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Discrete regulatory modules instruct hematopoietic
lineage commitment and differentiation
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Lineage commitment and differentiation is driven by the concerted action of master tran-
scriptional regulators at their target chromatin sites. Multiple efforts have characterized the
key transcription factors (TFs) that determine the various hematopoietic lineages. However,
the temporal interactions between individual TFs and their chromatin targets during differ-
entiation and how these interactions dictate lineage commitment remains poorly understood.
Here we perform dense, daily, temporal profiling of chromatin accessibility (DNase I-seq) and
gene expression changes (total RNA-seq) along ex vivo human erythropoiesis to compre-
hensively define developmentally regulated DNase | hypersensitive sites (DHSs) and tran-
scripts. We link both distal DHSs to their target gene promoters and individual TFs to their
target DHSs, revealing that the regulatory landscape is organized in distinct sequential reg-
ulatory modules that regulate lineage restriction and maturation. Finally, direct comparison of
transcriptional dynamics (bulk and single-cell) and lineage potential between erythropoiesis
and megakaryopoiesis uncovers differential fate commitment dynamics between the two
lineages as they exit the stem and progenitor stage. Collectively, these data provide insights
into the temporally regulated synergy of the cis- and the trans-regulatory components
underlying hematopoietic lineage commitment and differentiation.
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he temporal activation of stage-specific regulatory DNA

instructs lineage specific gene expression programs that

underpin cellular fate and potential. The establishment and
maintenance of regulatory DNA is mediated by the combinatorial
engagement of sequence-specific transcription factors (TFs) that
bind in the place of a canonical nucleosome. Over the course of
cellular differentiation programmed shifts in the global tran-
scription factor milieu drive extensive re-organization of
chromatin!2, where silencing of regulatory DNA associated with
alternate lineage and the de novo activation of lineage-restricted
elements result in the narrowing of the epigenetic and functional
landscape?. However, it is unclear how and when regulatory DNA
is dynamically activated and silenced during cell state transitions
to establish lineage restricted gene expression programs and how
these epigenetic changes relate to developmental potential.

Hematopoiesis is a prototypical system to study how geneti-
cally and epigenetically encoded programs are established during
cellular differentiation*-%. Conventionally, hematopoiesis is
depicted as a discrete hierarchical process where a multipotent
hematopoietic stem and progenitor cell (HSPC) traverses a
sequence of bifurcating decisions, mediated by the expression of
lineage-specific TFs, with each decision resulting in an increas-
ingly restricted fate potential. Historically, the characterization of
the gene regulatory programs involved in the transition from
HSPCs to terminal fates has relied on the identification of dif-
ferential transcriptional programs from isolated discrete popula-
tions using defined cell surface markers’~10, While this approach
has led to the identification of master regulatory transcription
factors!®!! that define many of the major hematopoietic cell
lineages and has enabled a systematic mapping of their steady-
state regulatory landscapes®12, interrogation of discretely defined
populations cannot elucidate the dynamic regulatory events that
mark cell-state transitions.

Recently, single-cell chromatin and transcriptional profiling
assays have attempted to resolve the spatio-temporal cis- and
trans- dynamics in different stages of hematopoiesis!3~16, These
studies have largely relied on the analysis of either bulk or
immunophenotypically isolated populations of steady-state per-
ipheral blood or bone marrow derived cells, whereby hierarchical
relationships and developmental trajectories between cell states
are predicted computationally. While such experimental
approaches have aided in defining major subpopulations of
hematopoietic cells and their respective epigenetic and tran-
scriptional landscapes, definition of developmental trajectories
within individual lineages from population snapshots is challen-
ging due to the limited sensitivity and the resulting technical and
analytical artifacts associated with single-cell genomic assays!”-18.
Additionally, because developmental trajectories are predicted in
silico, direct association of functional changes (i.e., lineage
potential) to intermediate cellular states is not possible!®.

In order to investigate the dynamics of regulatory and functional
events during differentiation, we use human erythropoiesis as a
proxy for hematopoietic development. The transition from HSPCs
to terminally differentiated enucleated red blood cells involves a
series of morphologically, functionally, and phenotypically distin-
guishable states. Multiple efforts relying on the isolation of these
states have exhaustively characterized key transcriptional
regulators?®?l  and  chromatin  elements  implicated in
erythropoiesis®?2. However, a general understanding of the tem-
poral interplay between individual cis- and trans- elements and how
these establish stage-specific transcriptional programs and lineage
commitment during hematopoiesis remains rudimentary. Further-
more, because erythrocytes share their developmental origins with
other myeloid lineages (granulocytic/monocytic and mega-
karyocytic), erythropoiesis represents an ideal system to study how
lineage choice is genetically and epigenetically encoded.

Here, we capitalize on the ex vivo human differentiation
scheme where dense unbiased sampling of the populations cap-
tures the dynamics of chromatin accessibility and gene expression
during differentiation with a completely defined developmental
trajectory. DNase I-seq and gene expression profiling (bulk and
single cell) time-course during erythropoiesis coupled with line-
age potential assays and morphological characterization, enabled
the assignment of distal elements (alone or in combination) to
target genes and individual TFs to their target DHSs which col-
lectively comprise discrete regulatory modules associated with
lineage potential. Comparing the activity patterns of the TF
regulatory modules in the erythroid lineage to the closely related
megakaryocytic lineage, provides insights into how these modules
instruct lineage commitment. Collectively, our findings provide
key insights into the organization of the functional epigenetic
landscape during hematopoietic differentiation and its relation to
lineage-potential.

Results

A temporal atlas of chromatin and transcriptional dynamics.
Human erythropoiesis was induced ex vivo for 12 days using an
established differentiation protocol?® that faithfully recapitulates
the major features of in vivo erythropoiesis. Starting from human
adult-derived mobilized peripheral blood CD34%t-enriched
HSPCs from 3 healthy donors we cultured the cells in defined
media for 12 days (Fig. 1a and Methods). Characteristic features
of developing erythroblast cells were confirmed by immunophe-
notyping using canonical cell-surface markers of early (CD117,
C-Kit) and late (CD235a, Glycophorin A) erythropoiesis as well
as morphologically by hematoxylin-eosin staining of cell smears
(Supplementary Fig. 1).

To densely map both chromatin accessibility and transcrip-
tional dynamics during the transition from HSPCs to committed
erythroblasts, we subsampled a single continuous culture each
day (12 days) and performed DNase I-seq analysis and total
RNA-seq (Fig. 1a). Biological replicates from CD34+ HSPCs from
3 donors were highly reproducible for both chromatin accessi-
bility and gene expression profiles where the majority of the
observed variability was accounted for by developmental
trajectory (i.e., sampling days) (Fig. 1b, ¢ and Supplementary
Fig. 2a), as biological replicates were highly correlated (Supple-
mentary Fig. 2b, ¢). For many individual DHSs and genes, we
observed quantitative changes in chromatin accessibility and
expression over the course of differentiation highlighted by
quantitative trajectories of opening or closing (Fig. 1d, e).
Notably, accessibility changes were mostly confined to compact
regions of the genome (~200 bp average DHS width). In many
cases, we observed both opening and closing events within close
proximity (Fig. 1d), indicating focal regulation?* of chromatin
structure in contrast to previous reports that chromatin changes
during differentiation occur over large domains!2°.

