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Genetic variation among sheep breeds in resistance to gastrointestinal nematodes (GIN)
has been demonstrated in several production environments. Relationships between the
ovine major histocompatibility complex and resistance to GIN have been studied, but
few studies have systematically examined this issue in less-developed and semi-arid
regions. The aim of the current study was to explore associations between fecal worm
egg counts (FEC) for several GIN and polymorphisms in the DRB1 gene. One hundred
male lambs were selected at 4–6 months of age from weaned animals in five flocks
(n = 20 per flock). Body weights were determined, FAMACHA scores based on color
of the ocular mucous membranes were assigned as an indicator of anemia, and blood
and fecal samples were collected twice to evaluate FEC and blood packed cell volume
(PCV) and for DNA isolation. A repeated-measures analysis of variance was used to test
effects of genotype on FEC. The model included fixed effects of flock, genotype, time of
measurement (1 or 2), and flock × time and genoype × time interactions, and a random
(repeated) effect of lamb. Two genotypes (A1A1 and A1A2) were observed following
digestion of Region 1 of Ovar-DRB1 with PstI. Genotypic frequencies were 0.73 for
A1A1 and 0.27 for A1A2. FEC differed between Ovar_DRB1 genotypes A1A1 and A1A2
for Marshallagia marshalli, Strongyle, and total nematode FEC. Observed FEC were 30–
41% lower for genotype A1A1. Differences among genotypes were consistent across
measurement times, with no effect of genotype × measurement time interaction for any
parasite class (P ≥ 0.34). A significant association was observed between FAMACHA
scores and lamb PCV, and the residual correlation between these two variables was
−0.51 (P < 0.001). FAMACHA scores can thus be used to detect differences among
lambs in PCV, and polymorphic markers of Ovar-DRB1 have potential value as an
indicator of parasite resistance in applied animal breeding programs on sheep farms
in this region.
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Introduction

The Ghezel sheep is one of the 27 mainly fat-tailed native
breeds of Northwestern Iran (Tavakolian, 2000). Animals of this
breed graze for much of the year and are therefore continuously
exposed to natural nematode infections. Gastrointestinal nema-
todes (GIN) of sheep and goats are widespread, diverse, and
highly pathogenic, and can also infect other ruminant species
such as cattle and reindeer (Jacquiet et al., 1998; Achi et al., 2003;
Hrabok et al., 2006). Effects of GIN are most extreme in young
animals, and therefore represent a real threat to the sheep indus-
try (Waller, 2006).

The development of multi-drug resistance by GIN has driven
research into alternative control measures, including selection of
sheep that are genetically resistant to GIN infection. Genetic vari-
ation among breeds in resistance to GIN has been demonstrated
in a variety of production environments. Genetically resistant
sheep (either representing resistant local breeds or developed by
selection within commercial breeds) are increasingly being used
to improve animal production and well-being (Amarante et al.,
2009). Genetically resistance sheep types also provide an oppor-
tunity to study novel mechanisms of resistance that may not be
present in susceptible commercial breeds (Piedrafita et al., 2010).
However, to date the mechanisms underlying genetic resistance
of sheep to GIN infections are not precisely known.

Evidence for host genetic variation in aspects of disease resis-
tance has now been documented for many diseases and in all
major domestic livestock species (Bishop, 2005). In particular,
small ruminants are notable for the large number of diseases
where host genetic variation has been documented. Because para-
site resistance in sheep has amoderate heritability (0.2–0.6; Baker,
1998; Stear et al., 2007), selective breeding has been used suc-
cessfully with several breeds of sheep in different climates (Gray,
1987). Most sheep breeding programs for GIN resistance are
based on recording of faecal egg counts (FEC), but this type of
phenotype measurements is costly and difficult to collect on a
large scale. In these situations, use of molecular genetic infor-
mation is an interesting option. Use of molecular markers of
resistance to GIN in sheep breeding programs has shown some
promise, but difficulties remain, mainly because effects or pre-
viously identified quantitative trait loci (QTL) have not been
consistent across breeds (Matika et al., 2011).

