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Abstract 34 

Background 35 

Heterogeneous types of gait impairment are common post-stroke. Studies used supervised and 36 

unsupervised machine learning on discrete biomechanical features to summarize the gait cycle 37 

and identify common patterns of gait behaviors. However, discrete features cannot account for 38 

temporal variations that occur during gait. Here, we propose a novel machine-learning pipeline 39 

to identify subgroups of gait behaviors post-stroke using kinematic time series data.  40 

Methods 41 

We analyzed ankle and knee kinematic data during treadmill walking data in 39 individuals post-42 

stroke and 28 neurotypical controls. The data were first input into a supervised dual-stage 43 

Convolutional Neural Network-Temporal Convolutional Network, trained to extract temporal and 44 

spatial gait features. Then, we used these features to find clusters of different gait behaviors 45 

using unsupervised time series k-means. We repeated the clustering process using 10,000 46 

bootstrap training data samples and a Gaussian Mixture Model to identify stable clusters 47 

representative of our dataset. Finally, we assessed the kinematic differences between the 48 

identified clusters using 1D statistical parametric mapping ANOVA. We then compared gait 49 

spatiotemporal and clinical characteristics between clusters using one-way ANOVA.  50 

Results 51 

We obtained five clusters: two clusters of neurotypical individuals (C1 and C2) and three 52 

clusters of individuals post-stroke (S1, S2, S3). C1 had kinematics that resembled the normative 53 
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gait pattern. Individuals in C2 had a shorter stride time than C1. Individuals in S1 had mild 54 

impairment and walked with increased bilateral knee flexion during the loading response. 55 

Individuals in S2 had moderate impairment, were the slowest among the clusters, took shorter 56 

steps, had increased knee flexion during stance bilaterally and reduced paretic knee flexion 57 

during swing. Individuals in S3 had mild impairment, asymmetric swing time, had increased 58 

ankle abduction during the gait cycle and reduced dorsiflexion bilaterally during loading 59 

response and stance. Every individual was assigned to a cluster with a cluster membership 60 

likelihood above 93%. 61 

Conclusions 62 

Our results indicate that joint kinematics in individuals post-stroke are distinct from controls, 63 

even in those individuals with mild impairment. The three subgroups post-stroke showed distinct 64 

kinematic impairments during specific phases in the gait cycle, providing additional information 65 

to clinicians for gait retraining interventions.  66 

Key words 67 

Stroke, gait, rehabilitation, machine learning, neural networks, clustering, kinematics  68 
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Background 69 

Gait patterns differ between stroke survivors due to heterogeneity in stroke lesion type, size, 70 

location, and differences in recovery 1–7. These differences make intervention prescription 71 

difficult in both research and rehabilitation interventions. Developing approaches to identify 72 

intervention targets systematically can enhance the efficacy of physical therapy interventions to 73 

improve walking function in stroke survivors.  74 

 75 

The different types of gait patterns post-stroke have been identified qualitatively and 76 

quantitatively in prior research studies 1,2,5,6,8. Using visual assessment of paretic 77 

electromyography (EMG), a seminal study 1 identified three subgroups of abnormal muscle 78 

activation during gait post-stroke based on activation onset and levels – early triceps surae 79 

activation, decreased activation of paretic musculature, and paretic muscle coactivation 1. 80 

Similarly, Olney and Richards qualitatively identified different subgroups of gait impairments 81 

using peak spatiotemporal, peak kinematic, and peak kinetic characteristics 6. A more 82 

systematic quantitative approach used paretic EMGs (onset and percentages of maximum 83 

voluntary contraction) and paretic peak kinematics input into a hierarchical clustering algorithm 84 

to identify four clusters of gait behaviors post-stroke 2: a fast walking group with slight knee 85 

flexion in mid-stance, an intermediate velocity group with increased knee flexion in mid-stance, 86 

a slow group with excessive knee flexion in midstance and a slow group with knee 87 

hyperextension in mid-stance 2. Our recent work used spatiotemporal variables and peak 88 

ground reaction forces from both the paretic and non-paretic extremity input into a k-means 89 

clustering algorithm to identify four types of gait behaviors in individuals post-stroke 5: fast and 90 

asymmetric walkers, moderate speed, and asymmetric walkers, slow walkers with frontal plane 91 

impairment, and slow and symmetric walkers. While all these previous studies have provided 92 
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valuable information to identify different types of gait behaviors post-stroke, a caveat is that they 93 

have used discrete metrics over the gait cycle 2,5,6,8. These discrete gait metrics summarize 94 

changes in magnitude but not in the timing of gait kinematics, kinetics, and EMGs that result in 95 

gait impairment post-stroke. Thus, these previous studies cannot identify specific phases of the 96 

gait cycle that could be targeted in rehabilitation interventions. 97 

 98 

The use of machine learning methods to study gait has become common practice in research 9. 99 

Previous studies using supervised methods aimed to accurately classify neurotypical and 100 

pathological gait or detect types of activities 9. Most of these studies use handpicked discrete 101 

summary features 9. However, machine learning algorithms can be leveraged to select more 102 

complex and objective features using multivariate time series. Cui et al. 10 proposed a 103 

framework using neural networks to handle multidimensional time series to classify neurotypical 104 

and post-stroke gait and assess walking quality. While providing a walking quality score is 105 

promising, it does not inform clinicians what to target systematically during rehabilitation 106 

interventions. Unsupervised methods, on the other hand can be employed to identify clusters in 107 

a dataset 11. For example, Pulido-Valdeolivas et al 12 used time series and combined dynamic 108 

time-warping algorithms with unsupervised clustering methods to identify clusters of gait 109 

behaviors in individuals with hereditary spastic paraplegia. The dynamic time warping approach 110 

of the previous study can handle multivariate time series and uses a distance metric to compare 111 

the similarity between signals that may differ in duration 13. However, a completely unsupervised 112 

approach can be sensitive to outliers dependent on the choice of distance measure and leading 113 

to results that are not always generalizable, thus difficult to interpret 11. Therefore, using a first 114 

supervised layer to accurately extract features distinct between individuals post-stroke and 115 

neurotypical controls before a second unsupervised machine learning methods to identify the 116 

clusters might be a more suitable approach to identify clusters of gait behaviors post-stroke. 117 