To systematically identify developmentally responsive cis-
elements, we leveraged the observed continuity of DHS signal
over adjacent days (Fig. 1d) and modeled DNase I cleavage density
against differentiation time-points (Methods). We determined
significance by comparing our full model to a reduced model
(intercept-only; not accounting for developmental time) and
performing a likelihood ratio test (Methods). Of the total 79,085
DHSs accessible in 2 or more samples/replicates, we conservatively
identified 11,805 (14.9%) significantly changing DHSs (adjusted
p<107> and fold-change >2), nearly evenly grouped between
activated and silenced (45% and 55%, respectively) (Supplemen-
tary Data 1). A similar analytical approach applied to the RNA
expression data identified 5769 developmentally regulated genes
(adjusted p < 10~ and fold-change >2), of which 62% upregulated
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Fig. 1 Comprehensive identification of regulatory landscape developmental dynamics. a Dense DNase I-seq and RNA-seq time course with daily
sampling during the 12-day ex vivo erythroid differentiation induced from CD34+ HSPCs. b PCA analysis using all detected DHSs (79,085 Hotspots 5%
FDR) across all samples (12 time points, 3 donors). The arrow denotes the differentiation trajectory from day O to day 12. ¢ PCA analysis using all 24,849
detected genes across all samples (13 time points, 3 donors). The arrow denotes the differentiation trajectory from day O to day 12. d Chromatin
accessibility tracks for each day of differentiation with DNase Hypersensitive Sites (DHSs) harbored around the TFRC locus. e Identification of significantly
changing DHS and genes with robust linear regression analysis. Scatterplots show TFRC expression and DNase | density for two upstream DHS. Dots
represent normalized values for each of the 3 donors. Dashed line represents the fitted regression spline.

and 38% downregulated over the course of differentiation
(Supplementary Data 2). Collectively, these data define a high-
resolution and quantitative map of chromatin and gene expression
dynamics during erythroid differentiation.

Stage-specific cis- and trans- regulatory compartments. PCA
indicated that days 5-6 were associated with a critical develop-
mental inflection point during ex vivo differentiation (Fig. 1b, c).
We therefore sought to characterize the relationship between
temporal chromatin and gene expression dynamics with regards
to the observed immunophenotypic and morphological changes
present in the population of differentiating cells. We performed
unsupervised clustering (K-means; k =5) on dynamically chan-
ging DHSs and developmentally responsive transcripts (Fig. 2a,
b). This analysis revealed a stark partitioning of activated and
silenced genes and DHSs into non-overlapping sets that closely
paralleled canonical developmental features of erythropoiesis.
Particularly, DHSs rapidly silenced within the first days of dif-
ferentiation (clusters E1 and E2) were found to preferentially
harbor binding sequences utilized by the known HSPC regulators
such as (HOXA9%, RUNX?’, and ERG?%) (Supplementary
Fig. 3). Similarly, immediately downregulated transcripts upon
induction of differentiation (cluster G1) include these transcrip-
tion factors as well as structural genes characteristic of CD34 ™"
HSPCs (Fig. 2b). Consistent with PCA (Fig. 1b, ¢), a rapid and
marked turnover of chromatin and gene expression landscape is

observed between days 5-7 where an early erythroid signature
appears in both activated DHSs and gene expression, marked by
the upregulation of GATAI, KLF1, PPARA, and TFRC (cluster
G4). Markers of mature erythropoiesis emerge later in the dif-
ferentiation (after day 8; cluster G5) with the upregulation of
hemoglobins, glycophorin A (GYPA) and ALAS2 (Fig. 2b).
Beyond the temporal partitioning of developmentally regulated
DHS and transcripts we observed topological segregation of co-
regulated elements. Mapping changing DHS and genes to TADs
called from CD34+ HSPCs?? (Supplementary Data 3) and day 11
ex vivo differentiated erythroid progenitors3® (Supplementary
Data 4) Hi-C data revealed enrichment of individual TADs for
stage-specific elements (Supplementary Fig. 3). Additionally, this
partitioning appears more contrasted in late erythroid TADs
compared to CD34T, suggesting the establishment of a defined
erythroid regulatory landscape.

In addition to canonical activation and downregulation
patterns observed, we found a subset of genes exhibiting
reproducible transient upregulation (clusters G2 and G3)
occurring prior to establishment of the erythroid signature
(Fig. 2b). Transiently upregulated genes are found enriched in
transcripts representing myeloid lineages including several
myeloid markers (e.g, MPO, KIT) as well as the myeloid-
specific transcription factor CEBPA. Compatible with gene
expression, late closing DHSs in cluster E2 and E3 were enriched
in CEBPA recognition sequences (Supplementary Fig. 3, Supple-
mentary Data 5). Moreover, the majority (~80%) of DHSs in
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Fig. 2 Temporal compartmentalization of the cis- and trans- regulatory landscape during erythropoiesis. a K-means clustering of 11,805 changing DHS
resulted in 5 clusters (E1-E5) with sequential activity profiles for each cluster. Values are z-score of per day average normalized DHS counts from 3 donors.
b K-means clustering of 5792 developmentally regulated genes resulted in 5 clusters (G1-G5). Values are z-score of per day average normalized FPKM
from 3 donors. ¢ A matrix showing the enrichment score (log2-ratio observed over expected) for any given DHS cluster, around each developmentally
regulated DHS (=50 kb from TSS). Highlighted in red is cluster G3 which is enriched for both late downregulated DHS of cluster E3 and early upregulated
from cluster E4. Asterisks denote X2 test p-value < 0.05. d Correlation density plot between developmental genes and developmental DHS + 250 kb around
the gene promoter. Gray shaded area highlights enrichment of correlations within £50 kb around the gene promoter. @ DNase | accessibility track of the
CDHT locus during erythroid differentiation, highlighting the accessibility of 3 nearby DHS correlated to CDHT expression. f DNase | accessibility track of the
CDHT locus in HUDEP-2 cells depicting the genetic knockout of the CDHT promoter and two upstream DHS (-12, and -5) (above) along with the resulted

ablation in CDH1 protein expression as assessed by flow cytometry (below).

cluster E2 and E3 were found overlapping with DHSs active in
other myeloid cell types (macrophages and monocytes) (Supple-
mentary Data 5), denoting a transient emergence of myeloid-
related regulatory program prior to erythroid commitment.

Taken together these data describe the sequence of devel-
opmentally related changes in both the cis- and trans- environ-
ment as the regulatory landscape of the erythroid development
traverses from a lineage-permissive program to a defined
erythroid-specific signature. Expectedly, activated DHSs (clusters
E4-E5) were found to preferentially harbor red blood cell-related
GWAS variants (1.36-fold enrichment over all detected DHSs),
highlighting their functional role in regulating erythropoiesis
(Supplementary Fig. 6).

Connecting individual DHSs to genes. The overall dynamics of
chromatin accessibility for individual DHSs closely mirrored that

of the expression of nearby genes. To formulate this, we per-
formed an enrichment test to investigate the DHS landscape
around a gene promoter. Interestingly, we found that devel-
opmentally regulated genes are enriched for DHSs with a similar
developmental profile (Fig. 2c). For example, early closing genes
(cluster G1) are significantly enriched for cluster E1 DHSs.
Noteworthy, transient genes of cluster G3 are harboring DHSs
belonging to both late closing DHS cluster E3 and early activated
erythroid DHS cluster E4, suggesting that the transient nature of
these genes is a result of the combinatorial activity of a closing
and an opening chromatin landscape.

Because of fine-resolution afforded by our dense sampling
approach, we sought to quantify the extent of genome-wide
coactivation patterns that could potentially comprise physical
regulatory links between DHSs and their target genes. To this aim we
correlated the temporal expression patterns of a gene to nearby
(1 Mb from TSS) developmentally regulated DHSs, given that the
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majority of transcriptional enhancers are located within this range
from the target promoter3!. This analysis identified 41,625 connec-
tions (absolute Pearson correlation coefficient r > 0.7), with the vast
majority of gene-DHS links occurring within 50 kilobases of the
transcription start site (Fig. 2d). Overall, we connected 80.4% (4640)
of the developmentally regulated genes with >1 DHS and 86.8%
(10,247) of changing DHSs were linked to =1 developmentally
regulated gene (Supplementary Data 6). While on average 93.6 DHSs
reside within +1 Mb of a given gene, only 9 DHSs (+8 SD) were
found to be linked with a changing gene. This allowed us to identify
cis-regulatory inputs at much higher resolution than typically
afforded by standard chromatin conformation-based methods3233.
For example, using previously published Hi-C data derived from
ex vivo cultured erythroid progenitors we were able to predict
chromatin loops only down to 70kb (Supplementary Fig. 7,
Supplementary Data 7). In order to functionally validate these
associations we performed genetic perturbation of gene-DHS links.