In sheep, class II genes of the major histocompatibility com-
plex (MHC) are located on chromosome 20 and encode polymor-
phic glycoproteins composed of nine covalently linked subunits.
Gruszczynska et al. (2000) found significant effect of OLA–DRB1
(MHC class II) on body weight at birth of Polish Heath sheep.
There is also a body of scientific literature linking genes in the
sheep MHCwith the ability of sheep to resist infection by GIN as
measured by FEC (Schwaiger et al., 1995; Buitkamp et al., 1996;
Stear et al., 1996; Paterson et al., 1998). These findings are per-
haps not surprising given the role of these genes in controlling
specific immune responses. This “MHC effect” is never-the-less
thought to be relatively small, accounting for an estimated 11% of
total phenotypic variation in traits associated with GIN resistance
(Buitkamp et al., 1996), although it accounts for a somewhat
larger proportion of the additive genetic variation (Stear et al.,

1997). These results have led to speculation that the MHC
contains genes that could be used as markers for breeding to
reduce FEC but that do not fully explain genetic resistance to
GIN.

Few studies have addressed the relationships between the
ovine MHC and resistance to GIN in less-developed and semi-
arid regions. The current study is part of a multi-national col-
laborative project sponsored by the International Atomic Energy
Agency and the Food and Agricultural Organization of the
United Nations and designed to study genetic control of resis-
tance to GIN in local sheep breeds. A particular focus of the
study is the abomasal GIN Haemonchus contortus and was jus-
tified by this parasite’s ability to produce large numbers of eggs,
resulting in extensive pasture contamination; the blood-sucking
nature of this nematode, which can causes life-threatening levels
of anemia; and the associated potential for very significant reduc-
tions in lamb performance and survival (Gatongi et al., 1998;
Waller et al., 2004). In Iran, Ashrafi et al. (2014) demonstrated
polymorphism in exon 2 of MHC gene OLA-DRB1 in the Makui
sheep breed of Northwestern Iran. In this study, our aim was thus
to explore possible associations between nematode resistance and
polymorphism of DRB1. Because H. contortus is only one of sev-
eral GIN known to be present in the temperate regions of Iran, we
likewise focused our study on a variety of different GIN known
to be important in the region (Garedaghi and Bahavarnia, 2013;
Moradpour et al., 2013; Yagoob et al., 2013).

Material and Methods

Study Area
The study area is shown in Figure 1. The districts of Eastern
and Western Azerbaijan provinces are agro-ecological zones and
these zones are the site of origin and the habitat of the Ghezel
sheep breed in Iran (Tavakolian, 2000). This breed was there-
fore selected for the present study. The study region is located
at latitude 35–38.8◦North and longitude 46–48◦East and receives
annual rainfall of 150–350 mm. The temperature is highest in
June, before the onset of the monsoon season. During late spring
and early to mid-summer, the daily maximum temperature rarely
declines below 22◦C. Relative humidity is lowest during April
and May and rises during the monsoon season. The year is com-
monly divided into four seasons: winter (December–February),
spring (March–April), summer (May–September), and autumn
(October–November). The summer also includes the monsoon
season (July–August; www.irimo.ir). This study was conducted
in May and June, a time when GIN numbers were anticipated to
be elevated.

