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Abstract: Pancreatic adenocarcinoma (PAAD) is a highly heterogeneous and immunosuppressive
cancer. This study investigated the diversity of DNA damage repair (DDR) and immune microen-
vironment in PAAD by transcriptomic and genomic analysis. Patients with PAAD were divided
into two DDR-based subtypes with distinct prognosis and molecular characteristics. The differential
expression genes were mostly enriched in DDR and immune-related pathways. In order to distin-
guish high- and low-risk groups clinically, a DDR- and immune-based 5-gene prognostic signature
(termed DPRS) was established. Patients in the high-risk group had inferior prognosis, a low level of
immune checkpoint gene expression and low sensitivity to DDR-associated inhibitors. Furthermore,
single-cell sequencing was used to observe the performance of the DDR-based signature in a high
dimension, and immunohistochemistry was used to verify the relationship between the genes we
identified and the prognosis of patients with PAAD. In conclusion, the DDR heterogeneity of PAAD
was demonstrated, and a novel DDR- and immune-based risk-scoring model was constructed, which
indicated the feasibility of DPRS in predicting prognosis and drug response in PAAD patients.
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1. Introduction

Pancreatic adenocarcinoma (PAAD) is a devastating tumor with an extremely poor
prognosis, which was listed as the fourth leading cause of cancer-related death [1]. Due
to the insidious onset and metastatic nature of PAAD, more than 50% of patients miss
the opportunity with an advanced stage at the first diagnosis [2]. Some studies have
proposed molecular typing of PAAD based on genomic, transcriptome and metabolome
data, and have broadened the understanding of the molecular phenotype of PAAD and
provided effective targeted therapy options [3–5]. However, the molecular mechanism of
poor prognosis in PAAD remains unclear.

DNA damage, which threatens the integrity of the genome, is a potential cause of cancer.
Cells have developed a variety of mechanisms for detecting, sending signals and repairing
DNA damage, and these pathways are collectively known as DNA damage repair (DDR) [6].
The emergence of targeted DDR inhibitors has shown initial success in patients with advanced
platinum-sensitive PAAD with DDR gene alterations or BRCA mutations [7,8]. Recently, DDR
deficiency has emerged as one of the important determinants of tumor immunogenicity,
and there is increasing evidence to support the concept that DDR-targeted therapies can
increase anti-tumor immune responses [9]. However, transcriptome and genomic analysis
of PAAD from the perspective of DDR gene heterogeneity remains limited.

Here, we aim to analyze the transcription profile of the DDR gene in the PAAD
comprehensively. Two DDR gene subtypes with different clinical and immunological
characteristics were identified. A five-gene signature based on DDR and immune-related
genes that can successfully differentiate between high-and low-risk groups of PAAD
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patients was developed, providing an alternative method for predicting the response
to DDR-targeted inhibitors and immune checkpoint inhibitors (ICI). Our data revealed
multiple aspects of DDR alterations in PAAD that may be useful in guiding therapy and
prognostic monitoring.

2. Results

A schematic presentation of the research procedure is shown in Figure 1.
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2.1. Superior Overall Survival (OS) Was Characterized in DDR-Subtype 1

To reveal the heterogeneity of DDR genes in PAAD, all 168 patients from The Cancer
Genome Atlas (TCGA) were assigned to different subtypes based on 276 DDR gene expres-
sion profiles. Considering the unsupervised clustering results and clinical significance, two
DDR subgroups were identified (Figure 2A–C). Cluster1 (n = 122) was designated as DDR-
subtype1, and cluster2 (n = 46) was designated as DDR-subtype2. Most of the DDR genes
in DDR-subtype1 were down-regulated, and in DDR-subtype2 they were up-regulated
(Figure 2D). There was a significant difference in OS between the two subtypes (Figure 2E).
The OS of DDR-subtype2 was inferior to that of subtype1 (p < 0.001). This prompted us to
continue to explore the relationship between DDR and prognosis in patients with PAAD by
exploring the molecular characteristics of these two DDR subtypes.
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Figure 2. Consensus clustering for DNA damage repair (DDR) related genes in the TCGA-PAAD
cohort (n = 168). (A) The consensus matrix of the DDR-related genes. (B) Cumulative distribution
function (CDF) plot with consensus values ranging from 0 to 1. (C) The Nbclust plot represented the
chosen optimal cluster number (k = 2) for DDR genes. (D) Heatmap of DDR-related genes in DDR
subtypes. (E) Overall survival (OS) of patients in DDR-subtype1 and subtype2.