 118 
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Here, we designed a pipeline to analyze time series data that combines supervised and 119 

unsupervised analyses. First, we use supervised analyses to extract features from time series 120 

data that best distinguish between individuals post-stroke and neurotypical controls. Then, we 121 

use unsupervised clustering using features weights of the supervised stage to identify clusters 122 

of gait behaviors. We compared the performance of our proposed pipeline with an unsupervised 123 

time series clustering algorithm available in R 13. We developed and validated our approach 124 

using kinematic data, as these data can be assessed in the clinic via visual gait analysis or 125 

simple video gait analysis 14–16. We implemented our pipeline in a sample of participants post-126 

stroke and age-matched controls, to determine whether less impaired individuals post-stroke 127 

could be comparable to neurotypical controls. We hypothesized that we would observe distinct 128 

clusters of gait behaviors in individuals post-stroke 1,2,5, and a cluster of control individuals and 129 

individuals post-stroke with gait behaviors indistinguishable from controls 5, indicative of full 130 

recovery of gait post-stroke. Our proposed pipeline can be applied to other time series data 131 

during different motor tasks and to other pathological populations to identify subtypes of 132 

behaviors across different variables and populations. 133 

Methods 134 

Data for a total of � = 67 participants, including 39 individuals post-stroke and 28 age and sex-135 

matched controls were curated from previous studies (Table 1) 5,17,18. Inclusion criteria for 136 

participants post-stroke were: (1) a unilateral stroke more than six months before the study, (2) 137 

paresis confined to one side, (3) ability to provide informed consent and communicate with the 138 

investigators, and (4) ability to walk 5 minutes on a treadmill without the assistance of another 139 

individual or walking aids (e.g., a cane or walker). The use of an ankle-foot orthosis or brace 140 

was permitted during data collection. Inclusion criteria for neurotypical participants were: (1) 141 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2024. ; https://doi.org/10.1101/2024.10.28.620665doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.28.620665
http://creativecommons.org/licenses/by-nc/4.0/


7 

 

being of the same age and sex as a participant post-stroke, (2) having no musculoskeletal or 142 

neurologic injury that hinders walking ability, (3) ability to provide informed consent and 143 

communicate with the investigators. 144 

Experimental Protocol for Data Collection  145 

We performed the following assessments in both participants post-stroke and neurotypical 146 

controls: Berg Balance Scale (BBS) 19, Activity-Specific Balance Confidence (ABC) test 20, and 147 

10-meter walk test. In participants post-stroke, we performed the lower extremity motor domain 148 

of the Fugl-Meyer (FM) assessment of motor impairment 21 and the Functional Gait Assessment 149 

(FGA) 22. 150 

 151 

After clinical assessments, we determined participants’ self-selected speed on an instrumented 152 

treadmill (Bertec, Colombus, USA) using the staircase method 23, by progressively increasing or 153 

decreasing the speed in increments of 0.05 m/s until the participant felt that the speed was 154 

comfortable. The treadmill speed was required to be at least 70% of their overground walking 155 

speed measured via the 10-meter walk test. Post-stroke participants walked at this speed for 156 

three minutes, instructed to walk as it felt natural. For neurotypical controls, participants walked 157 

at their self-selected speed and the speed of a participant post-stroke matched for age and sex. 158 

All clustering analyses in control participants used data collected while walking at a matched 159 

speed of a stroke participant of the same age and sex to differentiate impairments due to stroke 160 

from those due to walking at a slower speed.  161 

 162 

Segmental kinematics were recorded using a full-body marker set, placing retroreflective 163 

markers on bony landmarks and marker clusters over the upper arms, lower arms, thighs, 164 

shanks, and heels 24,25. Marker data were recorded using a 10-camera Qualisys Oqus motion 165 
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capture system (Qualisys AB, Göteborg, Sweden) at 100 Hz. Forces were measured from force 166 

plates embedded in the treadmill at a sample 1000 Hz. 167 

Data Processing 168 

Markers were labeled using Qualisys Track Manager and then exported to Visual 3D (C-Motion, 169 

Kingston, Canada) to construct a full-body model. Three-dimensional marker positions were 170 

filtered using a Butterworth lowpass filter with a 6 Hz cutoff frequency. We then created a body 171 

model in Visual 3D with the following segments: trunk, thighs, shanks, and feet. Participants 172 

post-stroke wore a safety harness over their pelvis to prevent falls 18. Thus, we removed the 173 

reflective markers from the pelvis, which prevented us from calculating hip and pelvis 174 

kinematics. All data were exported from Visual 3D to MATLAB for further processing.  175 

 176 

Data processing and analysis were done in MATLAB (2023b, The MathWorks Inc, Natick, USA) 177 

using custom-written code. Kinematic data for the ankle in the plantar/dorsiflexion degree of 178 

freedom, ankle abduction/adduction degrees of freedom, and the knee in the flexion/extension 179 

degrees of freedom were extracted for the middle 50 seconds of the walking trial for both 180 

extremities in all participants (Fig. 1 A). Data were segmented into strides using ground reaction 181 

forces, with a threshold of 32 N 26,27 to detect initial contact. All strides were interpolated in time 182 

to 101 samples, with the first sample corresponding to 0% of the gait cycle or initial contact and 183 

100% corresponding to the end of the gait cycle. We obtained the median over the gait cycle 184 

across all strides to reduce the influence of outlier stepping patterns, thus obtaining a 185 

representative stride for each degree of freedom in both extremities for each participant (Fig. 1 186 

A). In participants post-stroke, we identified the paretic and non-paretic extremities. For data 187 

collected in neurotypical adults, leg dominance was defined as the leg they would use to kick a 188 

ball, which was the right leg for all participants. Control data are labeled as dominant and non-189 

dominant, and comparisons are made for the non-dominant leg vs. the paretic leg, and the 190 
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dominant leg vs. the non-paretic leg. 0% of the gait cycle is expressed relative to the non-191 

dominant or paretic heel strike for both limbs.  192 

Time series clustering analyses 193 

Machine Learning Pipeline 194 

We used a deep learning method combining a Convolutional Neural Network (CNN) 28 and a 195 

Temporal Convolutional Network (TCN) 29 to extract features from kinematic time series in the 196 

frequency and in the time domain, respectively, to have a complete gait representation for each 197 

individual. To extract the frequency-related features of the gait signals, we first applied a 198 

continuous wavelet transform 30 to express our data in the time-frequency domain and then 199 

used a CNN. In parallel, to extract the time-related features, we used a TCN on the kinematic 200 

time series. Hence, CNN and TCN were first trained with labels (control/stroke) to select 201 

features in a multivariate signal that can distinguish the two groups. Then, we used 202 

unsupervised time series k-means clustering to identify clusters of gait behaviors using the 203 

combined weights of the CNN-TCN features. The clustering pipeline was coded in Python (3.11, 204 