We focused on the cis-elements predicted to regulate the
expression of CDHI. CDHI is a cell surface marker with
expression restricted to erythropoiesis among the hematopoietic
populations* and known to be implicated in erythroid develop-
ment and maturation3>36. Specifically, we genetically disrupted
two DHSs (HS1 and HS2) highly correlated with CDHI
expression (r=0.939 and 0.976, respectively), situated upstream
(5kb and 12 kb, respectively) of the promoter of CDHI using
TALE-nucleases37-38 (Fig. 2e and Supplementary Fig. 8). Homo-
zygous deletion of these DHSs as well as the promoter in the
human-derived erythroid progenitor cell line HUDEP-2 where
these DHSs are also active, resulted in complete ablation of the
CDHI expression as determined by flow-cytometry (Fig. 2f).
These results suggest that both elements predicted by the
correlation analysis as transcriptional regulators of CDH1, indeed
drive the expression of the gene and their deletion confers effects
similar to the deletion of the gene promoter.

Overall, these findings suggest that the majority of changes in
transcription during development are regulated by a limited
number of cis-regulatory inputs, situated within close proximity
to the genes they regulate.

Sequential regulatory modules encode differentiation stages.
Clustering of dynamically changing DHSs revealed that chro-
matin activated at different stages of hematopoiesis display dif-
ferential enrichment for transcription factor recognition
sequences, indicating stage-specific regulation of cis-elements.
This, however, does not resolve the temporal interactions between
individual DHSs and individual trans-regulators and how this
relationship shapes the developmental response of a DHS. Given
the observed global correlated changes between the transcription
factor expression levels and the accessibility of the DHSs con-
taining their cognate recognition sequences (Fig. 3a) we sought to
quantify the contribution of individual TFs to the dynamic
changes in DNase I density at individual regulatory cis-elements.
We capitalized on our dense sampling approach and applied a
regression strategy where the activity of an individual regulatory
element (i.e., DNase I cleavage density) is modeled as a function
of the gene expression profiles of developmentally regulated TFs
with a compatible recognition sequence harbored within each
DHS (Fig. 3b and Methods). We controlled for weak and
ambiguous association of TFs recognizing degenerate motifs
using elastic-net regularization (Methods). We applied this
approach to all of the 11,805 dynamically changing DHSs,
identifying 11,734 (>99% of changing DHSs) with at least one
explanatory TF regulator (Methods) and 88 developmentally
regulated TFs associated with at least one DHS, where the
regression coefficients broadly correspond to the strength of

association of a TF with an individual DHS (Supplementary
Fig. 9). Overall, 5 TFs on average were positively associated with
each DHS, suggesting that a small subset of TFs regulate the
developmental activity of individual cis-elements. We then eval-
uated whether the regression results hold any predictive capacity
against the frequency of motifs for the same TFs. Using a naive
Bayes classification model (Methods) we tried to predict the
cluster each DHS belongs to by supplying either the occurrences
of individual TF motifs or the elastic-net regression coefficients
for each TF. We found that elastic-net regression coefficients
provide a 1.77-fold accuracy over TF motif counts (62% vs. 35%
accuracy rate) in predicting the DHS cluster (Supplementary
Fig. 10). This suggests that the developmental response of a DHS
is shaped by co-regulated transcription factors that occupy the
DHS rather than the absolute frequency of binding TFs as
determined by the TF recognition sequences harbored in a DHS.

We next asked to what extent the activity of DHSs with similar
temporal accessibility patterns are regulated by a coherent set of
TF regulators. We selected 52 TFs positively associated with at
least 200 DHSs and performed unsupervised hierarchical
clustering based on their regression coefficients computed for
each DHS (Fig. 3¢ and Methods). This analysis resolved the
temporal associations between transcription factors and their
target DHS into a sequence of five discrete and largely non-
overlapping regulatory modules, reflective of developmental
stages of erythropoiesis (Fig. 3d). Module 1 consists of known
HSPC transcriptional regulators (e.g., ERG?8, MEIS13%, MYCN40)
which are positively associated with early closing DHSs in clusters
El and E2. In modules 2 and 3, transcription factors associated
with commitment of hematopoietic progenitors to the different
myeloid lineages (e.g., CEBPA*!, MYB#2, FLI1%3, RUNXI%4)
interact with DHSs in clusters E2 and E3. Modules 4 and 5 define
the erythroid-specific regulatory landscape as known erythroid
regulators (e.g, GATA1%, KLF120, RXRA%, and FOXO03%7)
positively interact with activated DHSs in clusters E4 and E5.

Plotting the fraction of DHSs in each cluster positively associated
with each TF (Fig. 3d) highlights the major drivers of chromatin
accessibility in each developmental stage. Particularly, ERG appears
as a major regulator of the HPSC stage as it is positively associated
with ~25% of DHSs in clusters E1 and E2. Although ERG has been
long implicated in HSPC regulation, it is only recently its role as a
critical regulator of HSPC survival has been appreciated®S. Interest-
ingly, KLF12 also appears to share a significant proportion of the
early chromatin landscape, although its role in HSPC regulation is
not fully elucidated. Overexpression of the critical HSC regulator Evi-
1 in mice, resulted in maintenance of the quiescent phenotype of
murine HSCs along with the more than 12-fold increase in KIf12
expression®. In another experiment, sustained expression of Hif in
mice also resulted in enrichment of KIfI2 in more primitive
hematopoietic compartments®’, thus implicating KLF12 in the HSPC
regulation. Apart from the canonical erythroid transcription factors,
we identified MXI1 among the top regulators of the erythroid
chromatin landscape. Knockdown of Mxil in mice, blocks chromatin
condensation and impairs enucleation of mouse erythroblasts,
highlighting the role of MXI1 in erythroid maturation®!. Addition-
ally, we find CTCF to be positively associated with a large portion of
the erythroid-specific chromatin (~25% of DHSs in clusters E4 and
E5), while we find strong enrichment for DHS harboring CTCF
motifs in predicted chromatin loops from Hi-C data generated from
ex vivo cultured human erythroid progenitors (Supplementary
Fig. 11). These findings are consistent with the evidence highlighting
the role of CTCF in establishing the erythroid-specific chromatin
landscape®2°3.

Taken together, these findings illustrate the dynamic interaction of
the cis- and the trans- regulatory landscape during erythropoiesis and
their organization into well-defined and discrete regulatory modules
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Fig. 3 Systematic modeling of cis- and trans- element temporal interactions reveals discrete regulatory modules spanning erythropoiesis. a
Developmental responses of DHS accessibility and transcription factor expression levels were found to be correlated across the genome. b The density of a
given developmental DHS is modeled after the TF binding motif composition and the expression of the binding TFs using elastic-net regression. The model
returns a coefficient for each pair of DHS and binding TF which denotes how strongly (positively or negatively) the TF expression is associated with the
accessibility of the particular DHS. ¢ Hierarchical clustering of 52 highly connected TFs based on the cosine distances of the regression coefficient from
11,734 DHS reveals 5 clusters of developmentally regulated TFs. Transcription factors along with their positively associated DHS comprise a regulatory
module (modules 1-5). d The fraction of DHS per cluster positively associated with a TF identifies the major drivers of chromatin accessibility during

erythropoiesis.

of associated DHSs with their cognate transcription factors, reflecting
distinct stages of erythroid development.