2.2. Analysis of the Mutation Landscape and Immune Microenvironment between the Different
DDR Subtypes

The different mutation frequency and mutation landscape between DDR-subtype1 and
DDR-subtype2 were characterized (Figure 3A,B). The analysis of driver genes showed that
in the TCGA-PAAD cohort, patients with DDR-subtype1 showed higher mutation frequen-
cies of KRAS (90.7%) and SMAD4 (30.8%) than patients with DDR-subtype2 (Figure 3C);
patients with DDR-subtype2 were dominated by TP53 (83.8%) and CDKN2A (24.3%) muta-
tions (Figure 3D). To explore the heterogeneity of the tumor immune microenvironment
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(TME) between DDR subtypes in PAAD, the differences in the components of immune
cells and the expression of immune genes were analyzed. CIBERSORT analysis showed
that DDR-subtype2 patients had significantly increased proportions of some immune
cells (Figure 3E), such as activated memory CD4+ T cells and resting NK cells, and pa-
tients with DDR-subtype1 showed increased proportions of Tregs and activated NK cells.
Antigen presentation and other immune functions also play a key role in the response
to immunotherapy [10]. The expression levels of genes related to antigen processing
and presentation, such as HLA-DOA, HLA-DPB2, HLA-DRA, HLA-DQA1, HLA-DRB5,
HLA-DPA1 and HLA-DMB, were significantly higher in the DDR-subtype2 than the re-
spective levels in the DDR-subtype1 (Figure 3F). In view of the significance differences in
OS, somatic mutation and immune infiltration between two DDR subtypes, we desired to
generate the specific signature of DDR-related gene expression profiles to render distinct
the subtype of patients with PAAD and predict the prognosis.
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Figure 3. Somatic mutation and immune features between subgroups. Landscape of mutation profiles
in DDR-subtype1 (A) and DDR-subtype2 (B). Mutation information of each gene in each sample is
shown in the waterfall plot. Top panel shows individual tumor mutation burden. (C) Patients
with DDR-subtype1 showed higher mutation frequencies of KRAS and SMAD4; (D) Patients
with DDR-subtype2 showed higher mutation frequencies of TP53 and CDKN2A. Immune pro-
file alterations (E) and human leukocyte antigen (F) between the DDR-subtypes. * represents p < 0.05,
** represents p < 0.01, *** represents p < 0.001, ns represents no significant difference.
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2.3. Identification of Biological Processes Related to Differential Expression Genes (DEGs) of
DDR Subtypes

The transcriptome differences between the two subtypes were investigated and
1081 DEGs (|Fold Change| > 1.5, FDR < 0.05, Supplementary Table S1) were screened
from all 12,650 genes (Figure 4A,B). The gene set enrichment analysis (GSEA) revealed that
DDR subtypes have distinct transcriptomic alterations. The top 20 enrichment pathways
were demonstrated. Most of them were DDR-related, including “G2M Checkpoint”, “E2F
Targets”, “Mitotic Spindle”, “UV Response DN” and “MTORC1 Signaling”. Some of enrich-
ment pathways were immune-related, including “Inflammatory Response”, “IL6-JAK-STAT
Signaling”, “Interferon-Gamma-Response” and “IL2-STAT5 Signaling” (Figure 4C), which
suggested that the effect of different DDRs on the prognosis of PAAD may be related to the
activation of the immune pathway.
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Figure 4. Identification of differential expression genes (DEGs) and related biological processes of
DDR subtypes. Volcano plot (A) and heatmap (B) of DEGs in PAAD based on data from TCGA.
(C) The top 20 hallmark gene sets of Gene Set Enrichment Analysis of DEGs.