Python Software Foundation) and is available for download 31. In more detail, the different 205 

stages of our pipeline are (Fig. 1B): 206 

1) Convolutional Neural Network 32: We first pre-processed the time series data into a 207 

continuous wavelet transform module that allows a two-dimensional representation of the 208 

signals as time-related frequency components. We multiplied each signal by the Morlet 209 

wavelet and the wavelet coefficients of the transformed signals were used as the inputs to 210 

the CNN. Then, the extracted wavelet coefficients are input into a CNN designed to learn 211 

spatial hierarchies of features automatically and adaptively through backpropagation. Two 212 
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convolution kernels were applied to obtain 32 convolutional kernels with the size of 3×3, 213 

followed by a 2D max pooling layer, and 64 convolutional kernels with the size of 3×3, a 2D 214 

max pooling layer, are used to extract high-level features. A flattened layer was used to 215 

reorganize the feature maps into a one-dimensional array and fed into two consecutive fully 216 

connected dense layers of 128 and 64 features, respectively. 217 

2) Temporal Convolutional Network 29: Since CNN only collects waveform characteristics, 218 

resulting in a lack of time series characteristics, the raw signals are fed in parallel, directly 219 

into a TCN module to extract temporal features. By fusing the two networks, we can 220 

effectively learn the spatial-temporal information in each gait cycle. The TCN is a residual 221 

network-based CNN designed for handling time sequence data. The output of TCN is a 222 

flattened layer of 64 features. 223 

3) Supervised feature extraction: the outputs of CNN and TCN are concatenated into a 224 

combined TCN- CNN model and fed into two consecutive fully connected layers of 101 225 

features and trained with the labels control/stroke to identify the high-level spatiotemporal 226 

features for neurotypical and post-stroke gait.  227 

4) Unsupervised clustering: Once the full model is trained, it serves as a feature extractor for 228 

every participant. The gait signals are fed again into the trained model, then the extracted 229 

features are further used for time series k-means clustering.  230 

To ensure that the results are representative of our dataset and not dependent on a unique 231 

training and testing split, we bootstrapped the classification stroke/control from CNN-TCN, CNN 232 

only and TCN only, a total of 10,000 times. At each iteration, a new random stratified 80/20 233 

train/test split was performed to train the models. We also performed bootstrap analyses of the 234 

R time series clustering algorithms using 10,000 iterations, with each iteration being a new 235 

random seed to change the starting point of the algorithm.  236 
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Number of clusters and cluster stability 237 

To determine the optimal number of clusters �, we calculated the within-clusters sum of squared 238 

errors over � �10,000 bootstrap iterations 33 for � � 2 to 10 clusters and identified the number of 239 

clusters �� that did not decrease the within-clusters sum of squared errors. We then selected � 240 

as the number of clusters having an average within-cluster sum of squared errors under one 241 

standard error of �� 11 (Fig. 1 C.1)  242 

After the bootstrap iterations, we obtained a clustering matrix � (individuals x iterations) where 243 

each element represents a cluster number from 1 to �. To assess the occurrences of individuals 244 

classified together in the same cluster (Fig. 1 C.2), we first calculated a similarity matrix � 245 

(individuals x individuals):  246 

��,� � ∑ 	
��,� , ��,���
��� �   

Where � and � are indices to represent individuals, � is the iteration index and 247 

	
��,� , ��,�� � �1, �� ��,� � ��,�0, �� ��,� � ��,�

� 

Then to recover the � number of stable clusters, we compute the dissimilarity matrix � as 248 

� � 1 � �, and projected it in a lower two-dimensional latent space using multidimensional 249 

scaling, preserving the pairwise Euclidean distance between each element 11 (Fig. 1 C.3). 250 

Finally, with the new latent space coordinates, we performed a clustering for � clusters using a 251 

Gaussian mixture model as a sum of � Gaussian distributions with their own mixing proportions, 252 

mean, and full covariance matrices 11. This probabilistic method is better suited to handle 253 

nonspherical clusters as we obtained in the latent space (Fig. 1 C.3) and allows us to obtain 254 

individual probability estimates of each participant belonging to each of the identified clusters 11. 255 
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The Gaussian mixture clustering was performed � times, each iteration corresponding to new 256 

initialization parameters for the Gaussian mixture model. The final clustering model was chosen 257 

to minimize the Akaike Information Criterion across the � iterations (Fig. 1 C.4) 11,34.  258 

Pipeline comparison 259 

We verified if combining both frequency and time-related features improves the classification 260 

into stroke/control by comparing our full CNN-TCN pipeline to the classification output of CNN 261 

only and TCN only. At the supervised stage, i.e., stage 3, after the last layer, we added a size 1 262 

fully connected layer using a sigmoid activation for a binary stroke/control classification. We 263 

processed similarly to assess the classification of the CNN and TCN blocks alone. We used the 264 

classification of each test set to build the confusion matrix of actual versus predicted labels 265 

(stroke/control) and compute a standard accuracy metric of the supervised models 28. We also 266 

compared our method to a readily available unsupervised multivariate time series clustering 267 

using a dynamic time-warping algorithm (R package dtwclust) 13 and a partitional clustering 268 

performed on the dynamic time-warping barycenter averaging centroids. We used the entire set 269 

for the unsupervised clustering into two groups.  270 

Finaly, we evaluated the goodness of fit of the five components Gaussian mixture model by 271 

comparing the Akaike Information Criterion for our CNN-TCN pipeline compared to TCN only 272 

and CNN only. In addition, we also verified that the supervised learning layers are not biased 273 

toward classifying an individual into a control or a stroke group (Supplementary materials 1). To 274 

do so, we looked at the projection of the dissimilarity matrix into the multidimensional scaling 275 

space and after the 10,000 iterations when (1) we mislabeled a stroke participant that had the 276 

highest Fugl-Meyer score (i.e. 34) into a control participant (total 67 individuals, 38 post-stroke 277 

and 29 control), and (2) we added the high Fugl-Meyer stroke participant with a control and a 278 

stroke label (total 68 individuals, 39 post-stroke and 29 control). 279 
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Statistical analysis 280 

Comparisons between individuals post-stroke and neurotypical controls 281 

We assessed for significant differences in demographics and clinical measures between 282 

participants post-stroke and neurotypical controls in SPSS (29.0, IBM Corp, Armonk, USA). 283 

Data were assessed for normality using the Shapiro-Wilk test. If data were normally distributed, 284 

we used independent samples t-tests to compare data between groups. Otherwise, we used the 285 