Animals and Scheduling of Phenotype
Sampling
One hundred male lambs at an age of 4–6 months were selected
for this study. Each lamb was randomly selected from weaned
animals within five flocks (n = 20 per flock). After deworming
to eliminate existing nematode infection and when a parasite-
free condition was confirmed (28 days later), the 20 lambs
in each flock were allowed to graze together with untreated
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FIGURE 1 | The study region was located in Northwestern Iran between 35 and 39◦North latitude and between 46 and 48◦East longitude.

contemporaries from the same flock for at least 28 days with-
out deworming. From day 31 post-infection, body weights were
determined and blood and fecal samples were collected twice,
1 week apart, to evaluate fecal parasite egg counts and blood
packed cell volume (PCV) and for DNA isolation. A single
observer assigned FAMACHA scores for all flocks and both sam-
pling times using a scale of 1–5. Scores were based on the color
of the ocular mucous membranes surrounding the eye using
procedures and color charts described by Vatta et al. (2001). All
experimental procedures were approved by the University of
Tabriz Animal Care and Ethics Committee.

Sample Processing
Individual fecal samples were collected from the rectum, pro-
cessed to determine FEC using themodifiedMcMaster technique,
and reported as eggs per gram of feces. Observed parasite ova in
the feces were categorized by parent species as: (1) Strongyles,
(2) Nematodirus sp., (3) Trichuris sp., and (4) Marshallagia
marshalli. The Strongyle group potentially included a number
of common abomasal and intestinal sheep nematodes typical
of mixed nematode infections in small ruminants such as H.

contortus, Teladorsagia circumcincta, Ostertagia occidentalis, and
Trichostrongylus axei, colubriformis, vitrinus, and rugatus. Fecal
egg counts (FEC) were also summed across the four parasite
classes for each lamb to derive a total nematode egg count. FEC
were determined by the Clayton Lane technique.

Blood was obtained from the jugular vein with sterile vac-
uum tubes with anticoagulant (EDTA). For each sample, the
PCV (%) was determined on the day of collection using the
micro-hematocrit method. Blood was then mixed with 0.5 M
of EDTA (pH = 8), and frozen at −20◦C. DNA was isolated
from blood using the protocol of Samadi Shams et al. (2011).
Sequences of forward and reverse primers for amplification of
the Ovar MHC-DRB1 (Region 2) gene are shown in Table 1
(Amills et al., 1995).

The PCR was performed in a 25 μl reaction using the mas-
ter mix kit (Ampliqon Company) in a T-Personal thermo-cycler
(BiometeraPersonal Cycler Version 3.26 co., Germany). The PCR
mixture contained: 50–100 ng of DNA, 2.5 μl of 10X PCR
buffer (200 mM (NH4)2SO4, 0.1 mM Tween 20%, 750 mM Tris-
HCl (pH 8.8), 2.5 mM MgCl2, 200 μM dNTPs, and 3 μl mix
of oligonucleotids (10 pmol from each primer), 1U Taq DNA

Frontiers in Genetics | www.frontiersin.org 3 March 2015 | Volume 6 | Article 105

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Valilou et al. MHC-DRB1 gene polymorphism in sheep

TABLE 1 | Characteristics of PCR primers, nucleotide substitutions, restriction enzymes, amino acid changes, PCR producte size, and digested
sequence sizes (allele) sizes for RFLP polymorphisms in Exon 2 of the Ovar-DRB1 gene.

Characteristic Palindrome 2 Palindrome 2

Primer sequence 5-TAT CCC GTC TCT GCA GCA CAT TTC-3

5-TCG CCG CTG CAC ACT GAA ACT CTC-3

Nucleotide substitution (CTGCAG to GTGCAG or TTGCAG) (TCGA to TACG)

Restriction enzyme PstI TaqI

Amino acid change Phe and Tyr to Val and Cys Phe to Tyr

PCR product(bp) 285 285

Allele size(bp) (+/+): 241 and 44 (+/+): 163 and 122

polymerase (Dream Taq polymerase, Ampliqon company) and
11 μl ddH2O. A total of 35 cycles was adapted for denaturation
at 94◦C/1 min, annealing at 61◦C /1 min and polymerization at
72◦C/2 min (Table 2). The PCR products were electrophoresed
at 85 V for 45 min in 2.5% agarose gels, and visualized under UV
light. The power supply for electrophoresis was a PAC1000 (Bio-
Rad company; USA). The size of the alleles was determined based
on a 100 bp DNA size standard (Ampliqon Company) using the
computer software BIO 1D++. The PCR product for each sam-
ple was digested with 10 units of PstI and TaqI enzymes at 37 and
65◦C, respectively. The characterization of each has been given
in Table 3. The digested products were separated in a 2 and 3%
agaros gel for 1 h at 85 V. The gels were stained with ethidium
bromide.