2.4. Construction and Validation of DDR- and Immune-Based Prognostic Risk Score
(DPRS) Model

Since all the above analyses were conducted in the population, it was not conve-
nient to predict individual response patterns of DDR defects. To establish a promising
biomarker, these DDR-based DEGs (n = 1081) were intersected with the immune genes
(n = 2483, Supplementary Table S2) and altogether 191 overlapping genes were screened
for subsequent analysis (Figure 5A). By univariate Cox regression analysis, 13 DEGs were
found to be correlated with prognosis (Figure 5B). Finally, five genes (MET, ERAP2, AGER,
TNFRSF4 and DMBT1) were selected for constructing the prognostic signature via least
absolute shrinkage and selection operator (LASSO) regression and tenfold cross-validation
(Figure 5C,D, Supplementary Table S3). Moreover, we explored the relationship between
the five-gene signature and immune infiltration (Figure 5E). In addition, we found that
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the risk groups were consistent with the previously established DDR subtypes on the
clustering heatmap of these five genes (Figure 5F); this partly confirmed the hypothesis that
DDR and immunization may have an impact on prognosis of PAAD. High-risk group had
remarkably decreased OS compared to the low-risk group in training set (Figure 6A,B), and
similar results were also observed in the validation set (Figure 6E,F). The AUCs (area under
the curve) were 0.784, 0.814 and 0.713 for 1-, 2-, and 3-year OS, respectively, indicating
the reliability of the DPRS for predicting the outcomes of PAAD patients (Figure 6C,D).
Furthermore, the prognostic efficiency of the DPRS was also validated in the GSE85916
cohort, with AUCs of 0.662, 0.617 and 0.554 for 1-, 2-, and 3-year OS (Figure 6G,H).
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Figure 5. Generation of DDR- and immune-based signature. (A) Venn-diagram-described DDR-based
DEGs (n = 1081) were intersected with the immune genes (n = 2483) and altogether 191 overlapping
genes were screened. (B) Forest plot of univariate Cox regression analysis showed that 13 DEGs
were associated with prognosis. (C) LASSO coefficient profiles. (D) Selection of the tuning param-
eter (lambda) in the LASSO model by 10-fold cross-validation based on minimum criteria for OS.
(E) Heatmap of relationship between the 5-gene signature and immune infiltration. (F) Heatmap of
5-gene signature by unsupervised clustering. The DDR subtype, risk group and risk score as gene
annotations were correlated.
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Figure 6. Construction and validation of DDR- and immune-based risk score (DPRS) model.
(A–D) Construction and validation of TCGA training set. (A) The OS of training set. (B) Dis-
tribution of DPRS and OS of training set. Time-dependent ROC curves (C) and calibration
curves (D) validation at 1, 2, and 3 years of prognostic value in TCGA cohort. (E–H) Construc-
tion and validation of GEO external validation set (GSE85916). (E) The OS of validation set.
(F) Distribution of DPRS and OS of validation set. Time-dependent ROC curves (G) and calibration
curves (H) validation at 1, 2, and 3 years of prognostic value in GEO cohort.
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2.5. Correlation of DPRS Model with Tumor Mutation Burden (TMB) and Clinical Characteristics