Wilcoxon Signed Rank test. To compare differences in the distribution of males vs. females 286 

across groups, we used a Chi-Square test. For normal data, values are reported as mean ± SD, 287 

and for non-normal data, values are reported as median ± IQR.  288 

 Comparison within clusters 289 

Within each control cluster (C1 and C2), we compared the participants' self-selected speed to 290 

the matched walking speed using a paired t-test.  291 

Within each stroke cluster (S1, S2, S3), we used Student’s t-tests to assess for asymmetries 292 

within clusters between paretic/non-paretic extremities for step length, swing time, and stance 293 

time. The significance level was Bonferroni corrected according to the number of tests. We also 294 

computed Pearson’s correlation coefficient between the treadmill walking speed and the clinical 295 

assessments. 296 

Comparison between clusters 297 

We used a one-way ANOVA to compare demographics, clinical measures, and spatiotemporal 298 

gait measures (dependent variables) between clusters (independent variable). If we observed 299 

significant results from the ANOVA, we performed multiple comparisons with Tukey’s test. We 300 
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clarify that these discrete metrics were not used in the machine learning pipeline to identify the 301 

distinct gait clusters and were assessed post-hoc. 302 

We used 1-dimensional statistical parametric mapping 35 one-way ANOVA with cluster identifier 303 

as the independent variable to assess kinematic time series differences between clusters. Post-304 

hoc tests were done via statistical parametric mapping t-tests with Bonferroni correction for 305 

multiple comparisons. We used 2-dimensional statistical parametric mapping 36 to compare the 306 

continuous wavelet transform matrix coefficients between groups in the time-frequency domain 307 

(Supplementary materials 2). These kinematics characteristics were used by the machine 308 

learning pipeline to identify the distinct gait clusters. 309 

Results 310 

Participants post-stroke were 59.5 ± 10.8 years old, had a mass of 76.5 ± 15.8 kg, and were 92 311 

± 84.5 months post-stroke. 22 participants were male and 17 female. Control participants were 312 

62.4 ± 14.2 years old and had a mass of 74.1 ± 16.3 kg. 12 control participants were male and 313 

16 female (Table 1). As data were extracted for the middle 50 s of walking to ensure a steady 314 

gait pattern, this resulted in 39.2 ± 7.2 strides for control participants at the matched speed and 315 

37.9 ± 6.5 strides for individuals post-stroke. Two participants post-stroke wore an ankle brace 316 

while walking. 317 

No significant differences in demographics between participants 318 

post-stroke and neurotypical controls 319 

We observed no significant differences between participants post-stroke and neurotypical 320 

controls in age, height, mass, self-selected treadmill walking speed, or matched walking speed 321 
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(p>0.050). We did not observe differences in the study samples’ proportion of males vs. females 322 

(p>0.05). We observed significant differences in ABC and BBS between participants post-stroke 323 

and neurotypical controls (Wilcoxon Signed Rank test p<0.001, Table 1).  324 

Table 1 here 325 

CNN-TCN performed better than other time series clustering 326 

algorithms 327 

The confusion matrix for the four evaluated algorithms is presented in Table 2. During the 328 

supervised analyses and over 10000 iterations, our CNN-TCN pipeline predicted individuals of 329 

the test set correctly 85.0 ± 14.7 % of the time for stroke participants and 87.7 ± 11.2 % for 330 

control participants. The overall accuracy for the CNN-TCN model was 86.4%, slightly higher 331 

than for CNN alone (86.3%) and TCN alone (84.1%) to classify individuals as stroke/control. 332 

However, the Akaike Information Criterion was lower for the CNN-TCN model (-142.5) 333 

compared to CNN (6.8) alone and TCN alone (-64.0), indicating a significantly better fit of the 334 

five component Gaussian Mixture Model for our proposed full CNN-TCN pipeline. 335 

The unsupervised clustering based on dynamic time warping package in R was better at 336 

predicting control individuals (94.8 ± 0.1 %) but was close to random at predicting stroke 337 

individuals (52.5 ± 0.1 %), which resulted in worse overall accuracy (73.7%). Thus, our fused 338 

pipeline performed better than the individual components of the pipeline and the R package 339 

during supervised analyses using two classes due to the added ground truth knowledge and the 340 

combination of both temporal and spatial features. 341 
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k=5 provided stable clusters 342 

When determining the optimal number of clusters, we first identified the “elbow” 33 at �� � 7, and 343 

then selected � � 5 as the optimum number of clusters using the one standard error (Fig. 1 344 

C.1). Thus, we computed a 5-component Gaussian mixture model from the dissimilarity matrix 345 

(Fig. 1 C.2). We observed two control clusters (C1, C2) and three clusters of individuals post-346 

stroke (S1, S2, S3) (Fig. 1 C.3 and C.4). The mixing proportion, which indicates cluster 347 

membership likelihood, of almost all individuals but one to be assigned to their final cluster was 348 

above 99% (Fig. 1 C.3). Only one participant in S2 had a mixing proportion of 93% for S2, with a 349 

mixing proportion of 7% for S1. None of the individuals post-stroke were assigned to a control 350 

cluster (Fig. 1 C.4).  351 

We further assessed that our pipeline did not introduce bias in the supervised stage with the 352 

added knowledge of groups to extract features. The participant with a maximal Fugl-Meyer, thus 353 

considered to have recovered the most motor function among our participant 21, was always 354 

projected in the stroke clusters part of the multidimensional scaling space when mislabeled to 355 

control or added with a stroke and control label (Supplementary materials 1).  356 

All clusters had significantly different clinical characteristics and 357 

kinematic patterns  358 

We compared demographics, clinical measures, and spatiotemporal characteristics using one-359 

way ANOVA between the five identified clusters (C1, C2, S1, S2, S3), except for FM and FGA 360 

which was between the post-stroke clusters only (S1, S2, S3). All clinical measures were 361 

significantly different between groups: FM (p=0.003), FGA (p=0.02), ABC (p<0.001), BBS 362 

(p<0.001). Age (p=0.56) and height (p=0.94) were not different between clusters. The following 363 

spatiotemporal characteristics were significantly different between clusters (Fig. 3): walking 364 
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speed (p=0.003), stride length (p=0.008), paretic/non-dominant step length (p=0.010), non-365 

paretic/dominant step length (p=0.007), stride time (p=0.001), paretic/non-dominant stance time 366 

(p<0.001), non-paretic/dominant stance time (p=0.004). Paretic/non-dominant swing time 367 

