They propose to estimate F(t|x) by ̂Fs(t|x) , where.

Yang method. Yang et al.9 proposed a new and unified approach, to estimate the quantile regression model 
(1) with θU = 1. They used a variation of the data augmentation algorithm base on the general principle of data 
 augmentation15. The algorithm starts with a set of initial values, ̂β(0)(θk), k = 1, . . . ,Mn , obtained by parallel 
quantile regression estimators or existing quantile regression estimators. Draw Y (u)

i , for u = 1, . . . ,U , from the 
quantile process approximated by XT

i
̂β(u−1)(θk), conditional on the set of possible values for Yi . Then, obtain 

updated estimates ̂β(u)(θk), viastandarduncensoredquantileregression, based on a pairwise bootstrapping sam-
ple of size n from {Xi ,Y

(u)
i }

n

i=1 . The final estimates obtain from ̂β(θ) = U−1
∑U

u=1
̂β(u)(θk)

9.
The proposed method adapts easily to different forms of censoring including doubly censored and interval 

censored  data9.

Ethics approval and consent to participate. This study was approved by the Ethics Committee 
of School of Public Health & Allied Medical Sciences-Tehran University of Medical Sciences. Approval ID: 
IR.TUMS.SPH.REC.1397.212.

Written informed consent for publication of their clinical details was obtained from the patient relative of the 
patient. A copy of the consent form is available for review by the Editor of this journal.

f (Ti) = exp

{

(I(ti ≤ µi)− θ)
ti − µi

σ(θ)

}

θ(1− θ)

σ(θ)

l(β(θ), σ(θ)|Ti) =

N
∏

i=1

(

(f (Ti))
δi (1− F(Ti))

(1−δi)
)

(4)QY(θ|X) = X
T
β(θ)

(5)n
−1

n
∑

i=1

[wi(F0)ρθ

(

Ỹi − X
T
i b

)

+ {1− wi(F0)}ρθ

(

Y∗ − X
T
i b

)

]

wi(F0) =

{

1 F0(Ci|Xi) > θ or δ = 1
θ−F0(Ci |Xi)
1−F0(Ci |Xi)

F0(Ci|Xi) < θ and δ = 0

̂F(t|x) = 1−

n
∏

j=1

{

1−
Bnj(x)

∑n
k=1I(Ỹk > Ỹj)Bnk(x)

}Nj(t)

̂Fs(t|x) =

∫

H

(

t − u

hT

)

d̂F(u|x) =

nu
∑

i=1

(

̂F
(

Yu
(i)|x

)

− ̂F
(

Yu
(i−1)|x

)

H

(

t − Yu
(i)

hT
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Results
The median follow-up time was 22.32 months with inter-quartile ranged from 13.10 to 30.51 months. During 
the follow-up, 143 (17.9%) patients died due to breast cancer and 657 (82.1%) survived or censored. Mean (SD) 
of age at diagnosis was 48.86 (13.63) years, and 106 (13.3%), 586 (73.3%), 65 (8.1%) and 43 (5.4%) patients 
were diagnosed in stages of disease 1 to 4, respectively. Further, 487 (60.9%) had tumor grade 2, 21 (27.3%) had 
tumor grade 3. 67 (84.3%) of patients had undergone MRM surgery. The proportional hazard assumption was 
confirmed at the significant level 0.05.

Table 2 displays the results of analysis of Cox and AFT models. Based on the results of Cox model, tumor 
grade and stage of disease had a significant effect on breast cancer survival. In other words, the hazard of death 
was 3.12 times for a higher stage of the disease, while the hazard ratio of death equaled to 1.71 for grade of tumor. 
In the AFT model with Weibull distribution, a shape parameter equaled to 1.24 that was significantly different 
from 1. Based on AFT model, the stage of disease and grade of tumor were the factors affecting survival time. 
Thus, increasing the stage of disease and the grade of tumor, decreased the median (or other quantiles) of survival 
time by a factor of 0.38 ( exp(−0.94) ) and a factor of 0.63 ( exp(−0.45) ) respectively.

As shown in the Kaplan–Meier plot in Fig. 1, at the end of the follow-up the minimum percentile of survival 
was 51%. Thus, we considered the10th, 20th and 40th percentiles of survival time in CQR model and consid-
ered the bandwidth 0.05 that was used in Wang and Wang and De Backer methods. According to the results 
of all quantile regression models in 20th percentile, tumor grade and stage of the disease were identified as 
significant factors affecting the survival time. However, the effectiveness of those factors varies in each model. 
In this regard, in Bottai and Zhang method 20th percentile of survival time for a case with higher unit of stage 
decreased 14.28 months and for a case with higher grade decreased12.53 months. In Yang method it was 16.64 
and 14.53 months less and in Portnoy method 18.06 and 18.31 months, respectively. The result for 10th, 20th 
and 40th percentiles of survival time were shown in Table 3.