Since high-risk patients showed significantly higher TMB in the training cohort
(Figure 7A), we performed a further stratified analysis for TMB. As expected, high-risk
patients with high TMB had the worst OS among all subtypes (Figure 7B,C). In patients
with high TMB, the DPRS showed the capability to efficiently identify patients with a better
survival benefit. We further investigated whether the DPRS had similar or better predictive
validity to other clinical factors (Figure 7D,E). A nomogram (Figure 7F) was developed to
predict the OS of patients including three independent prognostic factors (site, examined
lymph nodes and risk scores). AUCs of the nomogram were 0.775, 0.851 and 0.721 for 1-, 2-
and 3-year OS, respectively (Figure 7G). The calibration curve showed that mortality can
be estimated accurately by the nomogram (Figure 7H). These results suggested that the
DPRS model can be used both as an independent prognostic factor and in combination
with clinical indicators.
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Figure 7. Correlation of risk score with TMB and clinical characteristics (A) Comparison of TMB
between two DDR subtypes. (B) The OS of patients in the high- and low-risk groups. (C) The OS
of patients in the risk groups combined with the TMB groups. (D) Univariate Cox analysis and
(E) multivariate Cox analysis of clinical characteristics. (F) Nomogram predicting OS for PAAD
patients. Time-dependent ROC curves (G) and calibration curves (H) validation at 1, 2, and 3 years of
prognostic value in nomogram. *** represents p < 0.001.
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2.6. Role of the DPRS in Predicting Therapeutic Benefits

The expression levels of immune checkpoints in the two groups were compared, and
the CTLA4 and PDCD1 in the low-risk group were significantly up-regulated (Figure 8A,B).
Following this, we predicted the sensitivity of poly-ADP-ribose polymerase (PARP, Ola-
parib and Niraparib), ATR (Berzosertib and AZD6738) and CHK1 (MK8776) inhibitors
which are protein targets on the DDR pathway [11]. Patients with low-DPRS showed more
sensitivity (IC50) to these inhibitors (all p < 0.05) (Figure 8C). The above results indicated
that the DPRS might be of benefit in terms of efficiently predicting the current treatment
for PAAD.
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Figure 8. The boxplots and scatter plots of CTLA4 (A) and PDCD1 (B) in the low-and high-risk
groups. (C) Boxplots showing estimated IC50 values for Olaparib, Niraparib, Berzosertib, AZD6738
and MK8776 in the TCGA-PAAD dataset (D) The uniform manifold approximation and projection
(UMAP) plot demonstrates main cell types in PAAD. (E) The distribution of each type and DDR-based
score expression in PAAD. (F) DDR-based scores in different cells are various (p < 0.05). (G) Staining
scores of MET and ERAP2 were graded at four levels and two groups. Scale bar, 100 µm. (H) The OS
of patients in the high and low expression of MET or ERAP2.
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2.7. Heterogeneity of DDR-Based Signature among Cell Subtypes in PAAD

In order to further analyze the heterogeneity of DDR in a higher dimension, we ob-
tained a transcriptome map of 41,986 cells in primary PAAD tumors using single-cell RNA-
seq (scRNA-seq) analysis. We applied principal component analysis (PCA) and UMAP
analysis on variably expressed genes across all cells and identified 13 main clusters includ-
ing type1 ductal, type2 ductal, endothelial, endocrine, fibroblast, stellate, acinar, Ki67+ cell,
CD8+ T cell, CD4+ T cell, B cells, plasmocyte and macrophage (Figure 8D). The marker
genes for identifying cell types were demonstrated by dotplot in Supplementary Figure S1.
The results of single cell analysis showed that the expression of five genes were significantly
increased in some specific clusters, especially in type2 ductal (Figure 8E). The Kruskal–
Wallis (K-W) test also suggested that DPRS was significantly different among different cell
types (Figure 8F).

2.8. Validation of Risk Genes for PAAD

In our five-gene model, two genes (MET and ERAP2) were associated with poor
prognosis, and previous studies found that their expression was significantly elevated
in PAAD compared to adjacent tissues. Therefore, we detected the expression of these
two genes in a Chinese clinical cohort by immunohistochemistry (IHC, Figure 8G) and
analyzed the impact of their expression levels on prognosis. Basic information about the
cohort was presented in Supplementary Table S4. The results showed that patients with
high expression of MET or ERAP2 had an inferior prognosis (p < 0.05, Figure 8H).