(p=0.57) and non-paretic/dominant swing time (p=0.08) were not significantly different between 368 

clusters.  369 

For the knee and ankle kinematics, using 1D SPM one-way ANOVA, we observed significant 370 

differences between clusters in all degrees of freedom bilaterally: paretic/non-dominant ankle 371 

plantar/dorsiflexion (p<0.001 whole gait cycle), non-paretic/dominant ankle plantar/dorsiflexion 372 

(p=0.049 at loading response, p=0.001 during pre-swing and p=0.006 at terminal stance), 373 

paretic/non-dominant ankle abduction/adduction (p=0.03 during loading response), non-374 

paretic/dominant ankle abduction/adduction (p<0.001 whole gait cycle), paretic/non-dominant 375 

knee flexion/extension (p=0.03 during initial contact and loading response, p<0.001 during pre-376 

swing, and p=0.04 during terminal swing) and non-paretic/dominant knee flexion/extension 377 

(p=0.002 during terminal swing, p=0.001 during loading response, and swing p=0.007 during 378 

pre-swing). We describe each cluster next:  379 

Control Cluster 1 (C1): N=12. Normative gait pattern (Fig. 2). Participants in C1 were 62.8 ± 380 

13.8 years old, walked at a self-selected speed of 0.96 ± 0.28 m/s, and were significantly slower 381 

when matched to participants post-stroke (0.65 ± 0.20 m/s, p=0.010). This cluster was 382 

composed exclusively of control individuals. Their non-dominant and dominant step lengths 383 

were both 0.39 ± 0.07 m, stride length was 0.78 ± 0.13 m, stride time was 1.45 ± 0.26 s, non-384 

dominant stance time was 0.99 ± 0.22 s, dominant stance time was 1.03 ± 0.26 s, non-dominant 385 

swing time was 0.46 ± 0.06 s, and dominant swing time was 0.45 ± 0.06 s (Fig. 3). The 386 

kinematics in this cluster are those described in the literature for non-injured, neurotypical adults 387 

37–40. We report all kinematic post-hoc comparisons relative to this cluster (blue line in Fig. 4 in 388 

all panels).  389 
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Control Cluster 2 (C2): N=16. Control participants with short stride times. This cluster was also 390 

composed exclusively of control individuals. Participants in C2 were 62.1 ± 15.6 years old, 391 

walked at a self-selected speed of 0.75 ± 0.22 m/s (significantly slower than the self-selected 392 

speed of C1, p=0.03), and a matched speed to participants post-stroke of 0.63 ± 0.18 m/s, 393 

(significantly slower than their self-selected speed, p=0.034, but not significantly slower than the 394 

imposed speed of C1). Compared to C1, they had shorter non-dominant stance time (0.78 ± 395 

0.13 s, p=0.02) and stride time (1.18 ± 0.16 s, p=0.009) when walking at speeds matched to 396 

participants post-stroke (Fig. 3). The non-dominant step length (0.34 ± 0.08 m), dominant step 397 

length (0.32 ± 0.08 m), stride length (0.66 ± 0.16 m), dominant stance time (0.82 ± 0.18 s), non-398 

dominant swing time (0.39 ± 0.06 s), and dominant swing time (0.35 ± 0.15 s) were not 399 

significantly different from C1. Interestingly, we did not observe significant differences in 400 

kinematics between C1 and C2 (Fig. 4). The differences between the two control clusters are 401 

present in the time-frequency domain for the dominant knee flexion/extension (Supplementary 402 

materials 2). In the same range of normalized frequency [0.025-0.034 cycles/sample], compared 403 

to C1, the coefficients of the continuous wavelet transform matrix in C2 were lower during initial 404 

swing and loading response, but higher during mid swing (Supplementary materials 2).  405 

Stroke Cluster 1 (S1): N=17. Stroke participants with increased knee flexion at initial 406 

contact/loading response bilaterally. Participants in S1 were 58.2 ± 13.8 years old and walked at 407 

a speed of 0.65 ± 0.17 m/s (Fig. 3). Their FM score was 29 ± 4, indicating mild impairment, FGA 408 

was 23 ± 5, and BBS was 54 ± 2. ABC was 74 ± 14, lower than C1 (p<0.001) and C2 (p<0.001) 409 

(Fig. 3). Compared to C1, they had a shorter paretic stance time (0.76 ± 0.19 s, p=0.005), but 410 

no differences were found for paretic step length (0.35 ± 0.07 m), non-paretic step length (0.35 411 

± 0.08 m), stride length (0.70 ± 0.15 m), stride time (1.24 ± 0.22 s), non-paretic stance time 412 

(0.88 ± 0.21 s), paretic swing time (0.48 ± 0.30 s), non-paretic swing time (0.37 ± 0.06 s) (Fig. 413 

3). No asymmetry was detected between the paretic and non-paretic extremities for step length 414 
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(p=0.90), swing time (p=0.14) and stance time (p=0.07). Compared to C1, we observed 415 

increased paretic knee flexion at initial contact/loading response (p=0.005), and during terminal 416 

swing (p=0.005) (Fig. 4). In the non-paretic extremity, we observed increased ankle abduction 417 

during pre-swing (p=0.004), terminal swing (p=0.003), and terminal stance (p=0.001). Finally, 418 

for the non-paretic side, we observed increased knee flexion during pre-swing (p=0.002), at 419 

initial contact, and loading response (p=0.002) (Fig. 4). This cluster had a significant positive 420 

correlation between walking speed and FM (r=0.77, p<0.05), walking speed and FGA (r=0.69, 421 

p=0.003), but no correlation between speed and ABC or BBS (Fig. 5). One participant in S1 422 

wore an ankle brace. 423 

Stroke Cluster 2 (S2): N=12. Increased stance knee flexion bilaterally and reduced paretic 424 

swing knee flexion. Participants in S2 were 64.0 ± 3.4 years old and walked at a slower speed 425 

(0.40 ± 0.15 m/s, p<0.05 compared to all other clusters) (Fig. 3). The FM score was 23 ± 5 426 

indicating moderate impairment. FM score was lower than S1 (p=0.004) and S3 (p=0.02). FGA 427 

was 17 ± 6, lower than S1 (p=0.019) but not S3 (p=0.06). BBS was 46 ± 7, lower than S1 428 

(p<0.001) and S3 (p=0.02). ABC was 76 ± 15. Compared to C1, individuals post-stroke in S2 429 

had a shorter paretic step length (0.26 ± 0.08 m, p=0.005), non-paretic step length (0.25 ± 0.09 430 

m, p=0.004), and stride length (0.51 ± 0.17 m, p=0.004). Compared to S1, paretic step length 431 

