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For some ambiguous scenes perceptual conflict arises between integration and
segregation. Initially, all stimulus features seem integrated. Then abruptly, perhaps after
a few seconds, a segregated percept emerges. For example, segregation of acoustic
features into streams may require several seconds. In behavioral experiments, when a
subject’s reports of stream segregation are averaged over repeated trials, one obtains
a buildup function, a smooth time course for segregation probability. The buildup
function has been said to reflect an underlying mechanism of evidence accumulation or
adaptation. During long duration stimuli perception may alternate between integration
and segregation. We present a statistical model based on an alternating renewal
process (ARP) that generates buildup functions without an accumulative process. In our
model, perception alternates during a trial between different groupings, as in perceptual
bistability, with random and independent dominance durations sampled from different
percept-specific probability distributions. Using this theory, we describe the short-term
dynamics of buildup observed on short trials in terms of the long-term statistics of percept
durations for the two alternating perceptual organizations. Our statistical-dynamics model
describes well the buildup functions and alternations in simulations of pseudo-mechanistic
neuronal network models with percept-selective populations competing through mutual
inhibition. Even though the competition model can show history dependence through
slow adaptation, our statistical switching model, that neglects history, predicts well the
buildup function. We propose that accumulation is not a necessary feature to produce
buildup. Generally, if alternations between two states exhibit independent durations
with stationary statistics then the associated buildup function can be described by the
statistical dynamics of an ARP.

Keywords: stream segregation, alternating renewal process, bistable perception, perceptual dynamics, perceptual

organization, buildup

INTRODUCTION
For some stimuli in the auditory and visual modalities with
ambiguous grouping cues, subjects report experiencing alterna-
tions between grouped and split perceptual organizations, with
an initial grouped percept. For example, a widely used paradigm
in auditory stream segregation uses the two-tone triplet stim-
ulus, ABA-ABA-. . . (Van Noorden, 1975), where A and B refer
to tones at different frequencies, and-represents a silent inter-
val. Depending on the relative tone-frequency and presentation
rate, listeners to a presentation of fixed length may be more
likely to report perceiving either triplet patterns grouped into
a galloping rhythm, or two segregated streams: A-A. . . and B—
B. . . (Figure 1). For intermediate frequency difference between
the A and B tones, the grouping cues are ambiguous, and the
percept is bistable.

Studies using such ambiguous ABA- tone sequences have
shown that perceptual splitting of sound events with differ-
ent acoustic features into different streams increases over time

(Bregman, 1978; Anstis and Saida, 1985; Cusack et al., 2004).
There is typically a period of time over which the probability
of the segregated percept increases, starting from the initiation
of a presentation (Bregman, 1978; Anstis and Saida, 1985) or a
switch in the focus of attention (Cusack et al., 2004). In most of
the reported experimental grouping paradigms, the initial prob-
ability of a split percept is zero, indicating that the first percept is
always the grouped one (Anstis and Saida, 1985; Carlyon et al.,
2001; Micheyl et al., 2005; Pressnitzer et al., 2008; Hupé and
Pressnitzer, 2012; but see Deike et al., 2012, who show that stimuli
for which perception is very strongly biased toward segrega-
tion produce an initial split percept). A similar phenomenon has
been reported in the visual modality. When viewing ambiguous
dynamic plaids constructed from two drifting gratings at interme-
diate speed and angle, observers have reported first experiencing
coherent motion of a unified plaid pattern, even when, in the
long term, their perception is biased toward transparent motion
of the individual gratings in each of their component directions
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FIGURE 1 | Examples of stimuli that can produce ambiguous grouping.

(A) Van Noorden triplets with ambiguous stream segregation. Listeners report
alternations between hearing integration (bottom, orange) and segregation

(top, blue) of the component tone frequencies. (B) Moving gratings at certain
angles can produce ambiguous motion. Observers report alternations
between coherent and transparent motion of the component gratings.

(Von Grünau and Dubé, 1993; Hupé and Rubin, 2003; Rubin
and Hupé, 2004; Hupé and Pressnitzer, 2012). The probability of
observers reporting a split perceptual organization over time can
be quantified as a buildup function. This can be stated quantita-
tively in terms of a discrete valued perceptual state variable, Z(t),
with a value of either 0 or 1 that may switch back and forth over
time. Z(t) = 0 indicates a grouped perceptual organization at
time t and Z(t) = 1 indicates a split perceptual organization; the
buildup function is the probability that Z(t) = 1. Experimental
evidence indicates that the initial percept is grouped, and then
alternates (Pressnitzer and Hupé, 2006; Deike et al., 2012). We use
this feature as an assumption and define the buildup function as
the probability Z(t) = 1, given that the value of Z at time zero is 0,
i. e., Pr {Z(t) = 1|Z (0) = 0} . The buildup function approaches a
steady state value that equals the fraction of time that the split
organization is dominant.