3. Discussion

There are four major driving mutations in PAAD, and unfortunately, there is no
clinically applicable targeted therapy for these four genes [12]. In addition, there are
mutated genes with low mutation frequency in other different pathways, such as the
DDR genes, which contribute to tumor heterogeneity and individual differences between
patients [13]. However, the mechanisms by which DDR genes promote tumorigenesis
and therapeutic response were still not fully understood in PAAD. In this study, patients
with PAAD were clustered into two subtypes based on the DDR genes and the differences
between the two subtypes were discovered. A DDR- and immune-based risk-scoring model,
DPRS, was constructed. The responses of different risk groups to possible therapeutic
targets were further discussed.

Through a comprehensive analysis in this study, the genomic changes were signif-
icant between the two subtypes. KRAS and SMAD4 mutations were more common in
DDR-subtype1, while TP53 and CDKN2A mutations were more common in patients with
DDR-subtype2, who had poor prognosis. This was similar to an earlier classification of four
subtypes; the ‘squamous’ subtype of pancreatic cancer was significantly higher frequency
of TP53 mutations than the other subtypes and had inferior prognosis [3]. G1 regulates
DNA damage repair as a cell cycle checkpoint, and loss of G1 checkpoint control is common
in cancer through TP53, CDKN2A and ATM mutations [14]. SMAD4 is a central regulator
of the transforming growth factor-β (TGF-β) signaling pathway, which plays an important
role in tumor development by inducing angiogenesis and immunosuppression [15]. We
also described the discrepancy of TME between two DDR subtypes; Tregs and activated
NK cells were increased in DDR-subtype1. NK cells are cytotoxic lymphocytes of the innate
immune system that are capable of killing cancerous cells [16]. Surprisingly, there were
fewer Tregs in DDR-subtype2 than in subtype1, which was in line with a previous study
that Treg depletion failed to relieve immunosuppression and led to accelerated tumor
progression [17]. The DDR subtypes have different immune characteristics which indicated
different immunotherapy responses between DDR subtypes. In general, DDR provides a
new way to understand the regulatory mechanism of a tumor and its immune microenvi-
ronment. GSEA analysis further showed that our clustering strategy was feasible. The most
abundant pathways focused on DDR- and immune-related signals, which suggested that
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the effect of different DDR subtypes on the OS of PAAD might be related to the activation
of immune pathways.

To facilitate application, five DDR- and immune-based genes were finally selected
and DPRS was subsequently constructed. Studies have consistently shown that MET
overexpression is a negative prognostic indicator in a variety of malignancies, and activation
of the HGF-MET axis was associated with the drug resistance of tumor cells [18–20]. In this
study, MET was significantly negatively correlated with CD8+ T cells, CD4+ T memory
activated cells, plasma cells and naïve B cells, respectively. Previous studies have shown
that MET was significantly associated with the prognosis of immune “hot” and “cold”
pancreatic cancer and the combined application of MET inhibition and PD-L1 blockade
showed a significant therapeutic efficacy [21]. In our model, ERAP2 was another poor
prognostic factor in addition to MET. ERAP2 might be a potential target for recoding
epigenetic factors and enhancing the immunogenicity of malignant cells to develop an
anticancer immune response. It has been furthermore shown to regulate endothelial cell
cycle progression (G1/S conversion) by stimulating cyclin-dependent kinase (CDK)4/6
through VEGF [22], which also suggested that there was crosstalk between DDR and
immune pathways.