Statistical Analysis
Fecal egg counts were analyzed separately for each class of par-
asite and for the total nematode egg count. For each parasite
class, FEC values were expressed as residual deviations from
flock × time subclass means, and distributions of residuals was
tested for skewness (ω) and kurtosis (κ). If FEC were not nor-
mally distributed, FEC values were transformed before further
analysis using Box–Cox transformations of the form [(FECλ –
1)/λ; Box and Cox, 1964]. Optimum values of λ for a range of
values between −2 and 2 were determined using a maximum-
likelihood criterion (Draper and Smith, 1981) in the TransReg
Procedure of SAS.

TABLE 2 | PCR temperatures program.

PCR step Temperature (C0) Time Cycles

Elementary denaturation 95 4 min 1

Secondary denaturation 95 1 min 35

Annealing 61 50 s

Extension 72 1 min

Termination 72 5 min 1

A repeated-measures analysis of variance was conducted using
the MIXED Procedure of SAS to test effects of genotype on trans-
formed FEC, body weights, and PCV. The model included fixed
effects of flock, genotype, time of measurement (1 or 2), and
flock × time and genoype × time interactions and a random
(repeated) effect of lamb. This model was also fitted to untrans-
formed FEC using the GLIMMIX Procedure of SAS and assum-
ing a negative binomial distribution of FEC (O’Hara and Kotze,
2010). Associations between FAMACHA scores and measured
variables were evaluated by adding effects of FAMACHA score
and associated two-way interactions with other fixed effects to
this mixed model.

Results

Two genotypes (A1A1 and A1A2) were observed following diges-
tion of Region 1 of Ovar-DRB1 with PstI (Figures 2 and 3). Two
genotypes (B1B1 and B2B2) were likewise obtained following
digestion with TaqI, but only one lamb had genotype B2B2 and
effects of the TaqI polymorphism were therefore not considered
further. For the PstI polymorphism, both genotypes were present
in each of the five flocks, with overall genotypic frequencies

FIGURE 2 | PCR products of the Ovar-DRB1 gene.

TABLE 3 | Characteristics and features of TaqI and PstI enzymes and restriction sites.

Enzyme Origination Unit Concentration Restriction site Optimal performance
temperature (C0 )

Incubation
time

PstI Providencia stuarti 3000 10 U/μL 5′ . . .C �TGCAG. . .3′3′ . . .G ACG �TT. . .5 ′ 37 1–16 h

TaqI Thermusa quaticus YT-1 3000 10 U/μL 5′ . . .T �CG A. . .3′ 3′ . . .A GC �T. . .5′ 65 1–16 h
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FIGURE 3 | Genotypes and PCR-RFLP pattern of the digested Ovar-DRB1 gene digested (Left: digested with PstI; Right: digested with TaqI).

of 0.73 for A1A1 and 0.27 for A1A2 (Table 4). The observed
number of alleles at these two loci was similar to that pervious
reported by Amills et al. (1995). The PCR product was sequenced
(n = 4; Bioneer, Munpyeongseo-ro, Daedeok-gu, Daejeon 306–
220, Republic of Korea). Figure 4 illustrates the sequence.

Descriptive statistics for measured variables are shown in
Table 5. The incidence of Trichurus infection in these data was
very low. Eggs of Trichurus sp. were observed in fewer than 7% of
the samples and FEC for Trichurus sp. were therefore excluded
from the statistical analysis. Means and medians for FEC for
remaining parasite classes are shown by flock and measurement
time in Figure 5. Means for Strongyle FECwere very low in flocks
1 and 2, and means for M. marshalli FEC were very low in flocks
2, 3, and 4. The FEC records for these flocks for these parasite
classes were therefore excluded from the final analyses.