Abrupt lineage restriction events mark erythropoiesis. The
organization of chromatin and transcription factors into defined
regulatory modules corresponding to distinct stages of ery-
thropoiesis indicates a functional relationship between lineage
potential and module activity. To gain insight into whether these
modules underpin lineage decision events we determined the
lineage potential of the erythroid cultures by daily sampling a
population of cells and assaying their multipotent and unipotent
capacity for different myeloid lineages (Fig. 4a and Supplemen-
tary Fig. 12a). Total number of colonies declined with the pro-
gress of differentiation resulting in an abrupt depletion of total
progenitors on day 6 of differentiation (Supplementary Fig. 12b).
After 4 days of exposure to erythroid media, the most primitive
and multipotent colonies (CFU-GEMM,; granulocytic, erythroid,
monocytic, megakaryocytic) were no longer detected (Fig. 4b).
Day 6 marked a second event of restriction of the fate potential as
all unilineage colonies were no longer detected in the cultures.
Specifically, frequency of erythroid progenitors (BFU-E) rapidly
declined from day 5 to day 6 (Fig. 4c). Similarly, granulocytic/
monocytic progenitors (CFU-GM) were depleted by day 6 of
erythroid differentiation (Supplementary Fig. 12c). Notably, none
of the changes in clonogenic capacity were associated with any
changes in the growth rate of the parental erythroid cultures,
which remained constant throughout the differentiation (Sup-
plementary Fig. 12d), suggestive of an independent mechanism
regulating this shift in progenitor population.

In addition to the above lineages, we specifically tested whether
cells during erythroid development maintain the capacity
to differentiate towards the megakaryocytes by transferring cells,
on a daily basis, from the primary erythroid culture to
megakaryopoiesis-inducing suspension cultures and tested for
their ability to give rise to CD41" megakaryocytic populations
(Supplementary Fig. 13a and Methods). Consistent with the
overall lineage restriction observed during colony-forming assays,
erythroid cultures completely lose megakaryocytic potential on
day 6 of the differentiation (Fig. 4c and Supplementary Fig. 13b).

The rapid changes observed in clonogenic capacity correspond
to the transitions between regulatory modules (Fig. 4d). Early
depletion of primitive multipotent CFU-GEMM progenitors is
concomitant with the transition from the HSPC-related modules
(modules 1 and 2), while the decline of unipotent progenitors of
all detectable myeloid lineages (granulocytic/monocytic, ery-
throid, megakaryocytic) coincides with the transition from a
program with a broader myeloid signature to erythroid specific
cis- and trans- landscape. Furthermore, because these rapid
lineage restriction events are not associated with other abrupt
changes in morphology or cell growth (Supplementary Fig. 13d),
these data suggest that the mechanism responsible for the exit
from the progenitor stage is decoupled from maturation progress.

A shared transcriptional program facilitates HSPC exit. The
silencing of the HPSC regulatory modules prior to lineage com-
mitment suggested that exit from the progenitor state is necessary
for erythroid commitment to proceed. We therefore asked whe-
ther this represents a canonical feature of hematopoietic
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development to any lineage. To investigate this, we focused on
megakaryocytic differentiation, a process that shares both close
common developmental origins®* and key TF regulators with
erythropoiesis®?.

We induced ex vivo megakaryocytic differentiation and
performed dense sampling of gene expression during develop-
ment (Fig. 5a and Methods). Developmentally regulated genes

Fig. 4 Lineage restriction events during erythropoiesis reflect the
sequence of regulatory programs. a Schematic diagram of lineage
potential assays during the first 7 days of ex vivo erythropoiesis. Cells were
sampled daily and transferred to lineage-permissive media. Multilineage
capacity was determined as frequency of CFU-GEMM progenitors.
Erythroid potential as frequency of BFU-Es and megakaryocytic potential as
frequency of CD417 cells. b Frequency of multipotent CFU-GEMM in
methylcellulose assay from cells sampled over the course of erythroid
differentiation. ¢ Frequency of unipotent erythroid progenitor colonies
(BFU-E) in methylcellulose assay (red line) and frequency of CD41t cells
after transplantation in secondary megakaryocytic media (blue line). d
Changes in lineage potential coincide with the transitions between the
regulatory modules identified earlier. Transition from modules 1 and 2 to
module 3 reflects the loss of multipotency occurring between days 3 and 4,
while transition from module 3 to erythroid modules 4 and 5 coincides with
the depletion of unipotent progenitors and entry to erythroid maturation
(days 5 to 6). Data represent mean values. Error bars denote +1 SE of the
mean from n =4 experiments. Asterisks denote statistically significant
difference in CFU-GEMM and BFU-E counts from day 1 (two-sided
Student's t test p-value <0.05). CFU-GEMM Colony Forming Unit -
Granulocytic, Erythroid, Macrophage, Megakaryocyte. BFU-E Burst Forming
Unit-Erythroid.

during megakaryopoiesis exhibit largely bipartite profiles similar
to those observed during erythropoiesis (Supplementary Fig. 14,
Supplementary Data 8). To determine whether the transcriptional
changes associated with exit from HSPC state during erythropoi-
esis are shared with megakaryopoiesis we examined the
expression profiles of erythroid developmentally regulated genes
during megakaryocytic differentiation. We observed highly
correlated global expression profiles for early silenced transcripts
(erythroid clusters G1 and G2) between the two lineages (median
Spearman’s p =0.76 and 0.62, respectively) (Fig. 5b), with the
exception of key regulators and canonical markers of megakar-
yopoiesis (MEIS1, FLII, PBX1, ITGA2B, etc.) (Fig. 5c). In
contrast, correlation for erythroid clusters G3-G5 was low
(median Spearman’s p <0.13).

Similar to erythropoiesis, we found that early downregulation
of HSPC-related gene signature is associated with abrupt
restriction of alternate lineage potential during megakaryopoiesis.
Specifically, we found that cells sampled beyond day 3 of
differentiation exhibit a reduction in both multipotent and
unipotent progenitors of the erythroid and granulocytic/mono-
cytic lineage (Fig. 5c and Supplementary Fig. 15). This
observation is in line with the fact that megakaryopoiesis does
not exhibit transient activation of myeloid gene program as exit
from HSPC is rapidly succeeded by a megakaryocyte-specific gene
signature, compatible with the recently revised hematopoietic tree
according to which megakaryocytes directly emerge from the
primitive HSPC compartments bypassing the common myeloid
progenitor>6-38,

Conclusively, these results indicate the existence of a shared
mechanism between erythropoiesis and megakaryopoiesis driven
by a common set of TFs which mediates the exit from HSPC state
signaling differential lineage potential response for erythropoiesis
and megakaryopoiesis.

Myeloid promiscuity precedes erythroid commitment. Geno-
mic and functional findings on population-level during ex vivo
erythropoiesis suggest that erythroid development transitions
through a state with permissive alternate lineage potential prior to
erythroid commitment whereas megakaryocytes appear to rapidly
commiit after exit from HSPC. As lineage decision events resolve
in individual progenitors, we sought to chart fate commitment
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Fig. 5 A shared transcriptional program drives the exit from HSPC state early in erythropoiesis and megakaryopoiesis. a Dense RNA-seq time course
during ex vivo megakaryopoiesis induced from CD34+ HSPCs. b Boxplot depicting the distribution of pairwise Pearson's r correlation values of gene
expression profiles between erythropoiesis and megakaryopoiesis across the erythroid gene clusters G1-G5. Boxplot lower and upper bounds correspond
to 25t and 75t percentile, respectively. Centre corresponds to median. Boxplot whiskers correspond to 1.5 x inter-quartile range excluding outliers. (G1
n=1086, G2 n=1544, G3 n=919, G4 n=1203, G5 n=1017 genes tested). ¢ Expression profiles during megakaryocytic development, ordered by their
correlation score to their erythroid counterparts from erythroid clusters G1 and G2. d Changes in clonogenic capacity observed during megakaryocytic
differentiation as determined by frequency of CFU-GEMM, CFU-GM, and BFU-E progenitors. Data are presented as mean values 1 SEM of n=4
experiments. CFU-GEMM Colony Forming Unit - Granulocytic, Erythroid, Macrophage, Megakaryocyte. CFU-GM Colony Forming Unit - Granulocyte-

Macrophage. BFU-E Burst Forming Unit-Erythroid.

kinetics and the differentiation trajectories of erythropoiesis and
megakaryopoiesis by jointly analyzing transcriptional dynamics
in single cells along the two lineages. To this end, we analyzed
transcriptional changes from more than 50,000 single cells sam-
pled from frequent intervals along both the ex vivo erythroid and
megakaryocytic differentiation (Fig. 6a). Overall, we found that
single-cell gene expression profiles to be highly concordant with
total RNAseq data as aggregated gene expression from single-cell
RNA-seq correlated very well with RNA-seq performed in bulk
cells (Supplementary Fig. 16).