In order to explore the underlying mechanism causing different OS between the
high- and low-risk groups, three aspects including TMB, immune checkpoint and drug
sensitivity were discussed. The real-world genomic characteristics of large-scale patients
with pancreatic cancer showed that patients with somatic DDR gene mutations had higher
TMB levels [23]. In this study, the DPRS model has the ability to distinguish high TMB
and low TMB. In addition, our risk subgroups can be combined with TMB to significantly
differentiate the OS of patients. Cancer immunotherapy is gaining momentum following
the recent success of antibodies targeting checkpoint molecules CTLA-4 and PD-1 [24].
However, only a subset of patients responded to immune checkpoint blockade, especially
in PAAD [25]. The loss of DNA repair may lead to an increased TMB and neoantigen
burden that affects the response to immunotherapy [26]. Studies have shown that the
expression of immune checkpoints can predict the efficacy of immunotherapy [27]. In this
study, higher levels of immune checkpoint gene expression were observed in the low-risk
group than that in the high-risk group, which suggested that the DPRS has the potential
to guide immunotherapy. Furthermore, DDR dysfunction-related gene mutations could
render PAAD susceptible to therapeutic interventions that increase the DNA damage load
beyond tolerable thresholds such as PARP inhibitor-induced synthetic lethality [28], and
preclinical trial results and data from ongoing clinical trials suggested a synergistic effect
between PARP inhibitors and ICIs in solid tumors [29]. In this study, there were significant
differences between the two risk groups in predicting sensitivity to PARP, ATR and CHK1
inhibitors. In addition, the single-cell data further suggested the heterogeneity of the
DDR-based signature in different cell types. The score in type2 ductal cell was significantly
increased, which was consistent with the results reported by the previous study that the
type2 ductal cell was a subtype with more malignant features than type1 ductal cell [30].

There are limitations in our study. First, because this was a retrospective study, there
was a lack of randomized trials of PAAD patients receiving immunotherapy and targeted
therapy to verify the predictive performance of the model for treatment response. Second,
our study focused on multi-cohort sequencing and clinicopathological data. Future in vivo
and in vitro mechanism exploration may provide more information and validation for DDR
subtype changes in PAAD and precision therapy.

4. Materials and Methods
4.1. Data Availability and Preprocessing

The messenger RNA (mRNA) expression matrix, harmonized to fragments per kilo-
base million (FPKM), and the related clinical information from patients with PAAD were ex-
tracted from the TCGA (https://portal.gdc.cancer.gov/projects/TCGA-PAAD/, accessed
on 30 September 2021) database. We then merged the FPKM data for each patient into a

https://portal.gdc.cancer.gov/projects/TCGA-PAAD/
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matrix and converted the patient ID with the metadata file. The gene expression matrix
used for downstream analysis is presented in Supplementary Table S5 and related clinical
data are provided in Supplementary Table S6. The mutation data of the included PDAC
samples were downloaded from TCGA in the format of varscan2. The clinical data we
downloaded contained 185 cases. Firstly, we removed 8 cases which histologically belong
to “Neuroendocrine” and 1 “Discrepancy” to get 176 cases, and we then interleaved them
with 178 cases with RNA-seq data (4 adjacent normal pancreas tissues were eliminated
in 182 cases with expression data) to get 168 selected cases. The information of the final
168 patients we used is provided in Supplementary Table S7. For further verification, the
clinical follow-up and gene chip datasets were obtained from the Gene Expression Om-
nibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, accessed on 10 March 2022) database
(GSE85916, n = 79). The raw expression matrix for single-cell transcriptome analysis and
clinical characteristics of PAAD patients were obtained from CRA001160 in the Genome
Sequence Archive (GSA, https://ngdc.cncb.ac.cn/gsa/browse/CRA001160, accessed on
1 March 2021) database.

4.2. DDR Genes-Based Subtyping

A total of 276 DDR genes were acquired from previous work based on MSigDB v5.0
and the knowledge-based curation of DDR pathways [9,31]. We performed unsupervised
clustering with the transcriptomic profile of 276 DDR genes to identify subgroups of the
TCGA cohort using the ‘ConsensusClusterPlus’ R package [32]. The following details were
set for subgrouping: number of repetitions = 1000 bootstraps; pItem = 0.8 (resampling
80% of any sample); maxK = 7 (k-means clustering with up to 7 clusters). The ‘Nbclust’
R package [33] was further used to validate the optimal number of clusters for k-means
clustering. The gene expression difference of DDR gene set between the two subtypes was
demonstrated by R package ‘pheatmap’. The Kaplan–Meier (K-M) method with a log-rank
test was performed to compare OS differences between the subgroups.