After removing FEC records for flocks 1 and 2 and express-
ing FEC as residual deviations from flock × time subclass means,
the distribution of M. marshalli FEC was somewhat skewed to
the right (ω = 0.49; P < 0.05) but did not exhibit significant
kurtosis (κ = −0.04). This result was in agreement with the
similarity between means and medians for M. marshalli FEC in
Figure 5. A Box–Cox transformation with λ = 0.5 reduced the
observed level of skewness (ω = −0.28), and a square-root trans-
formation was used in the final analysis of M. marshalli FEC.
As expected from differences between means and medians in

Figure 5, Nematodirus, Strongyle, and total nematode FEC were
not normally distributed. For these parasite classes, distributions
of FECwere strongly skewed to the right (ω ≥ 1.28) and were lep-
tokurtic (κ ≥ 3.51). Distributions of Nematodirus and Strongyle
FEC also exhibited clumping at zero. Estimates of λ for Box–Cox
transformations were close to zero for these parasite classes, with
λ = 0.1 for total nematode and Strongyle FEC and λ = −0.1 for
Nematodirus FEC. The Box–Cox transformation is undefined at
λ = 0 but asymptotically approaches a logarithmic transforma-
tion asλ approaches zero.We therefore used a simple logarithmic
transformation [ln(FEC + 1)] for these parasite classes.

Results of the repeated-measures analysis (Table 6) indi-
cated that flock effects on FEC were large (P < 0.001) for all
remaining parasite classes. Significant differnces were observed
between Ovar_DRB1 genotypes A1A1 and A1A2 for M. mar-
shalli, Strongyle, and total nematode FEC (Figure 6). Means for
M. marshalli FEC in Figure 6 were based on untransformed FEC
and were 40% lower for lambs of genotype A1A1 compared
to lambs of genotype A1A2. Means for Strongyle, Nematodirus,
and total nematode FEC were backtransformed from means of
transformed variables (m) as (em − 1), and SEs for backtrans-
formed means were approximated by assuming that SEMs for
log-transformed FEC were approximately equal to coefficients of
variation of backtransformed means. Backtransformedmeans for
these parasite classes indicated that Strongyle and total nematode

TABLE 4 | Genotype and gene frequencies.

Genotypes1 Numbers of lambs Overall genotypic frequencies

Flock 1 Flock 2 Flock 3 Flock 4 Flock 5

A1A1 15 10 16 17 15 0.73

A1A2 5 10 4 3 5 0.27

1Alleles A1 and A2 were identified following digestion of Ovar-DRB1 with PstI.
Alleles B1 and B2 were identified following digestion with TaqI (Figure 3).
Corresponding overall allelic frequencies were 0.865 and 0.135 for A1 and A2, respectively.
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FIGURE 4 | Nucleotide sequence of the DRB1 allele in one of the samples (animal no 10568). Primer complementary regions are indicated in bold type while
the PstI sites are underlined.
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TABLE 5 | Descriptive statistics for fecal egg counts (FEC; eggs per gram
of feces) for various classes of gastrointestinal nematodes and
performance for 100 Ghezel lambs from five flocks.

Measurement Mean Median SD Minimum
value

Maximum
value

Strongyle FEC 4.44 0 9.38 0 61.25

Nematodirus FEC 8.41 3 13.55 0 73.50

Trichurus FEC 0.22 0 1.00 0 8.75

Marshallagia FEC 4.06 0 7.30 0 31.50

Total nematode FEC 171.28 105 202.24 0 997.50

Body weight, kg 31.84 31 5.89 19.7 47.50

PCV, % 33.04 33 3.93 21.0 46.00

FAMACHA score 1.78 2 0.74 1.0 4.00

Two fecal samples were obtained from each lamb. Samples were taken weekly
beginning at approximately 31 days after deworming.