Principal component analysis (PCA) using the top 2000
variable genes readily resolved the two primary axes of
differentiation. Trajectories from HSPC to terminally committed
lineages are resolved along PC2 while PC1 distinguishes the
erythroid and megakaryocytic terminal fates (Fig. 6b).

Furthermore, PCA highlights the lineage commitment timepoint
as cells sampled on day 4 and thereon, from either culture,
already exhibit distinct topologies on the PCA projection. In
order to infer rate of transcription and derive the direction of
differentiation, we capitalized on splicing kinetics (RNA velocity)
to derive latent pseudotime (Fig. 6¢). Overall, pseudotime
correlated well with actual sampling time (Pearson’s r = 0.725).
Cells were clustered using Leiden community detection
algorithm®® and based on their between affinities cell clusters
were collapsed to 7 distinct populations corresponding to discrete
developmental stages. Developmental pseudotime and transitions
between populations were inferred based on RNA velocity (Fig. 6d
and Supplemental Fig. 18a—c). Overall, we found the populations
to be highly homogeneous in terms of ex vivo culture sample
composition. Not unexpectedly, we observed higher sample
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admixture in populations corresponding to early time-points,
consistent with the notion that cells at this stage had yet to
establish lineage fate (Supplementary Fig. 18d).

Using lineage trajectories inferred from transcriptional transi-
tions between populations, we identified two major pathways
starting from a cluster with HSPC signature (HSPC cluster)
leading to terminal megakaryocytic and erythroid fates (Fig. 6c).
Transitions from HSPC cluster to lineage specific clusters
involves two clusters with progenitor gene signature (MPP1,
and MPP2) each of them stemming from the HSPC cluster.
MPP1 consists primarily of cells sampled from megakaryocytic
cultures while ~25% of the cells in the population are derived
from day 2 of the erythroid differentiation. MPP1 maintains a
broader early progenitor signature (Fig. 6e and Supplementary
Fig. 18e, f) and transitions to a population with early Mk

signature (Mk1) which eventually gives rise to mature mega-
karyocytic population (Mk2). MPP2 is composed almost
exclusively of early (day 2 and day 4) erythroid cells and appears
as a nodal cluster with affinities to both the early erythroid cluster
as well as the Mk primed MPP1. Importantly, MPP2 exhibits
gene expression signature characteristic of various myeloid
subtypes (Fig. 6e and Supplemental Fig. 18e, f) expressing critical
myeloid regulators alongside megakaryocytic and erythroid ones
(Supplementary Data 9). Stage-specific TF network reconstruc-
tion using TEF-DHS and DHS-gene assignments (Fig. 7a, b),
reveals that the myeloid signature is orchestrated by a core
network of critical myeloid regulators (SPI1/PU.1, CEBPA, and
FLI1), specific to MPP2 (Fig. 7c). This is compatible to single cell
TF protein dynamics during ex vivo erythropoiesis, demonstrat-
ing that multiple TFs of alternate hematopoietic lineages are
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active in early progenitors prior to emergence of CFU-e
populations®. Furthermore, early erythroid progenitors display
affinities with myeloid and basophilic lineages transiently
emerging in the culture. Here, in an attempt to identify the
origin of this myeloid population present in our experiments, we
performed FACS timecourse for the myeloid marker CD33
during both erythropoiesis and megakaryopoiesis. We find that
the CD33" population is a subset of CD34" HSPCs as >80% of
uncultured CD34™ are also positive for CD33. During erythroid
differentiation, we find that cells transiently undergo a state of
CD33%7/CD117", whereby day 6 the majority (~70%) has
transitioned to CD337/CD117% (Supplementary Fig. 19). In
contrast, expression patterns of CD33 and CD41 during ex vivo
megakaryopoiesis are mutually exclusive, confirming the
erythroid-specific origin of the myeloid population.

In order to compare our findings to steady-state hematopoiesis,
we analyzed previously published single-cell RNAseq data from
FACS fractionated BM-derived hematopoietic populations®l.
Trajectory inference on Force Atlas embedding using PAGA
and DPT pseudotime analysis revealed two major differentiation
pathways originating from a developmentally primitive popula-
tion with HSPC. One with defined erythroid signature, and one
exhibiting a myeloid gene expression profile (Supplementary
Fig. 20a). Although we were able to detect a few cells with
megakaryocytic signature concentrated close to HSPCs, their
population is very small and no distinction between primitive and
mature megakaryocytes could be made. Additionally, gene

expression patterns of megakaryocytic markers and TFs are not
well defined to infer differentiation trajectory (Supplementary
Fig. 20a). Upon determination of cell clusters (Supplementary
Fig. 20b) we detected a population of cells which expresses several
myeloid markers and particularly those of basophils (e.g., LMO4,
CLC), and appears to originate from two populations early on the
erythroid trajectory (Supplementary Fig. 20b). In order to match
the identified ex vivo populations to bone marrow steady states
we integrated the two datasets through a k-nearest neighbor
analysis (Supplementary Fig. 21). While HSPC and erythroid
states exhibited extensive overlap between the two datasets, the
ex vivo megakaryocytic populations displayed an ill-defined
pattern given the limited representation of Mks in the bone
marrow dataset. Interestingly, the MPP2 population exhibited
strong affinity with the basophil population (Louvain cluster 12)
as well as cells early along the erythroid and myeloid trajectories,
confirming the myeloid origin of this population. In order to
compare gene expression profiles along the erythroid trajectory
inferred from either ex vivo differentiated erythroid cells or BM
fractionated populations we correlated gene expression profiles
from 1000 top highly expressed genes in both datasets. This
revealed that ex vivo erythropoiesis recapitulates exceptionally
well the gene expression dynamics from native erythroid
populations with median Spearman’s p =0.81 (Supplementary
Fig. 22). These results further support our population-level
findings about the transient emergence of a population during
erythroid development that maintains myeloid capacity. The
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affinity between the basophilic lineage and the erythroid has been
previously described®-62 and it has been suggested that basophils
derive from erythro-myeloid progenitors®3.

Discussion

Here, we systematically link individual transcription factors and
their target cis-elements along ex vivo human erythropoiesis,
resolving how these elements organize temporally, encoding
lineage commitment and differentiation during hematopoiesis.
More recently, multiple efforts have extensively studied the
individual (cis- and trans-) regulatory components involved in
erythropoiesis?> as well as other diverse hematopoietic
lineages>%4-%7, The bulk of these efforts however base their
findings either on immunophenotypically defined hematopoietic
populations, or single-cell dissection of steady state hetero-
geneous sources, where developmental relationships between cells
within a heterogeneous steady-state population can only be
inferred!31>61.68 In this work we overcome the limitations
associated with immunophenotypic isolation of hematopoietic
populations®”®® which often fail to capture transient or rare
populations, while enrichment for specific populations is entirely
dependent on the immunophenotypic panel wused for
fractionation”’. By capitalizing on the continuity of the differ-
entiating populations during ex vivo erythropoiesis we finely map
chromatin accessibility and gene expression dynamics enabling
the direct and repeated measurement of the dynamic epigenetic
landscape along a defined lineage trajectory. In addition, a dense
sampling approach enables the unbiased detection of transient
events occurring over short intervals that would otherwise be
missed by sparse sampling methodologies.