Such perceptual dynamics are of great interest in audition
because they likely involve the same mechanisms that enable lis-
teners to perceptually organize the individual sound sources in
a complex auditory scene, a process known as stream segrega-
tion. This segregation, coupled with attention, is central to solving
what is commonly referred to as the cocktail party problem (for
a review, see Pressnitzer et al., 2011)—how do listeners follow a
single speaker in a complex auditory environment against com-
peting background noise? Various quantitative descriptions of the
buildup function invoke proposed mechanisms of stream segre-
gation. One theoretical explanation for the perceptual organiza-
tions observed with the ABA- stimuli is grouping by coactivation
(for a review, see Carlyon, 2004). Neurophysiological investiga-
tions have found evidence that sound signals which excite the
same population of neurons are grouped, whereas those that
activate separate populations are perceived as coming from sep-
arate sources, that is, split. Based on these findings from short
presentations (Micheyl et al., 2005; Pressnitzer et al., 2008; Bee
et al., 2010), some propose that the buildup function reflects the
accumulation of adaptation over seconds, or multi-second habit-
uation. Over time, the neurons tuned to each tone frequency
become more selective, and respond less to the other tone.

The accumulation-based account of the buildup function has
produced neurometric models that can quantitatively predict
the switch from the grouped to the split percept. These models
nicely provide correspondence between neurophysiology and the
buildup function found on short presentations, but they do not
attempt to describe continuous alternations observed in other
psychophysical paradigms over long presentations (Anstis and
Saida, 1985; Pressnitzer and Hupé, 2006; Denham et al., 2012).
Another well-reported feature of these psychophysical data is
the absence of correlations between successive percept durations.
Pressnitzer and Hupé (2005, 2006) demonstrate that ambiguous
auditory and dynamic plaid stimuli display the same indepen-
dence between successive durations as shown for other cases
of perceptual bistability (Levelt, 1968; Rubin and Hupé, 2004).
If buildup were necessarily an accumulative process, we would
expect to see history dependence in the durations of successive
percepts.

We bypass the mechanistic issue and show that the buildup
function can be described well and quite generally by a statisti-
cal model that ignores accumulation over percepts. The gradual
increase in probability of a split percept over time could reflect the
dynamics of switching between percepts with independent ran-
dom durations and a given initial state. The long-term dynamics
of perceptual bistability consist of alternations between mutually
exclusive percepts. The duration histogram of each percept has
been well-fit by a gamma density, although log-normal or Weibull
density functions can also be used (Pressnitzer and Hupé, 2006;
Shpiro et al., 2009). We show that the short-term increase in prob-
ability of split percepts, observed when short trial perceptual time
courses are averaged, could reflect the dominance duration dis-
tributions observed over long trials. To test this idea, we use the
theoretical framework of an alternating renewal process (ARP).
We use the fitted gamma densities for the dominance durations,
without consideration for history dependence between successive
durations, to account for the experimentally measured buildup
function for a stimulus with ambiguous grouping, in models and
experiments. The statistical model is general and based on the
following underlying assumptions grounded in psychophysical
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evidence (Pressnitzer and Hupé, 2006; Hupé and Pressnitzer,
2012): (1) the perceptual state alternates back and forth between
grouped and split; (2) the durations for these perceptual epochs
are random, independent and stationary; and (3) the initial per-
cept on for a given presentation is always the grouped percept.
We implement this model using both Monte Carlo simulations as
well as an analytical solution to the ARP model. The model covers
a range of buildup functions: monotonic as well as multi-peaked
and those exhibiting damped cyclic behavior.

In addition, we adapted existing neuro-mechanistic compu-
tational models frequently used to characterize perceptual bista-
bility to produce buildup functions, in order to explore how
different mechanisms of alternation affect buildup functions so
produced, as well as the performance of our statistical model in
describing them.

MATERIALS AND METHODS
To compute a buildup function empirically, one averages over
many trials the time course of a random binary state variable
(see Figure 2A, blue lines). In our statistical model, the initial
state (percept) is fixed, but the dwell time in this state is a
random variable characterized by its probability density func-
tion. Subsequently the system switches randomly between two
states, each of which has its own fixed duration distribution.
This constitutes an ARP (for a review of renewal theory, see
Cox, 1962).