FEC were 41 and 30% lower, respectively, for lambs of geno-
type A1A1 compared to lambs of genotype A1A2. No effect of
genotype was observed for Nematodirus FEC Differences among
genotypes were consistent among flocks and measurement times,
with no effect of genotype × flock (P ≥ 0.23) or genotype ×mea-
surement time interaction (P ≥ 0.34 for any parasite class.

The impact of logarithmic transformation of Strongyle and
total nematode FEC can be seen by comparing differences among
genotypes for untransformed FEC. For untransformed FEC,
means for lambs of genotype A1A1 were 29 (P = 0.20) and 23%
(P = 0.12) lower compared to lambs of genotype A1A2. These
differences in effect of genotype reflect the greater impact of occa-
sional large FEC from the skewed right tail of the FEC distribu-
tion on mean differences between genotypes and on the residual
variance. This issue could be addressed in untransformed data by
removing records with very high FEC as outliers. We considered
recoding of extreme values to be preferable to removing them,

FIGURE 5 | Means and medians for Strongyle, Nematodirus sp.,
Marshallagia marshalli, and total nematode fecal egg counts (FEC;
eggs/gram of feces) by flock and time of sampling. Medians are
generally shown by the height of the blue bars and means are shown by

the total height of the blue plus orange bars. In rare cases where the
median exceeded the mean, the median is shown by the combined height
of blue plus pink bars and the mean is shown by the height of the blue
bars.
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TABLE 6 | Results of analysis of variance for fixed effects of flock,
genotype, time of measurement, and their two-way interactions on FEC
for each parasite class.

FEC for: Effect F-value Pr > F

Total nematodes Flock 20.13 < 0.001

Genotype 4.42 0.04

Time 0.56 0.46

Genotype × flock 0.39 0.81

Time × flock 4.31 < 0.01

Genotype × time 0.02 0.90

Strongyles Flock 17.98 < 0.001

Genotype 6.24 0.02

Time 1.68 0.20

Genotype × flock 1.11 0.34

Time × flock 12.14 < 0.001

Genotype × time 0.93 0.34

Marshallagia marshalli Flock 20.66 < 0.001

Genotype 6.57 0.01

Time 2.27 0.14

Genotype × flock 1.48 0.23

Time × flock 0.28 0.60

Genotype × time 0.28 0.60

Nematodirus Flock 6.16 < 0.001

Genotype 0.73 0.39

Time 1.55 0.22

Genotype × flock 0.25 0.91

Time × flock 1.29 0.28

Genotype × time 0.01 0.93

Total nematode, Strongyle, and Nematodirus FEC were transformed as ln(FEC + 1)
and M. marshalli FEC were transformed as the square root of FEC before analysis.

FIGURE 6 | Genotype means for FEC (egg/gram of feces) for the PstI
restriction-fragment polymorphism in the Ovar-DRB1 gene for several
parasite classes. Values for Strongyle, Nematodirus sp., and total nematode
FEC were transformed as ln(FEC + 1) for statistical analysis; least-squares
means (m) were back-transformed to the original scale as (em − 1) for
presentation and are geometric, rather than arithmetic, means. Values for M.
marshalli FEC were transformed as the square root of FEC for analysis;
least-squares means shown here are based on untransfomed FEC.

and use of a normalizing transformation provides an objective
strategy to account for the presence of extreme values.

Results from analysis of untransformed FEC assuming a neg-
ative binomial distribution did not differ greatly from those from

FIGURE 7 | Least-squares means and SEs for effects of FAMACHA
score on packed cell volume (PCV).

the analysis of transformed FEC. Means for untransformed M.
marshalli, Strongyle, and total nematode FEC assuming a neg-
ative binomial distribution were 40 (P = 0.02), 18 (P = 0.01),
and 43% (P = 0.15) lower, respectively, for lambs of genotype
A1A1 compared to lambs of genotype A1A2. A significant effect
of genotype was thus confirmed for M. marshalli and Strongyle
FEC, but not for total nematode FEC, perhaps in association
with different contributions of the various parasite classes to total
nemadode FEC among flocks and measurement times.