Through integrative analysis of chromatin accessibility and
gene expression during erythropoiesis we draw thousands of links
between individual distal regulatory elements and their target
genes at much higher resolution than that afforded by other
methods. This approach revealed a sequence of discrete, non-
overlapping regulatory modules comprising of interacting tran-
scription factors and individual cis-regulatory elements, corre-
sponding to distinct stages of erythroid development. Strikingly,
the transition between the activity of these modules coincides
with a sequence of experimentally validated rapid lineage
restriction events. We found that the exit from the program
associated with the HSPC state occurred independently of lineage
outcome, as it was also identified during ex vivo megakaryopoi-
esis. Moreover, comparison of developmental transcriptomics of
single cells along erythropoiesis and megakaryopoiesis reveals
that exit from HSPC occurs over the same developmental interval
for both lineages, indicative of a mechanism independent of the
cytokine environment. This finding adds to previous reports that
activation of murine bone marrow HSCs with different lineage
cytokines induces a common repression mechanism of HSC
signature while activates genes implicated in differentiation in a
cytokine independent fashion”!.

Upon exit from the HSPC state we found the two lineages to
exhibit differential commitment kinetics. Erythroid differentia-
tion maintains a broader myeloid lineage capacity (Ery, G/M,
MK) prior to erythroid commitment as a result of a transient
upregulation of a regulatory program involving canonical mye-
loid transcription factors (FLI1, SPI1, C/EBPs, GATA2, etc.).
Network analysis in the progenitor stage prior to erythroid
commitment, demonstrates that FLI1 is a central TF with
extensive affinities to other transcriptional regulators, ultimately
gatekeeping the fate choice between the megakaryocytic and
erythroid lineage. There are several lines of evidence from single-
cell assays in both mouse and human hematopoiesis suggesting
that erythroid, megakaryocytic and basophilic lineages emerge

from a shared population!316:60.6472.73 " while mass cytometry
dynamics of lineage-specific transcription factors ascribe FLI1 the
role of “gatekeeper” between the erythroid and the mega-
karyocytic fate®. The findings presented here, however, demon-
strate that this lineage-permissive transcriptional program is
restricted only to erythropoiesis. This is compatible with previous
experimental evidence demonstrating the affinity of basophilic
lineage to the erythroid branch®l, specifically. Additionally,
results from transgenic mice lacking a set of the C/EBP family of
myeloid regulators that exhibit decreased erythroid output’4. In
contrast, transcriptional, functional and phenotypic evidence
from ex vivo megakaryopoiesis presented here, suggest rapid
megakaryocytic commitment upon HSPC exit. These results align
well with the growing evidence suggesting that megakaryocytic
commitment is occurring earlier compared to erythroid fate”>
and that megakaryocytic lineage arises directly from the primitive
hematopoietic compartments>/-70-78,

In order to reconcile our findings on lineage commitment from
bulk populations with transcriptional dynamics from individual
cells we compiled one of the most comprehensive analyses of
single-cell gene expression along a closely monitored develop-
mental system, so far. Furthermore, this dataset represents the
first, to our knowledge, single-cell description of gene expression
dynamics along the ex vivo megakaryocytic development from
purified HSPCs. Although different approaches have been sug-
gested to enrich for megakaryocyte and platelet biased progeni-
tors and dissection of the bipotent MEPs79-81 there is no
consensus purification scheme to isolate cells at different stages of
megakaryocytic development with the resolution available for
erythroid development®2:83. This is primarily due to the rarity of
Mk cells in the bone marrow®48> and the fragility of the mature
large endomitotic megakaryocytes. Here, however, we present an
unbiased global view of gene expression and lineage commitment
dynamics of megakaryocytic development based on equipropor-
tional sampling of populations along megakaryopoiesis.

Overlaying the information of sampling timepoint of each
population allowed us to match shifts in TF expression in single-
cells to the regulatory programs identified from our population-
level experiments. Strikingly, our single-cell based observations
recapitulate both our ex vivo population-based findings as well as
single-cell transcriptional dynamics from bone marrow fractio-
nated populations with remarkable fidelity. This suggests that
highly synchronized rapid shifts in gene expression levels of
lineage regulators across individual cells, occurring over short
intervals of developmental time, underpin the changes observed
in bulk populations. This contrasts the current sentiment hinging
on observations from single-cell analyses where variability in the
chromatin and transcriptional landscapes among steady-state
populations are interpreted as gradients of continuous regulatory
states!3-14:68,86

Here we present insights into the developmental regulatory
dynamics during hematopoiesis illuminating mechanisms of
lineage commitment, previously obscured by sampling biases and
limitations. Although we draw parallels with steady-state in vivo
derived data, we appreciate that the artificial nature of the ex vivo
culture systems can be a confounding factor. Nevertheless, we
highlight the utility of ex vivo development systems in studying
rare or otherwise inaccessible populations in vivo and provide a
generalizable framework of how interactions between the trans-
environment and the chromatin instruct fate choice and lineage
commitment during development. Additionally, the dense sam-
pling and the systematic linkage between distal elements and
target promoters results in high-resolution charts of the stage-
specific activity of regulatory elements. Beyond the standpoint of
gene regulatory mechanisms, such elements can prove particu-
larly useful in transgene-based therapies where the efficacy of
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these methods relies on the precise modulation of gene expression
in a developmental and lineage-specific manner.

Methods

Ex vivo erythropoiesis. For the ex vivo induction of erythroid and megakaryocytic
differentiation, human CD34% enriched PBMC (>90% purity) from 3 different
GCSF-mobilized healthy adult donors (Fred Hutchinson Cancer Research
Center—Cooperative Centers of Excellence in Hematology Core B) were used.
Cells were isolated under the protocol approved by the Fred Hutch Institutional
Review Board (protocol no. 985.03) and in accordance with the Declaration of
Helsinki. Prior to culture, cells were thawed rapidly in a 37 °C water bath and
cultured overnight in recovery media containing IMDM, supplemented with
StemSpanTM CC110 (Stemcell Technologies). For erythroid differentiation an
established 3-step differentiation scheme was used?3. Briefly, CD34% cells were
cultured for 7 days in IMDM media containing 0.1 pg/mL rhSCF (PeproTech),
0.005 pg/mL rhIL-3 (PeproTech), 3 U/mL rhEPO (PeproTech), 5% human AB
plasma, 2 U/mL heparin, 0.01 mg/mL Insulin, 0.33 mg/mL holo-transferrin (Mil-
lipore-Sigma), 1 uM hydrocortisone (Millipore-Sigma), 1x Penicillin/Streptomycin
(ThermoFisher Scientific), followed by culturing in the same media for 4 more days
without IL-3 and hydrocortisone for 4 days.

Ex vivo megakaryopoiesis. CD34 + HSPCs were differentiated to the mega-
karyocyte lineage by culturing for 11 days in IMDM based media containing 30 ng/
mL rhTPO (PeproTech), 1 ng/mL rhSCF (PeproTech), 7.5 ng/mL rhIL-6 (Pepro-
Tech), 13.5 ng/mL rhIL-9 (PeproTech), 20% BIT supplement (StemCell Technol-
ogies), 40 ug/mL LDL (Millipore-Sigma), 0.05 mM beta mercaptoethanol
(Millipore-Sigma), and 1x Penicillin/Streptomycin (ThermoFisher Scientific).

HUDEP-2 expansion. HUDEP-2 cells were kindly provided Ryo Kurita and Yukio
Nakamura, Cell Engineering Division, RIKEN BioResource Center, Tsukuba,
Ibaraki, Japan. HUDEP-2 cell culture HUDEP-2 cells were maintained in Stem-
Span H3000 medium (Stem Cell Technologies) supplemented with 100 ng/ml
hSCF (Peprotech), 3 IU/ml erythropoietin (Peprotech), 10© M dexamethasone
(Millipore Sigma) and 1 mg/ml doxycycline (Millipore Sigma).