(p=0.005), non-paretic step length (p=0.004) and stride length (p=0.004) were also shorter, with 432 

longer stride time (1.47 ± 0.22 s, p=0.039) and paretic stance time (0.99 ± 0.18 s, p=0.005). 433 

Their non-paretic stance time was 1.12 ± 0.25 s, paretic swing time 0.48 ± 0.15 s, non-paretic 434 

swing time 0.35 ± 0.12 s (Fig. 3). No asymmetry was detected between the paretic and non-435 

paretic extremities for step length (p=0.84), swing time (p=0.07) and stance time (p=0.18). 436 

Compared to C1, we observed increased paretic ankle abduction during loading response and 437 

stance (p<0.001), and terminal swing (p=0.003). Compared to C1, we observed increased 438 

paretic knee flexion at initial contact and loading response (p=0.005), and during terminal swing 439 
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(p=0.004), and decreased paretic knee flexion mid-swing (p=0.004) (Fig. 4). In the non-paretic 440 

extremity, we observed increased ankle abduction during the entire stance phase (p<0.001) and 441 

pre-swing (p=0.005) (Fig. 4). We also observed decreased non-paretic dorsiflexion at initial 442 

contact and loading response (p=0.001). Finally, we observed increased non-paretic knee 443 

flexion from terminal swing to loading response (p=0.001) (Fig. 4). This cluster had a significant 444 

positive correlation between walking speed and FGA (r=0.66, p=0.02) only (Fig. 5), potentially 445 

indicative of balance impairment.  446 

Stroke Cluster 3 (S3): N=10. Increased ankle abduction. Participants in S3 were 56.7 ± 11.1 447 

years old and walked at a speed of 0.62 ± 0.19 m/s. The FM score was 28 ± 4, ABC was 79 ± 448 

12, FGA was 23 ± 5, BBS was 52 ± 3 (Fig. 4). Compared to C1, they had similar gait 449 

spatiotemporal characteristics paretic step length was 0.33 ± 0.09 m, non-paretic step length 450 

0.34 ± 0.08 m, stride length 0.67 ± 0.17 m, stride time 1.31 ± 0.22 s, paretic stance time 0.82 ± 451 

0.18 s, non-paretic stance time 0.92 ± 0.12 s, paretic swing time 0.49 ± 0.07 s, non-paretic 452 

swing time 0.38 ± 0.05 s. The peak knee flexion occurring earlier in the gait cycle caused a 453 

longer swing time on the paretic side (p=0.001). Despite no significant differences in clinical 454 

scores compared to S1 (Fig. 3), this cluster showed different kinematic impairments (Fig. 3). 455 

Compared to C1, we observed increased paretic ankle abduction bilaterally for the entire gait 456 

cycle (both p<0.001) (Fig. 4). We observed decreased paretic dorsiflexion during loading 457 

response and mid-stance (p<0.001) (Fig. 4). We observed increased paretic knee flexion from 458 

loading response to mid-stance (p<0.001) and during pre-swing (p<0.001) and terminal swing 459 

(p=0.003), Fig. 4. In the non-paretic extremity, we observed decreased dorsiflexion during 460 

loading response (p=0.001) and terminal stance (p=0.001) (Fig. 4). Finally, we observed 461 

increased knee flexion during pre-swing and initial swing (p<0.001), initial contact and loading 462 

response (p<0.001), and terminal stance (p=0.002) (Fig. 4). This cluster had a significant 463 

positive correlation between walking speed and FGA (r=0.66, p=0.02), walking speed and BBS 464 
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(r=0.68, p=0.04), but no correlation between speed and FM or ABC (Fig. 5). One participant in 465 

S3 wore an ankle brace. 466 

Discussion 467 

Gait impairment is heterogeneous, posing a challenge in the prescription of research or 468 

rehabilitation interventions 41. To inform rehabilitation, previous research identified subgroups of 469 

gait behaviors post-stroke based on peak spatiotemporal characteristics, peak kinematics, peak 470 

kinetics, or muscular activity 1,2,5,6,8. These discrete metrics cannot capture the simultaneous 471 

temporal and spatial variation in the gait cycle seen in people post-stroke. Here, we developed a 472 

pipeline using convolutional networks to identify subgroups of gait behaviors and tested it with 473 

kinematic time series data of neurotypical and chronic stroke individuals. We showed that 474 

providing the true labels in a supervised stage first to extract frequency and time-related gait 475 

features from kinematic time series was more advantageous than fully unsupervised time series 476 

clustering techniques.  477 

Our pipeline identified distinct walking behaviors both in neurotypical control and post-stroke 478 

participants. In neurotypical participants, the subgroups were differentiated by their self-selected 479 

walking speed which was slower in C2, thus shaping their walking pattern by altering 480 

spatiotemporal and kinematics characteristics 42. In participants post-stroke, the subgroups were 481 

characterized by kinematic impairments that differentially affected distinct phases of the gait 482 

cycle. Contrary to our previous work that used only peak kinetics and spatiotemporal 483 

characteristics 5, our results indicate that at a joint kinematics level, post-stroke participants are 484 

distinct from neurotypical controls, even when they have minimal impairment measured via 485 

clinical outcomes. Our results also indicate that individuals post-stroke can show similar levels 486 

of function and impairment measured using clinical outcomes while displaying vastly different 487 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2024. ; https://doi.org/10.1101/2024.10.28.620665doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.28.620665
http://creativecommons.org/licenses/by-nc/4.0/


22 

 

joint kinematics. Finally, our results also highlight movement patterns in the non-paretic 488 

extremity function during gait which are often overlooked, seldom reported 6,43,44 and that differ 489 

from the typically described compensatory pattern 45. Using our pipeline, we have provided a 490 

more detailed assessment of the distinct types of gait behaviors post-stroke, which affect both 491 

the paretic and non-paretic extremities, and can point at intervention targets post-stroke. 492 

The three post-stroke clusters obtained in our study point to different impairments and potential 493 

rehabilitation interventions. S1, stroke participants with increased knee flexion at initial 494 

contact/loading and terminal swing, response bilaterally showed the least amount of gait 495 

impairments. The increased paretic knee flexion seen during loading response and terminal 496 

swing corresponds to common knee patterns post-stroke 6,46 and might indicate potential hip 497 

extensor weakness 43,44. Treatment for participants in S1 might include functional step training. 498 