Consistent effects of measurement time on FEC were not
observed for any parasite class, but flock × measurement time
interaction was significant for Strongyle and total nematode FEC
(Table 6). The interaction was explained by a threefold increase
in Strongyle FEC between the first and second measurement
time in flock 3 (Figure 5). Significant difference in FEC between
measurements times were not observed in other flocks.

Effects of genotype were not observed for lamb body weight
or PCV. The distribution of FAMACHA scores revealed little evi-
dence of anemia in these lambs, with frequencies across flocks
and measurement times for FAMACHA scores of 1 through 5 of
40, 44,15, 1, and 0%, respectively. No association was observed
beteween FAMACHA scores and lamb body weights or FEC
for any parasite class. However, a significant association was
observed between FAMACHA scores and lamb PCV (Figure 7).
The PCV declined linearly as FAMACHA scores declined from
1 to 3 and were much lower for the two lambs that received a
FAMACHA score of four. After adjusting for effects of herd and
measurement time, a residual correlation of −0.51 (P < 0.001)
was observed between PCV and the FAMACHA score.

Discussion

Breeding for resistance to nematode infection can complement
the use of anthelmintics in sheep husbandry. Resistant ani-
mals can be selected on the basis of low FEC (Eady et al., 2003;
Kahn et al., 2003), and measurement of FEC is generally con-
sidered to be the standard method for assessment of the level
of resistance to GIN. The number of eggs is easy to measure,
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TABLE 7 | Comparision of of results of the current study with other investigations of Ovar-DRB1 or nearby genes.

Breed Country Method Gene Association Reference

Suffolk Ireland PCR products sequenced Ovar-DRB1 Low FEC Sayers et al. (2005)

Romanov Poland Microsatellite Ovar-DRB1 Low FEC Charon et al. (2002)

Scotish Blackface Scotland Simple Tandom Repeat Ovar-DRB1 Low FEC Schwaiger et al. (1995)

Pelibuey Mexico Microsatellite Ovar-DRB1 LowFEC Figueroa Castillo et al. (2011)

Corriedale Brazil Microsatellite IL- 4 Low FEC Benavides et al. (2009)

Texel Ireland Microsatellite IFN-γ Low FEC Sayers et al. (2005)

Soay Scotland Microsatellite IFN-γ Low FEC Coltman et al. (2001)

Ghezel Iran PCR-RFLP Ovar-DRB1 Low FEC Current study

indicates parasitism per se, and correlates well to the number
of adult nematodes present in lambs (Douch et al., 1996; Baker,
1999). However, FEC is affected by several factors, such as par-
asite fecundity and egg-laying patterns, variations in egg distri-
bution in feces, diet composition, intestinal transit time, and the
level of immunity (Douch et al., 1996). A disadvantage of FEC as
a marker of resistance is the requirement that animals be infected,
either naturally or artificially, to determine the FEC value. The
effort and cost in obtaining FEC measurements can also be a
disadvantage, especially under extensive production conditions.
Under some production conditions, it is therefore difficult to
assess the resistance status of animals for breeding programs
and there is, consequently, considerable interest in the evalua-
tion of phenotypic and genetic markers associated with parasite
resistance. Other phenotypic measures such as degree of anemia,
circulating eosinophil counts, antibody levels to larval, or adult
stages, and plasma pepsinogen concentrations can be used to pre-
dict worm burdens and resistance levels in infected sheep, but
phenotypic markers that allow accurate prediction of an individ-
ual’s resistance status in the absence of infection are generally not
available (Albers et al., 1987; Beh and Maddox, 1996).