Genetic knock-outs in HUDEP-2 cells. All TALEN pairs were assembled
according to established protocols®$37. Sequences of the TALEN binding domains
are listed in Supplementary Table 1. In vitro transcription of TALEN-mRNA was
performed by the T7 mScript™ Standard mRNA Production System (CELLSCRIPT,
C-MSC100625), including 5-capping and poly-A addition reactions. Electro-
poration was performed as previously described®3. Briefly, 2 ug of each TALEN
monomer mRNA were transfected in HUDEP-2 cells using a BTX electroporator
(ECM 830, Holliston, MA) in 100 pL of BTX Express electroporation solution.
Double knock out clones were detected post electroporation and single cell sorting
(MoFlo Astrios, Beckman Coulter) by Out-Out (CDHI1 promoter and HS1) or In-
Out PCR (HS2). PCR primer sequences are provided in Supplementary Table 2.

Colony forming assays. Colony forming assays were performed by sampling
~1000 cells daily from either erythroid or megakaryocytic primary cultures from 2
donors and plating each in duplicates in 35 mm dishes containing MethoCult
H4435 (StemCell Technologies). After two weeks, colonies were identified and
scored under a dissection microscope.

Suspension lineage potential assays. For megakaryocytic potential assays,
~100,000 cells were sampled daily from erythroid cultures until day 7. After
removing primary media, cells were transferred to secondary suspension cultures
containing megakaryocytic media as described above and allowed to grow for two
weeks. Megakaryocytic potential was estimated by the frequency of CD417 cells
with flow cytometry on day 12 of the secondary megakaryocytic culture. Similarly,
for erythroid potential assays during megakaryocytic differentiation, ~100,000 cells
were sampled daily until day 7 from primary megakaryocytic differentiation and
transferred to secondary erythroid media. After two weeks in the secondary media,
erythroid potential was assessed by the frequency of CD235a* cells present with
flow cytometry.

Flow cytometry. Approximately 100,000 cells each day per culture replicate were
harvested. Media were removed by washing with staining buffer (PBS + 0.25%
BSA) and cells were labeled according to product specifications, incubating at 4 °C.
Cells from erythroid differentiation were stained daily for CD117 PE at 1:10
dilution (Cat. No.: 340529, Clone 104D2, BD Biosciences), and CD235a at 1:20
dilution (Cat. No.: 559943, Clone GA-R2/HIR2, BD Biosciences). Megakaryocytic
differentiation was monitored by staining with CD41 PE at 1:10 dilution (Cat. No.:
555467, Clone HIP8, BD Biosciences), and CD42b APC at 1:10 dilution (Cat. No.:
551061, Clone HIP1, BD Biosciences). Megakaryocytic potential of primary ery-
throid cultures was determined by measuring CD41a PE at 1:10 dilution (Cat. No.:
555467, Clone HIP8, BD Biosciences) expression in the secondary cultures. Mye-
loid populations were identified by CD33 expression staining with Alexa Fluor 700

anti-human CD33 at 1:20 dilution (Cat. No.: 561160, Clone WM53, BD Bios-
ciences). For detection of genetic knock-out of CDH1 in HUDEP-2, APC anti-
human CD324 at 1:20 dilution (E-Cadherin) (Cat. No.: 324108, Clone 67A4,
Biolegend) was used. Samples were acquired on CytoFlex S (Beckman Coulter) and
analyzed using FlowJo (Becton Dickinson). All analyses were performed on the
live, single events as determined by their profile on the FSC-H, FSC-A, and SSC-A.

DNase | accessibility. Erythroid cultures from 3 donors were sampled on a daily
basis from day 0 to day 12 and >100,000 cells were harvested per DNase I reaction
adapting the protocol from John et al.8%. After removing media washing twice with
ice-cold PBS and centrifugation for 5 min at 400 x g, cells were washed with ice-
cold Buffer A (15 mM Tris-HCI pH 8.0, 15mM NaCl, 60 mM KCl, 1 mM EDTA
pH 8.0,0.5 mM EGTA pH 8.0, 0.5 mM spermidine). Cells were resuspended in ice-
cold Buffer A and equal volume of lysis buffer (0.04% of IGEPAL CA-630 de-
ionized with AG® 501-X8(D) Mixed Bed Resin, cat:1436425 Bio-Rad, in Buffer A)
was added and cells were incubated at 4 °C for 10 min. Nuclei were then moved to
37 °C and replicates of each sample were incubated with a gradient of DNase I
(D4527, Sigma-Aldrich) solution (ranging from 40 IU to 100 IU of DNase I) of
equal volume and the reaction was allowed to proceed for 3 min at 37 °C. DNase I
digestion was quenched by adding a volume of 5X Stop buffer (50 mM Tris-HCI
pH 8.0, 100 mM NaCl, 0.1% SDS, 100 mM EDTA pH 8.0) equal to the volume of
cell suspension (100 pL final reaction volume) and the reactions were incubated at
37 °C for 60 min. After incubation, 1 uL of Proteinase K (Sigma) was added to each
reaction followed by incubation at 50 °C for 60 min. Digested genomic DNA was
visualized on 1.2% agarose gel and the fragment size profile was generated using
the Fragment Analyzer (Advanced Analytical).

Prior to genomic library generation, fragments were subjected to size
fractionation. Large DNA fragments were removed mixing the DNase I digested
sample with a Polyethylene-Glycol (PEG 8000, Sigma) solution containing 8.3 mg
of carboxylate-modified magnetic particles (Sera-mag beads, Thermo) to a final
PEG concentration of 6% w/v. Sample was incubated at room temperature with
constant mixing. Bead-bound fragments were removed by magnetic separation and
a PEG solution (39.5% w/v final) containing 7.15 mg magnetic beads was added to
the supernatant. After >90 min incubation at room temperature with constant
mixing, the supernatant is removed by magnetic separation and discarded while
bound DNA fragments are eluted from the beads. The eluate is then subjected to a
second binding by mixing with a PEG solution (38.5% w/v final) containing
7.15 mg of magnetic beads. The solution is incubated at room temperature for
>90 min with constant mixing. The supernatant is removed by magnetic separation
and the fragments are eluted from the beads. Fragment size distribution and
concentration of the fractionated sample was measured with Fragment Analyzer
(Advanced Analytical). Illumina compatible, double-stranded DNA library libraries
from the size fractionated samples were constructed using the ThruPLEX DNA-seq
Kit (Takara Bio) according to manufacturer’s instructions. DNase I-seq libraries
were sequenced on NextSeq 500 (Illumina) with a 2x36bp read length. Adapter
trimmed FASTQ files were aligned against GRCh38 using the BWA aligner®. All
downstream DNase I-seq analyses were performed on DNase I hotspots (genomic
regions with statistically significant enrichment in DNase I cleavage)®!"1. Hotspots
were detected using hotspot2 program (https:/github.com/Altius/hotspot2).

Total RNA sequencing. For gene expression analysis, total RNA was collected
using the mirVana RNA isolation kit (ThermoFisher Scientific) or RNeasy Mini Kit
(Qiagen) from sorted (>20,000 cells) and bulk cultures (>1,000,000 cells). Illumina
libraries were constructed using the TruSeq Stranded Total RNA with Ribo-Zero
Globin (Illumina). Finally, libraries were quantified using Fragment Analyzer
(Advanced Analytical). RNA-seq libraries were sequenced with HiSeq 4000 (Illu-
mina) using a 2x76bp read length and alignment was performed using STAR
Aligner®? against the GRCh38 reference genome. Gene counts were obtained using
featureCounts®®> and FPKM per gene were calculated using Cufflinks®*. Values
were normalized using quantile normalization.

Identification of developmentally regulated DHSs and genes. To identify
developmental responses in chromatin accessibility and gene expression, we
employed a regression analysis strategy. A robust linear regression was performed
on the quantile-normalized, mean-centered DHS density values or gene counts
from 3 donors by fitting a cubic spline with 3 degrees of freedom using the Imrob
function from the robustbase R package and fitted values were recorded. Statistical
significance was estimated by performing a likelihood ratio test against a null
model where developmental time was removed as a term. Likelihood ratio test
(LTR) p-values were adjusted for false discovery rate (FDR) using the
Benjamini-Hochberg method. A refined list of the statistically significant changing
DHS was obtained by setting the maximum normalized DHS density to >30 counts
and log,-fold difference between the minimum and maximum daily average values
to 1. Significantly changing genes were further filtered by excluding genes with
maximum FPKM below 2 and those with log,-fold difference between the mini-
mum and maximum daily average gene counts below 1.