The CQR coefficients estimated and the 95% confidence intervals (CI) with Portnoy, Bottai and Zhang, Yang, 
Wang and Wang and De Backer methods and conditional quantile effects estimated by Cox model for θ ∈ (0.01, 
0.10, …, 0.40) were displayed in Figs. 2, 3,4,5 and 6. Figure 7 shows the estimated coefficients of five methods. In 
the Cox model, the estimated quantile measure for each covariate was computed using Eq. (9) of  Portnoy5. The 
effects of the Cox model were almost the same in different quantiles while they changed in quantile regression 
models as the quantiles vary.

Table 2.  Multivariate analysis of prognostic factors of breast cancer survival with Cox model and AFT model. 
HR Hazard Ratio, Coef. Estimated parameter, CI Confidence Interval, AFT Accelerated failure time.

Variables

Cox model AFT model

HR p-value 95% Cl Coef p-value 95% Cl

Age 0.99 0.753 (0.98, 1.01) 0.002 0.749 (− 0.01, 0.01)

Surgical procedure

MRM 1.00 1.00

BCS 0.58 0.079 (0.32, 1.06) 0.40 0.104 (− 0.08, 0.88)

Stage 3.12 < 0.001 (2.55, 3.81) − 0.94 < 0.001 (− 1.11, − 0.77)

Grade 1.71 < 0.001 (1.27, 2.30) − 0.45 < 0.001 (− 0.69, − 0.21)

Figure 1.  Kaplan–Meier plot of survival time of patient with breast cancer.
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Discussion
In the present study, CQR methods were compared in modeling the prognosis factors of breast cancer survival 
based on the breast cancer data collected from Imam Khomeini Hospital. Tehran, Iran.

The analyses of accelerated failure-time models and Cox model showed that the stage of disease and grade of 
tumor were identified as the prognostic factors of breast cancer survival. According to the Cox model, the stage 
of disease and tumor grade increased the risk of death. In the AFT model, the median of survival time decreased 
as the stage of disease and tumor grade increased. The analyses of CQR models showed that type of surgery, stage 
and grade were the effective factors on the survival of patients with breast cancer. These results are consistent 
with most findings in the existing literature, although a direct comparison of the effect size is difficult due to the 
fact that the majority of works report hazard ratios or odds ratios. Among the significant factors in this study, the 
effect of surgical method on the survival of breast cancer patients is one of the most addressed issues in recent 
 studies35–37. Our study showed that  20th percentile survival time increased for women with BCS surgery, based 
on Portnoy methods. In the study of Hofvind, by controlling other factors, the hazard of death in MRM is 1.7 
times higher than  BCS38. Meanwhile, there has been no significant difference between two surgical methods 
in the study of  Quan39. In most of quantiles stage and grade have significant effect on survival. In recent study, 
Saadatmand describe overall survival of female patients with breast cancer from two time cohorts (1999–2005 
and 2006–2012) in a nationwide population based  study40. Their results emphasize the importance of tumor stage 
at diagnosis of breast cancer, as it still greatly affects overall survival. Rottenberg examine differences in survival 
among older women diagnosed with breast cancer, according to age and disease stage at time of diagnosis. And 
showed that stage disease among older women became a less powerful predictor of mortality with rising  age41.

The CQR models allow covariate effects to change in people with different risk. Thus, it is a flexible model 
for controlling heterogeneity due to covariates. In our studies, coefficients of prognostic factor were different in 
quantiles that showed different effect of prognostic factor survival time in each quantile. Base on Portnoy method 

Table 3.  Multivariate analysis of prognostic factors of breast cancer survival with Portnoy, Wang and 
Wang, Bottai and Zhang, Yang and De Backer methods. Coef. Estimated parameter, CI Confidence Interval. 
*P-value < 0.05.

Quantiles

Coef. (95% Cl)

0.10 0.20 0.40

Bottai and Zhang method

Intercept 48.96 (22.65, 75.26)* 79.97 (44.82, 115.12)* 133.74 (87.57, 179.92)*

Age 0.02 (− 0.23, 0.26) 0.03 (− 0.30, 0.36) 0.09 (− 0.36, 0.53)

Surgical procedure (BCS) 11.28 (− 2.97, 25.54) 14.34 (− 1.07, 29.75) 24.07 (3.03, 45.14)*

Stage − 10.59 (− 14.23, − 6.95)* − 14.28 (− 19.01, − 9.56)* − 28.87 (− 35.001, − 22.74)*