Participants in S1 had similar clinical and spatiotemporal characteristics as ‘the moderate 499 

speed, symmetric, and short stance times’ cluster in our previous work 5. S2, post-stroke 500 

participants with increased stance knee flexion, reduced swing knee flexion, and reduced 501 

dorsiflexion showed the most impaired gait pattern. Participants in this group also showed 502 

increased ankle abduction in the paretic extremity, which might point to limb circumduction to 503 

advance the paretic limb forward due to the observed decreased knee flexion during the swing 504 

phase 6,44,46. This group's spatiotemporal characteristics are quasi-similar to the ‘slow speed and 505 

frontal plane force asymmetries’ group in our previous study, with only differing stance time 506 

asymmetry not present in S2. Participants in this group would benefit from dorsiflexion 507 

strengthening, electrical stimulation of dorsiflexors and during swing to elicit a mass flexion 508 

response 41,44, ankle-foot orthosis 41,44, manual cues to guide knee flexion during swing 41,47, and 509 

balance training 48. S3 showed no differences in speed, FM, FGA, or Berg to S1, yet it showed 510 

additional gait impairments, including a flexed knee during stance bilaterally, increased non-511 

paretic knee flexion during swing, reduced dorsiflexion bilaterally, and increased ankle 512 
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abduction. Potential treatments for participants in S3 include strengthening of hip extensors and 513 

hamstrings, gait retraining with an emphasis on improving motor control and coordination.  514 

Previous studies have used speed alone 3, or identified speed as the main determinant of 515 

cluster allocation 2. Our findings contrast these findings, as S1 and S3 had similar average 516 

speeds and clinical characteristics while showing different kinematic patterns indicating that 517 

clinical scores are not granular enough to show specific gait kinematic impairments. This was 518 

also confirmed by the heterogeneity of correlation between speed and clinical scores within the 519 

clusters. Using time series joint kinematics, we obtained two moderate-speed clusters and one 520 

slow cluster. Some of the characteristics of our clusters resembled those previously reported 2. 521 

For example, S1, which had slightly decreased knee extension in terminal swing, initial contact 522 

and loading response but adequate dorsiflexion, resembled the Fast group reported by Mulroy 2, 523 

despite the more moderate walking speed in our participants. S2 had a slow velocity with 524 

excessive knee flexion in stance and inadequate dorsiflexion in swing, similar to what was 525 

reported by Mulroy 2 as the slow flexed group 2. We supplement this information by showing 526 

impaired non-paretic kinematics, particularly increasing non-paretic ankle abduction through 527 

stance, and reduced non-paretic dorsiflexion during swing, and increased non-paretic knee 528 

flexion in loading response in this group. We did not observe a knee hyperextension pattern as 529 

in previous work 2,6,46. Overall, our findings show that clinical measures such as speed or FM 530 

score are not sensitive to kinematic differences, and thus our approach can provide additional 531 

insights beyond what is provided by clinical measures. 532 

Combining both time-frequency (CNN) and time-related features (TCN) to find subgroups of gait 533 

did not improve accuracy to classify neurotypical and post-stroke gait but provided a better 534 

model to identify clusters of gait behaviors post-stroke. While kinematics differences were 535 

expected in the post-stroke clusters 2,5,6, they were not significant in the two control clusters. By 536 

adding the time-frequency domain in our pipeline, we were able to differentiate 1) between 537 
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neurotypical adults presenting normative gait patterns and neurotypical adults with affected 538 

kinematics because of walking at a matched slower speed 49, 2) between highly functional post-539 

stroke individuals who scored high in all the clinical assessments and ‘visually normal’ 540 

kinematics and neurotypical controls. Our approach has the potential to complement and 541 

augment the clinical observation of gait since it can use any type of time series captured in a 542 

clinical setting with wearable devices 50 or phones 51.  543 

Limitations 544 

The greatest limitation of our study is the lack of hip kinematics used in the definition of gait 545 

clusters. The lack of these measures limits our ability to identify subtypes of hip gait impairment 546 

blurring our understanding of the causes of knee and ankle impairment, which might originate 547 

due to impaired hip function. The inclusion of hip kinematics might lead to detecting additional 548 

clusters, and further expand the implications of our work, such that our current and future work 549 

will require the inclusion of hip kinematics. Participants were allowed to use walking aids, which 550 

modify ankle and knee kinematics post-stroke 52. Given that only two participants in our study 551 

wore ankle braces, this should not affect our findings significantly. The spasticity of participants 552 

post-stroke was not controlled for, and no information was collected regarding botulinum toxin 553 

injection to treat lower limb spasticity, which may also affect gait 53. Another limitation of our 554 

work is the use of a median gait cycle for each participant. Initial attempts were made to use 555 

non-segmented time series data collected for 30 seconds, but we ran into issues with 556 

autoencoder clustering as no two participants were alike using this approach, and even the 557 

supervised initial analyses using a single stroke and a single control cluster performed with an 558 

accuracy below chance. A final limitation is that we only measured self-reported injuries in 559 

control participants, and thus, the presence of two control clusters might be due to underlying 560 
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injuries or impairment in control individuals, which may not be fully accounted for in our 561 

demographics. 562 

Conclusion 563 

The presented machine-learning pipeline used kinematic time series to identify five distinct 564 

subgroups of gait behavior. We showed that individuals post-stroke were clearly different from 565 

neurotypical individuals at a joint level, even when they had mild impairment and similar 566 

spatiotemporal characteristics. Our approach has the potential to aid clinicians by augmenting 567 

observation of gait. Moreover, it can be applied to any type of pathology affecting gait and any 568 

type of one-dimensional data collected during gait.  569 
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List of abbreviations 570 

EMG: electromyography 571 

BBS: Berg Balance Scale (max 56) 572 

ABC: Activities Balance Confidence score (max 100) 573 

FM: Fugl-Meyer Assessment (Lower extremities, max 34) 574 

FGA: Functional Gait assessment (max 30) 575 

CNN: Convolutional Neural Network 576 

TCN: Temporal Convolutional Network 577 

C1: Control cluster 1 578 

C2: Control cluster 2 579 

S1: Stroke cluster 1 580 

S2: Stroke cluster 2 581 

S3: Stroke cluster 3  582 
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Table 1: Participant demographics 611 

 Stroke Control 

N 39 28 

Sex 17F/22M 16F/12M 

Age (years) 59.5 ± 10.8 [29 – 78] 62.4 ± 14.2 [24 – 81] 

Mass (kg) 74.1 ± 16.3 [45 – 104] 73 ± 15.7 [46 – 110] 