A number of studies around the world have attempted to
identify relationships between genetic resistance to GIN and
various genes and genetic markers. Some of these studies have
been summarized in Table 7. Polymorphisms within the ovine
MHC complex were associated with resistance to T. colubriformis
(Douch and Outteridge, 1989), T. circumcincta (Schwaiger et al.,
1995), and H. contortus (Luffau et al., 1990; Outteridge et al.,
1996). However, Cooper et al. (1989), Blattman et al. (1993) and
Hulme et al. (1993) did not find evidence of an association
between polymorphisms in the ovine MHC locus and resistance
or susceptibility to H. contortus. A list of QTL for GIN resis-
tance in sheep was provided by Dominik (2005). This review
suggests that there is considerable evidence for an important
role for the MHC in parasite susceptibility and resistance to H.
contortus.

Sallé et al. (2012) reported four QTL regions on sheep chro-
mosomes (OAR) 5, 12, 13, and 21 in Romane X Martinik Black
Belly backcross lamb that had an important role in genetic resis-
tance toH. contortus. Riggio et al. (2014) suggested other regions
of OAR1, 3, 4, 5, 7, 19, 20, and 24 that were involved in GIN resis-
tance. Davies et al. (2006) likewise found evidences for QTL on
chromosomes 2, 3, 14, and 20 that were associated with parasitic
infections in Scottish blackface sheep.

Results of the current study provided additional evidence
of an association between polymorphism in the DRB1 gene
and GIN FEC, and the first indication of an effect of this
locus on M. marshalli FEC. Screening of GIN FEC under nat-
ural infection is informative because it corresponds to typi-
cal conditions in the production environment. However, pos-
sible interactions among effects of different parasite classes
and variation among flocks and measurement times in parasite
loads preclude a deeper understanding of mechanisms driv-
ing the observed associations. More intersive studies, involv-
ing controlled infections with individual species of GIN are
thus required to confirm hypothesized effects of DRB1 geno-
type on GIN parasite resistance and to confirm the speci-
ficity or generality of observed associations among parasite
classes.

A significant negative association between PCV and
FAMACHA score confirmed that the FAMACHA score can be
used to diagnose differences in PCV in lambs and was consistent
with previous results (Kaplan et al., 2004). Recommendations for
veterinary intervention based on FAMACHA scores (Vatta et al.,
2001) suggest that lambs with scores of one or two do not require
attention, but that lambs with scores of four or five require
immediate attention. Recommendations for animals with a score
of three depend upon the age and nutritional status of the lamb
and anticipated cause(s) of anemia. Intervention is generally
recommended for lambs, but not adults, with a FAMACHA
score of three. In the current study, the lack of association
between FAMACHA scores and FEC, low overall FEC levels, and
limited evidence for parasitism by H. contortus (the only GIN,
of those evaluated, that causes blood loss and anemia) suggest
that parasitism probably is not the main cause of subclinical
anemia in these flocks. Nonetheless, results in Figure 7 indicate
that FAMACHA scores can be used to detect mean differences in
PCV among lambs.

Conclusion

Our results reinforce previous evidence that some alleles of the
ovine MHC are involved in determining levels of susceptibility or
resistance to infection with GIN. This result provides the oppor-
tunity to use these alleles as genetic markers of resistance to GIN,
leading to the development of that are better adapted to parasite
infestations in the environment.

Frontiers in Genetics | www.frontiersin.org 9 March 2015 | Volume 6 | Article 105

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Valilou et al. MHC-DRB1 gene polymorphism in sheep

Implication of this research are that FAMACHA tests and
polymorphic markers of Ovar-DRB1 can be used in applied ani-
mal breeding programs on sheep farms of the region, especially in
animals infected with GIN and located in the temperate regions of
Asia. Assessment of the precision of genetic evaluations based on
molecular information has potential to provide a new perspective
on the design of sheep breeding schemes and selection programs
(Assenza et al., 2014).
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