4.3. Characteristics for the DDR Subtypes

The mutation data of TCGA cohort were analyzed using the R package ‘maftools’. The
waterfall plots were used to depict the mutation landscape between the two DDR subtypes.
Based on RNA-seq expression matrix of TCGA cohort, the CIBERSORT algorithm was
applied in analyzing the differences of immunocyte infiltration status between the two
DDR subtypes with regard to 22 immunocyte subunits and 24 HLA genes. The immune
profile differences between subtypes were then estimated by the Wilcoxon test.

4.4. Identification of DEGs between Different DDR Subtypes

The DEGs of DDR subtypes were identified by comparing gene transcription profiles of pa-
tients from the TCGA-PAAD database with the Wilcoxon rank-sum test, (|Fold Change| > 1.5,
FDR < 0.05). The difference of DEGs after homogenization by setting ‘scale = row’ when
using ‘pheatmap’ between the two subtypes was demonstrated by heatmap. We compared
transcriptomic alterations between the DDR subtype1 and the DDR subtype2 by using GSEA.
The hallmark gene sets were downloaded from http://www.gsea-msigdb.org/gsea/msigdb,
(accessed on 9 March 2022). The GSEA analysis were performed based on the ‘ClusterProfiler’
R package.

4.5. Construction and Validation of Prognostic Signature Based on DDR and Immune Genes

In order to ensure the universality of the genes selected by us in different cohorts, we
first performed log2(FPKM + 1) on the gene expression of TCGA and GEO cohorts, and then
took their intersectant genes. Finally, the batch effect was removed by the ‘Combat’ function
of the ‘sva’ R package and the gene expression matrices of the training and validation
cohorts were output for subsequent analysis. The DEGs of DDR subtypes and immune
hallmark genes (n = 2483) which were extracted from the immunology Database and
Analysis Portal (ImmPort, https://www.immport.org/, accessed on 9 March 2022) were

https://www.ncbi.nlm.nih.gov/geo/
https://ngdc.cncb.ac.cn/gsa/browse/CRA001160
http://www.gsea-msigdb.org/gsea/msigdb
https://www.immport.org/
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intersected. The intersectant genes were further analyzed by univariate Cox regression,
and those with p value < 0.05 were considered as prognostic genes in the training cohort.
These prognostic genes were then processed with the LASSO regression in order to avoid
over-fitting and to delete those tightly correlated genes. Tenfold cross-validation was
employed to select the minimal penalty term (λ). Following this, we established a signature
for the PAAD patients. The risk score was established by the expression level of each gene
multiplied by its corresponding regression coefficients derived from LASSO regression
analysis of each gene, using the following formula:

riskscore = ∑ Exp(mRNAi)× Coe f (mRNAi)

where mRNAi is the i-th selected gene, and Coef is its regression coefficient. The risk scores
were arranged in a sequence from low to high, and we took the median value to divide
them into a high-risk group or low-risk group. The relationship between risk score model
and previously constructed DDR subtypes was analyzed using the R package ‘pheatmap’.
The K–M survival analysis was implemented to compare the OS of the two groups. The
time-dependent receiver operating characteristic (ROC) analysis at 1, 2, and 3 years of
prognostic value was used to assess the discrimination of the risk score in predicting the
OS of PAAD using the R package ‘survivalROC’. A calibration curve was used to assess
the agreement of predicted and observed values. External validation was conducted in the
GSE85916 cohort.

4.6. Correlations among Risk Score, Molecular and Clinical Characteristics

The differences of TMB between low- and high-risk groups were estimated. The K-M
method with a log-rank test was performed to compare OS differences between the groups.
Uni- and multivariate Cox regressions were used to verify the prognostic role of the risk
score and select clinical factors. A nomogram was then established using the R package
‘rms’ based on risk score and clinical factors with prognostic value (site and number of
resected lymph node). The predictive effect of the nomogram was validated by ROC and
calibration curve.