Height (m) 1.58 ± 0.08 [1.44 – 1.80] 1.60 ± 0.09 [1.42 – 1.74] 

Treadmill Speed (m/s) 0.56 ± 0.20 [ 0.20 – 0.95] SS: 0.84 ± 0.26 [0.48 – 1.43] 

ABC (100 max) 74.0 ± 18.0* [38 – 98] 95.7 ± 4.7 [83.75 – 100] 

BBS (56 max) 50.8 ± 5.5* [49 – 56] 54.1 ± 2.6 [49 – 56] 

FM (34 max) 26.6 ± 4.83 [15 – 33]  

FGA (30 max) 21.2 ± 0.95 [6 - 30]  

Paresis 22R/17L  

Time post-stroke 92 ± 84.5 [6 – 467] months  

Table 1 Descriptive statistics are presented as average ± standard deviation with the range in 612 

brackets. F: Female, M: Male, SS: Self-selected, FM: lower extremity Fugl-Meyer score, ABC: 613 

Activities Balance Confidence Scale, FGA: Functional Gait Assessment, BBS: Berg Balance 614 

Score, L: Left, R: Right. *Significant differences between participants post-stroke and controls 615 

(p<0.05) 616 

  617 
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Table 2: Confusion matrix 618 

 619 

Table 2: Confusion matrix for individual blocks of Convolutional Neural Network (CNN), 620 

Temporal Convolutional Network (TCN), dual-stage CNN-TCN and Dynamic Time Warping 621 

clustering (dtwclust) 622 

  623 

  

CNN 
Predicted 

Stroke Control 

A
ct

u
al

 Stroke 85.4% 14.5% 

Control 12.9% 87.1% 

 

CNN-TCN 
Predicted 

Stroke Control 

A
ct

u
al

 Stroke 85.0% 15.0% 

Control 12.3% 87.7% 

 

  

TCN 
Predicted 

Stroke Control 

A
ct

u
al

 Stroke 83.0% 17.0% 

Control 14.8% 85.2% 

 

dtwclust 
Predicted 

Stroke Control 
A

ct
u

al
 Stroke 52.5% 48.5% 

Control 5.2% 94.8% 
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Figure 1: Study pipeline 624 

 625 
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Figure 1 A: Study pipeline. We used a lower extremity marker set to derive joint-level 626 

kinematics for the knee and ankle. We obtained an ensemble average of kinematics over the 627 

gait cycle, and this time series data was fed into a Convolution Neural Network (CNN)-Temporal 628 

Convolutional Network (TCN) 54, (Panel B) to obtain clusters of gait behaviors. We repeated the 629 

process 10000 times to assess the cluster number and composition (Panel C). We then used 1-630 

D Statistical Parametric Mapping 35 to assess significant differences during the gait cycle 631 

between clusters for each kinematic variable. B: Detailed machine learning pipeline. CWT: 632 

Continuous Wavelet Transform. C: C.1: Optimal number of clusters using the one-standard 633 

error rule. C.2: Matrix of dissimilarities between each of the individuals, 1 indicates never in the 634 

same cluster, 0 always in the same cluster. C.3: Membership probability to each of the five 635 

clusters for every individual, in a multidimensional scaling 2D latent space (MDS dimension 1, 636 

MDS dimension 2) and a five-component Gaussian Mixture is computed. 11. C.4: A priori 637 

labeling in the MDS space. O: Control; X: Post-stroke; C1 and C2 are the control groups; S1, 638 

S2, and S3 are the post-stroke groups.   639 
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Figure 2: Normative gait cluster (C1) 640 

 641 

Figure 2 Gait kinematics of the normative walking cluster (C1) and corresponding gait phases 642 

snapshots from Visual 3D. The cycle starts at the non-dominant initial contact (IC). TO: toe-off. 643 
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Figure 3: Spatiotemporal and clinical 644 

measures between clusters 645 

 646 

Figure 3 Clinical assessments and gait spatiotemporal characteristics between the five clusters 647 

(Controls: C1 and C2, Stroke: S1, S2, and S3). The non-dominant side for control individuals is 648 

compared to the paretic side of post-stroke individuals, and dominant to paretic. One-way 649 

ANOVA showed a difference for all parameters (p<0.05), except paretic/non-dominant and non-650 

paretic/dominant swing times (p=0.574 and p=0.078 respectively). Tukey’s test was used as 651 

post-hoc. FM: Fugl-Meyer lower extremity, ABC: Activities Balance Confidence, FGA: 652 

Functional Gait Assessment, BBS: Berg Balance Scale, P: Paretic, NP: Non-Paretic, D: 653 

Dominant, ND: Non-Dominant. * lower than all the other clusters, + lower than C1 and C2, ⎯ 654 

difference between two clusters. The significance level is set at p<0.05.  655 
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Figure 4: 1D Statistical Parametric Mapping  656 
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Figure 4 Post-hoc 1D-Statistical Parametric Mapping t-test with Bonferroni correction of joint kinematics for the median gait cycle 657 

between the reference control cluster in blue (C1) and the other clusters in red (Controls: C2, Stroke: S1, S2, and S3). The non-658 

dominant side for control individuals is compared to the paretic side of post-stroke individuals, and dominant to paretic. The vertical 659 

dashed lines surrounding a vertical arrow indicate endpoints of significant differences during the gait cycle.  660 
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Figure 5: Correlations 661 

 662 

Figure 5 Correlations between walking speed and clinical assessment scores within post-stroke 663 

clusters (S1 in red, S2 in green, S3 in blue). FM: Fugl Meyer lower extremity, ABC: Activities 664 

Balance Confidence, FGA: Functional Gait Assessment, BBS: Berg Balance Scale. The 665 

significance level is set at p<0.05. ***: p<0.001, **: p<0.01, *: p<0.05  666 
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Supplementary materials 1 667 
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 668 

Supplementary materials 1 Projection of each individual into the multidimensional scaling 669 

latent space. When the highest Fugl-Meyer score participant is mislabeled as a control and 670 

when we input this participant with a stroke and a control label, our pipeline still projects the 671 

participant next to other people post-stroke.  672 
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Supplementary materials 2 673 

 674 

 675 
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Supplementary materials 2 2D-Statistical Parametric Mapping t-test of the continuous wavelet transform coefficient matrix between 676 

the reference control cluster (C1) and the other clusters (Controls: C2, Stroke: S1, S2, and S3). The non-dominant side for control 677 

individuals is compared to the paretic side of post-stroke individuals, and dominant to paretic. The zones displayed in each inference 678 

panel indicate significant differences.  679 
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