Grade − 6.85 (− 13.14, − 0.57)* − 12.53 (− 20.88, − 4.18)* − 12.39 (− 23.60, − 1.19)*

Portnoy method

Intercept 56.94 (37.86,76.65)* 102.05 (81.86,145.50)* 199.77 (87.30,304.03)*

Age 0.08 (− 0.23,0.37) 0.19 (− 0.99,0.62) 0.06 (− 0.60,0.45)

Surgical procedure (BCS) 14.34 (5.49,27.91)* 10.36 (1.35,22.13)* 22.31 (− 26.34,116.88)

Stage − 12.61 (− 16.96, − 8.56)* − 18.06 (− 24.26, − 6.85)* − 43.58 (− 49.06, − 39.17)*

Grade − 10.24 (− 13.48, − 3.36)* − 18.31(− 25.81,13.60)* − 13.92 (− 32.98, 20.41)

Wang and Wang method

Intercept 17.57 (0.51, 45.50)* 42.05 (5.51, 69.10)* 111.39 (34.85, 160.72)*

Age 0.02 (− 0.19, 0.19) − 0.02 (− 0.22, 0.25) − 0.08 (− 0.48, 0.56)

Surgical procedure (BCS) 11.95 (3.42, 31.14)* 17.68 (− 1.85, 35.57) 8.96 (− 8.36, 60.73)

Stage − 5.26 (− 8.41, − 2.69)* − 8.26 (− 11.37, − 5.19)* − 18.59 (− 24.51, − 10.65)*

Grade − 2.33 (− 8.11, 0.32) − 6.51 (− 10.14, − 0.45)* − 11.57 (− 25.53, − 3.30)*

De Backer method

Intercept 52.79 (25.79, 82.24)* 73.91 (40.12, 126.08)* 123.42 (74.45, 171.28)*

Age 0.02 (− 0.31, 0.24) − 0.07 (− 0.36, 0.41) − 0.03 (− 0.46, 0.58)

Surgical procedure (BCS) 3.62 (− 5.37, 25.95) 9.24 (− 5.37, 27.11) 10.98 (− 15.25, 41.63)

Stage − 10.05 (− 13.62, − 5.88)* − 12.56 (− 20.15, − 9.09)* − 26.81 (− 35.98, − 15.86)*

Grade − 5.91 (− 14.88, − 0.81)* − 8.76 (− 19.49, − 3.01)* − 5.30 (− 21.46, 2.24)

Yang method

Intercept 53.11 (23.09, 93.38)* 87.20 (44.17, 133.21)* 198.89 (44.49, 227.96)*

Age 0.06 (− 0.26, 0.32) 0.12 (− 0.23, 0.51) 0.03 (− 0.29, 0.49)

Surgical procedure (BCS) 15.63 (− 1.59, 31.70) 14.71 (− 0.92, 37.20) 11.05 (− 16.74, 30.51

Stage − 12.04 (− 17.59, − 7.07)* − 16.64 (− 23.77, − 9.74)* − 40.23 (− 41.28, − 9.74)*

Grade − 9.68 (− 16.89, − 2.70)* − 14.53 (− 26.03, − 5.47)* − 14.20 (− 25.80, − 3.51)*
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high stage of disease decreased 10th, 20th and 40th percentiles survival time 12.61, 18.06 and 43.58 months, 
respectively.

The difference in the interpretation of the parameters is the biggest one among these models. The Cox model 
examines the covariate effects on the hazard function. In addition, the Cox model shows the hazard of death 
per unit of increase in covariate when the event is death. In this study, the hazard of death was 3.12 times for a 

Figure 2.  Censored quantile regression coefficients plots and their confidence intervals (dashed line) for 
Portnoy method and conditional quantile effects estimated by Cox model (red line).

Figure 3.  Censored quantile regression coefficients plots and their confidence intervals (dashed line) for Bottai 
and Zhang method.
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Figure 4.  Censored quantile regression coefficients plots and their confidence intervals (dashed line) for Yang 
method.

Figure 5.  Censored quantile regression coefficients plots and their confidence intervals (dashed line) for Wang 
and Wang method.
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Figure 6.  Censored quantile regression coefficients plots and their confidence intervals (dashed line) for De 
Backer method.