Identification of TADs and interaction loops from Hi-C data. Capture Hi-C
data from primary CD34" hematopoietic progenitor cells were obtained from
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Misfud et al.?%. Ex vivo differentiated day 11 erythroid progenitors derived Hi-C
data were obtained from Huang et al.30. Reads were processed with pairtools
(https://github.com/open2c/pairtools) removing reads with MAPQ < 30. Contact
matrices were generated with Cooler®. Topologically associated domains (TADs)
were computed with HiCExplorer?® on KR balanced matrices at 10 kb resolution.
Chromatin interaction loops were predicted using Mustache®” from the KR
balanced matrices at 10 kb resolution.

Transcription factor recognition sequence enrichments. A list of transcription
factor motif position weight matrices (PWM) was compiled from JASPAR 2018%8
and HT-SELEX derived human transcription factor binding specificity models®.
Motifs were then scanned across the GRCh38 reference genome using FIMO!00
and motifs with nominal p-value <104 were mapped to DHS using BEDOPS!01.
Over- or under-representation of transcription factor motif clusters in each of the
K-means DHS clusters was tested by performing a one-tailed hypergeometric
enrichment test. P-values were adjusted using the Benjamini-Hochberg method!02.

Elastic net regression and regulatory module identification. To identify the
transcription factors that modulate the accessibility of DHS a two-step regression
with elastic-net regularization was utilized. Specifically, the per-day averaged
accessibility of each DHS over time was expressed as a function of the per-day
averaged expression of the transcription factors with motifs found in the DHS. We
considered 214 transcription factors which had maximum expression >2 FPKM
and for which there was available binding motif information. An elastic net support
vector machine was initially trained on a subset of the data by omitting 4 time-
points using the glmnet R package. Optimization for the mixing parameter «

(0 <a<1) and the penalty stringency parameter A was performed with a 100-fold
cross-validation of each seat of & (ranging from 0 to 1 with 0.01 increments) and A
(100 equiproportional values ranging from 10~ to 10°) parameters using the
cv.glmnet function. Mean squared error (MSE) and standard error (SE) for each
parameter pair tested and each DHS were recorded. Given that each DHS cluster is
characterized by specific features (i.e., DHS density profile, sequence composition,
and DHS overlap with other tissues) we sought to optimize elastic net parameters
for each cluster, rather than overfitting each DHS individually. Therefore, for each
cluster of DHS, the pair of @ and A parameters which minimized the total MSE and
SE for that cluster was selected and subsequently supplied into a final elastic net
regression which was applied to each DHS in a cluster (E1-E5). The capacity of
elastic-net TF coefficients to accurately classify the DHS into their respective K-
means cluster (E1-E5) against the TF motif counts was evaluated using a naive
Bayes classifier using fastNaiveBayes (https://github.com/mskogholt/
fastNaiveBayes). Discrete motif counts per DHS for TFs with at least one non-zero
elastic-net coefficient (192 out of 214) were modeled by fitting a Poisson dis-
tribution while elastic-net coefficients for the same set of TFs were modeled with
Gaussian fit and prediction accuracy was calculated as the percent of correct
classifications. Transcription factors with >200 DHS positively associated (52 out of
214 TFs) were taken into consideration and a hierarchical clustering on the cosine
distances of the regression coefficients was performed. Cutting the tree at the 5
highest order clades using k = 5 resulted in 5 clusters of transcription factors which
together with their associated DHS constitute a regulatory module.

Single-cell RNA sequencing and data processing. Erythroid and megakaryocytic
cultures were induced from the same donor as described above and on days 2, 4, 6,
8, and 11 cells were harvested and stored in liquid nitrogen using CryoStor CS10
(StemCell Technologies) until library preparation. On the day of library prepara-
tion, frozen cultured cells as well as an uncultured vial of CD34% cells from the
same donor were simultaneously processed. Cells were prepared for library pre-
paration according to manufacturer’s instructions using the Chromium Single Cell
3’ Reagent Kit, version 1 (10X Genomics) for CD34" and erythroid samples, except
day 2. Chromium Single Cell 3’ Reagent Kit, version 2 (10X Genomics) was used
for all megakaryocytic differentiation time points, and erythroid day 2. All libraries
were sequenced on HiSeq 4000 (Illumina). Raw sequencing data were processed
using Cell Ranger analysis pipeline v2.1.1. Reads were aligned against the hgl9
reference genome.

Single-cell RNA sequencing analysis of samples from primary erythroid and
megakaryocytic differentiation. RNA velocity was computed using the CLI
component of velocyto!?® and Loom files with normalized transcript counts for
each sample were generated with the ‘run10x’ command. Trajectory and pseudo-
time analysis was performed using scVelo!%4 and SCANPY!%°. Gene count matrix
was filtered to include the top 2000 variable genes. Moments of spliced and
unspliced kinetics were calculated using the first 30 components and 30 nearest
neighbors. Cells were clustered using Leiden community detection algorithm® and
were further collapsed into biologically relevant populations. Cell connectivities,
transitions, and pseudotime were computed based on RNA velocity. Develop-
mental trajectories were inferred using PAGA!% on velocity connectivities.
Transitions were projected on a Force-Atlas (FA) graph embedding using a velocity
pseudotime prior. Marker genes per population were identified using Wilcoxon-
rank test for every population versus its immediately connected populations. Sig-
nificance was called on FDR-corrected p-values < 10~ and absolute log, fold-

change >1. Overrepresentation of gene sets characteristic of specific cell-types,
present within the marker genes from each population, was performed using

ENRICHR!%7 available at (https://maayanlab.cloud/Enrichr/) using annotated

gene-sets from the Human Gene Atlas database.

Reconstruction of stage-specific transcription factor networks. For every dif-
ferentially expressed transcription factor gene in each population, linked DHSs
were called based on the elastic-net results. Subsequently, downstream target genes
were identified based on positively correlated (Pearson’s > 0.7) DHS and genes.
Networks were constructed using the igraph package (https://igraph.org/r/). Edge
weights were calculated by standardizing the product of the elastic net coefficient
and the pearson correlation value. For each node the centrality value was calcu-
lated. Network plots were generated using tidygraph (https://github.com/
thomasp85/tidygraph) and ggnet2 (https://briatte.github.io/ggnet/) using the “fr”
layout option.

Single-cell analysis of human bone marrow derived data. Raw transcript count
matrix obtained from Pellin et al.®! was filtered to include genes above 800 total
counts and normalized to read depth and highly variable genes with minimum
dispersion of 0.5 were selected. Trajectory and pseudotime analysis were performed
using SCANPY as described above. Neighbors were computed on the first 30
principal components setting the number of neighbors to 30 and a Force-Atlas
graph was computed. Cells were clustered using Leiden setting the resolution to 1.4.
Diffusion pseudotime was calculated and cell-to-cell connectivities were computed
using PAGA and projected on FA layout. Projection of single cell populations
generated in this work on the bone marrow derived dataset was performed using
the function “FindNeighbors” from the Seurat!%8 package with 20 neighbors
returned (k = 20), after L2 normalization of the input data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All DNase I and RNA sequencing data have been deposited to GEO under the series
accession GSE182816. All processed data files available herein and relevant metadata are
available on Zenodo [https://doi.org/10.5281/zenodo.5291737]. Adult erythroid Hi-C
data was downloaded from GEO, series GSE102201. Adult CD43 + HSPC Hi-C data
obtained from ENA, accession ERR436024. Human bone marrow single-cell data was
download from GEO using the following accessions: GSM3305359, GSM3305360,
GSM3305361, GSM3305362, GSM3305363, GSM3305364, GSM3305365. Source data are
provided with this paper.

Code availability

All scripts and code used to process and analyze data herein are available upon request.
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