We initially tested this theory in Monte Carlo simulations by
simply constructing in silico perceptual time courses according
to the above assumptions (see Figure 2A). For a given simu-
lated trial time course, we draw alternating random samples from
each of two distributions—one corresponding to the grouped
state durations, and the other to the split state durations. These
gamma distributions were specified randomly with parameters
within the bounds [1,12]. These bounds were decided upon after
visual inspection of many Monte Carlo simulated buildup func-
tions, for sake of simplicity, and are typical for experimental data
from perceptual bistability paradigms (Pastukhov et al., 2013;
Huguet et al., 2014). We draw the first sample from the distri-
bution corresponding to the grouped state, the second from that
corresponding to the split state, and continue drawing samples
from each distribution in alternation until the sum of all the dura-
tions exceeds the specified length of a trial. These trial durations
were converted into discretized time courses by assigning a value
of 0 or 1 to time intervals during which the state corresponds
to a grouped or split percept, respectively. In Monte Carlo sim-
ulations, we produce an arbitrarily large (1000 trials) number of
such time courses, and then take the average at each time point.
This gives a relative frequency estimate of μZ(t), i. e., the mean
of Z (t) .

We make explicit use of an analytical expression for the
buildup function, by a method used in the closely related prob-
lems of Mortensen (1990), Kakubava (2008), and Stinchcombe
et al. (2012). There are a number of advantages to characteriz-
ing the buildup function in this way. First, with an analytical
solution relating the distributions of durations for grouped and
split percepts to the buildup function, it is theoretically possible
to interconvert between buildup functions and the statistics of

FIGURE 2 | Buildup as an alternating renewal process. (A) Visualization
of the alternating renewal process producing a buildup function. We used
gamma probability density functions for duration distributions to construct
Monte Carlo simulations. The simulated durations were drawn from
gamma density functions with parameters α0 = 1.45, μ0 = 4.73 (grouped
percept) and α1 = 2.08, μ1 = 10.65 (split percept), in the range of those
typically reported in the psychophysical literature. The analytical solution to
the alternating renewal process model, shown as a red solid curve
(bottom), allows us to predict the buildup function solely from the
distributions of dominance durations of each of the perceptual states. (B)

Monte Carlo simulation computed buildup function of 1000 trials (blue)
approaches the theoretical solution (red).

the dominance durations for each percept. We have developed
this solution into a statistical switching model to reconstruct
the buildup function from four parameters—the parameters for
the gamma densities for grouped and split percept durations.
This theoretical solution coincides with the Monte Carlo simula-
tion results (see Figure 2B). The analytical solution is convenient
because it is computationally less expensive than iterative Monte
Carlo simulations, and the solution is exact.

We wanted to test whether it was possible to recover the
parameters for the long-term statistics of dominance durations
from the buildup function. To estimate the gamma parameters
from Monte Carlo generated buildup functions, we used the ana-
lytical solution (below) and searched for the 4 parameters that
minimized the sum of the squared errors between the analyti-
cal and the Monte Carlo generated buildup function. We chose
not to weight the different points in the fit by their standard
error of the estimated probability for our computed buildup func-
tion, p̂, as the highest value this could possibly take on would
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be
√

np(1−p)
n = 0.011 for n = 500, p = 0.5 All simulations were

implemented in MATLAB.

SOLVING ANALYTICALLY FOR THE ALTERNATING RENEWAL PROCESS
In a stochastic, binary, switching process with independently dis-
tributed dwell times there are 2 random variables, S(t) and Z(t).
S(t)is the random elapsed time since last switching into the state
occupied at time t. The dichotomous random state variable,
Z(t) = i, where i ∈ {0, 1} codes for the percept, grouped or split,
respectively. We hypothesize that the experimentally observed
perceptual switching process can be well described by an ARP
(Cox, 1962).

We consider an ensemble of trials in which the states switch
stochastically. For sake of simplicity, we specialize to the case
of a fixed starting state across the population. Because our goal
is only to find the buildup function, defined in this context as
Pr{Z (t) = 1|Z (t = 0) = 0}, it is not necessary to derive the joint
distribution for Z (t) and S(t).

We define the buildup function more specifically, in the con-
text of our statistical model, as:

Pr {Z (t) = 1|Z (t = 0) = 0 ∩ S (t = 0) = 0} (1)

For the sake of allowing for a special probability density function
for the random duration of the first grouped percept, T0

0 , we first

write the solution for p1|1 (t)
def= Pr {Z (t) = 1|Z (t = 0) = 1}.