4.7. Prediction of Therapeutic Benefits in Patients with Distinct DPRS

The different expression of immune checkpoint genes between low- and high-risk
groups were estimated. Using the ‘calcPhenotype’ function based on Genomics of Drug
Sensitivity in Cancer (GDSC) database (www.cancerrxgene.org, accessed on 23 March 2022)
in the “oncoPredict” R package, we entered the TCGA-PAAD cohort gene expression
profiles of the two risk groups to predict the half-maximal inhibitory concentration (IC50)
values of compounds or inhibitors [34]. The differences of IC50 between groups were
estimated by the Wilcoxon test.

4.8. Single-Cell Analysis for DDR Heterogeneity Estimation

The scRNA-seq profiles were generated from 24 PAAD tumor samples, and their
clinical information and metadata were included in Supplementary Tables S8 and S9. For
analysis of raw data (fastq) downloaded from GSA platform, the Cell Ranger Single-Cell
toolkit (version 4.0.0) was used for alignment and barcode processing. The obtained
filtered_feature_bc_matrix was used for subsequent analyses. For each sample, the ‘Create-
SeuratObject’ function in ‘Seurat’ was used for quality control; we set cutoff min.cells to
3 and min.feature to 250. High-quality cells with a threshold of less than 20% mitochondrial
gene expression were included in downstream analysis. Subsequently, all 24 samples were
integrated according to sample ID using ‘merge’ function in R. We then normalized the
data using the logarithmic transformation of the ‘NormalizeData’ function of ‘Seurat’. After
normalization, 3000 highly variable genes were detected using the ‘FindVariableFeatures’
function in ‘Seurat’. PCA was used to reduce the noise of the variable gene matrix, and the
first 50 components were selected for downstream analysis. We then applied ‘Harmony’
to minimize the batch impact of the individual. After initial quality control, we acquired

www.cancerrxgene.org
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single-cell transcriptomes in a total of 41,986 cells. The UMAP was generated by non-linear
dimension reduction for visualization [35]. Using the ‘FindAllMarkers’ function of ‘Seurat’,
marker genes for identifying cell types were obtained and demonstrated with dotplot.
To explore our DDR-based signature heterogeneity in different cell types, the score of
DDR-based signature in each cell was calculated and compared among different cell types.
The ‘AddMouduleScore’ function was used to score gene sets, and the resulting score was
the average expression of the calculated genes in each cell.

4.9. IHC

The tissue microarray for PAAD was boiled in citrate buffer (pH6.0) for 10 min for
antigen repair and the IHC staining of MET (CST, #8198T, 1:300 dilution) and ERAP2
(FineTest, #FNab02826, 1:400 dilution) was performed based on the manufacturer’s protocol.
Staining scores were graded at four levels by two independent experienced pathologists:
negative (0), weak (1), neutral (2) and strong (3). All tissues were then divided into high
(score ≤ 1) and low (score ≥ 2) groups.

4.10. Statistical Methods

Comparisons between two groups or more than two groups were conducted through
the Wilcoxon test or K-W test, respectively. The chi-square test was used for analyzing
the correlations between categorical variables. The correlation coefficient was calculated
through Spearman analysis. All statistical analyses were performed using the R program-
ming language (Version 4.1.0, R Core Team (2021). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/). A difference of p < 0.05 indicated statistical significance
unless specified otherwise.

5. Conclusions

Strategies for DDR subtype in PAAD and the novel risk-scoring model based on DDR
and immune genes were constructed. This study provided information for the clinical
management and decision making of patients with DDR heterogeneity. Our DDR-subtyping
characterization contributed to a deeper understanding of the mechanisms associated with
immunosuppression and poor prognosis in PAAD, and may provide new insights into
the development of more effective biomarkers to predict therapeutic response in patients
with PAAD.
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