Figure 7.  Censored quantile regression coefficients plots for Portnoy (dotdash line), Wang and Wang (dashed 
line), Bottai and Zhang (longdash line), Yang (dotted line), and De Backer (solid line) methods.
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higher stage of the disease, and the hazard of death was 1.71 times for a higher degree of tumor grade. Contrary 
to the proportional hazards model which describes how predictors influence the hazard function, the AFT 
model assumes a direct association between predictors and survival time, which makes interpretation easier. If 
the median survival time to event is considered and the accelerate factor is greater than one, the median survival 
time increases by the accelerate factor with increasing one unit covariate while the median survival time to event 
decreases if it is less than one. In the present study, based on AFT model, the median survival time decreased 
by a factor of 0.38 and 0.63 with increasing stage of disease and grade of tumor, respectively. The results of this 
model can be expressed as a proportional hazard, in which the interpretation is similar to the Cox model. The 
interpretation of coefficients in CQR model is considered as the changing rate quantile of dependent variable 
per one unit change in independent variable, like other linear models. If the event is death, it can be expressed 
as the covariate effects on the patients’ lifetime.

Modeling the breast cancer data with CQR models indicated that most of the time all models acted the same 
to determine prognostic factors of breast cancer survival but sometime, significant factors and their coefficients 
were different. All models considered the stage of disease and grade of tumor as prognosis factors. With regard to 
the coefficients of covariates in different quantiles, the coefficients of Portnoy and Yang method were close to each 
other and the coefficients of Bottai and Zhang and De Backer methods were close to each other and they were 
different from Wang and Wang method. Peng and Huang compared their method with Portnoy’s method and 
showed that both methods could represent very similar  results6. Bottai and Zhang compared Laplace regression 
method with Peng-Huang and Portnoy methods by using simulation and indicated that the advantages of their 
method include giving the same results and accurate convergence, while two other methods sometimes failed 
to converge, and involve fast  calculations8. Wang and Wang showed that the new approach adopts a preliminary 
local Kaplan–Meier estimator and results a weighted quantile regression. They established, utilizing results in 
modern empirical process theory, the consistency and asymptotic normality of the resulted  estimator7. Base 
on simulation studies and the analysis of real data, the proposed method has shorter interval estimates than 
Portnoy’s  procedure7. De backer et al. in their study indicated in an extensive simulation study that the resulted 
quantile regression estimator respect to established check-based formulations have less variance results. From a 
theoretical prospect, both consistency and asymptotic normality of the proposed estimator for linear regression 
are obtained under classical regularity  conditions10. Yang et al. indicated that the Yang’s method presents an 
estimator is able to achieve significant efficiency gains in comparisons with Portnoy’s  estimator9.

The assumptions required in each of the models should be considered while using these models. The pro-
portional hazards assumption is the most important assumption of the Cox model and what it means is that 
the ratio of the hazards for any two individuals is constant over time. In this model, no assumptions are made 
about form of the baseline hazard. However, the distribution of survival time is sometimes specific or assum-
ing a parametric form is logical. In these cases, parametric methods are used. Common parametric distribu-
tions in survival models include Weibull, Generalized Gamma, Log-Normal, Log-Logistic. In Bottai and Zhang 
method, it is assumed that the error terms follow asymmetric Laplace distribution. However, Yu and Moyeed 
(2001) showed that the model performs well when the error terms follow other  distributions42. Portnoy and 
Yang methods require just global linearity  assumption5,9. Wang and Wang and De Backer methods have local 
linearity  assumption7,10.

Computational time is another important issue in comparing these models. According to our data, the com-
putational time of Portnoy, Bottai and Zhang and Yang methods is shorter than other methods.

It is necessary task to measure the goodness of survival models. Although for the model diagnostics of quan-
tile regression with complete data some tools, such as the worm plot, have been proposed, for censored quantile 
regression is still greatly  underdeveloped43,44. Designing effective model diagnostic tools for censored quantile 
regression warrants more in-depth research.

The high percentage of right censoring is regarded as one of the limitations of this study. By this way, mod-
eling 50th percentile of survival time requires more follow-up time to increase the percentage of event. Thus, 
the comparison of models in higher quantiles was not possible.

Conclusions
For the CQR models, various approaches have been proposed that the most practical of them include:  Portnoy5, 
Wang and  Wang7, Bottai and  Zhang8, Yang et al.9 and De Backer et al.10 methods.  Portnoy5 generalized the 
Kaplan–Meier method with a recursively weighted estimation algorithm under the global linearity assumption 
of the conditional quantile functions. To overcome the linearity assumption, Wang and  Wang7 developed a 
method by non-parametrically estimating the conditional survival distribution via kernel smoothing. In 2010, 
Laplace regression was introduced as a parametric method for modeling the conditional quantile of censored 
data by Bottai and Zhang. Yang et al.9 employed a variation of the data augmentation algorithm base on the 
general principle of data  augmentation15. De Backer et al.10 investigate a new procedure that used “check” loss 
function. The CQR methods acted the same to determine prognostic factors of breast cancer survival in most 
of the time. The estimated coefficients of five methods were close to each other for quantiles lower than 0.1 and 
they were different from quantiles upper than 0.1.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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