This probability can be found by summing the probabilities of
all the mutually exclusive ways the event {Z (t) = 1|Z (0) = 1}
can occur (Mortensen, 1990; Kakubava, 2008; Stinchcombe et al.,
2012). Calculating this probability in the time domain involves an
infinite sum of terms, each of which is a convolution. However, we
can obtain a simple analytical expression for p̂1|1 (ω), the Fourier
transform of p1|1 (t), i. e.:

p̂1|1 (ω) =
̂̃FT1 (ω)

1−f̂T0 (ω) f̂T1 (ω)
(2)

The simple equation for p̂1|1 (ω) obscures its origin. As one stud-
ies in calculus, for |x| < 1,

∑∞
k=0 xk = 1

1−x . Thus, the simple

form of p̂1|1 (ω) results from summation of the series p̂1|1 (ω) =̂̃FT1 (ω)
∑∞

k=0

[
f̂T0 (ω) f̂T1 (ω)

]k
, where T0 and T1 are the dura-

tions of the grouped and split percepts, respectively. The term in
square brackets is the Fourier transform of the probability den-
sity function of the random variable T0 + T1, i.e., the random
time spent in passing once through the sequence of Z-states (1, 0)

before passing again into state Z = 1. Each term in the series for
p̂1|1 (ω) is the Fourier transform of a probability at time t. The

first, ̂̃FT1 (ω) , is the Fourier transform of the probability that,
given the state Z = 1 was entered at time 0, the dwell time before
switching for the first time out of this state is greater than t. The
kth term is of the probability that the sequence of Z-states (1, 0) is
passed through exactly k times before entering state Z = 1 again
at any time t′ < t, and that the transition out of state Z = 1 occurs
at some dwell time greater than t − t′.

The term on the right-hand side of Equation (2) has
a simple pole at ω = 0. Consequently, for computational
purposes, it is convenient to write the inverse Fourier
transform as:

p1|1 (t) = 1

2π

∫ ∞

−∞
dω

1

iω

[̂̃FT1 (ω)
iω

1 − f̂T0 (ω) f̂T1 (ω)

]
eiωt (3)

where f̂ (ω) is the Fourier transform of f (t). The term in
square brackets in the integrand has a limit of μT1/

(
μT1 + μT0

)
as ω approaches 0, and the 1/iω coefficient of the term in
square brackets is the Fourier transform of the integral operator.
Therefore, p1|1 (t) can be written as:

p1|1 (t) =
∫ t

0
dt

{
1

2π

∫ ∞

−∞
dω

[̂̃FT1 (ω)
iω

1−f̂T0 (ω) f̂T1 (ω)

]
eiωt

}
(4)

This function was called “availability,” A(t), by Pham-Gia and
Turkkan (1999). Their time-domain solution is equivalent to our

Equation (4). To find p1|0
def= Pr{Z (t) = 1|Z (0) = 0 ∩ S (0) = 0},

we time shift Equation (1) above by all possible durations of the
initial state, T0

0 , weighted by density function of this state, fT0
0
(t).

This constitutes a convolution of the density function for initial
duration with Equation (1):

p1|0 (t) =
∫ t

0
fT0

0
(s) p1|1 (t−s) ds (5)

Thus, the solution can be given in the Fourier domain as:

p̂1|0 (ω) = f̂T0
0
(ω) p̂1|1 (ω) (6)

Using the simplifying assumption that fT0
0
(t) = fT0 (t), that is,

that the initial percept duration is from the same density function
as all other T0, we find:

p1|0 (t) =
∫ t

0
dt

{
1

2π

∫ ∞

−∞
dω

[
f̂T0 (ω)

̂̃FT1 (ω)
iω

1−f̂T0 (ω) f̂T1 (ω)

]
eiωt

′
}

(7)

This equation states that p1|0 (t) can be obtained by taking the
inverse Fourier transform of the term in square brackets, followed
by integrating over time from 0 to t. We generally performed
such computations numerically on a time axis from 0 to 40 s to
ensure that the window for the discrete Fourier transform con-
tained the function’s approach to steady state, with 212 sampling
points (Bracewell, 2000).

Following previous research (Pressnitzer and Hupé, 2006;
Shpiro et al., 2009), we used gamma density functions to generate
and characterize state durations. That is:

f (t; μ, α) = α

μ

(
αt

μ

)α−1 (
1

� (α)

)
e− αt

μ (8)

where α is the shape parameter, and μ gives the mean dura-
tion (in many computing applications, the scale parameter θ = μ

α

is used). In the special case that the dwell time densities are
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both gamma density functions with integer shape parameters, we
can compute the buildup function p1|0 (t) entirely analytically.
These solutions are the sum of exponential functions of time. For
example, in the case of a common gamma density function with
integer parameter, n, the solution is the weighted sum of 2 (n − 1)

complex exponential functions of time and one real exponential
function of time. Each complex exponential sums with its com-
plex conjugate partner to give n − 1 real functions of time. Thus,
the overall solution is the sum of n terms. The kth term, which we
call gk (t), is given by:

gk (t) = ck
{

1−exp (−λkt) sin
(
2π fkt + θk

)}
, for

k= 1, 2, . . . ,n, (9)

where ck are constants, λk = (n/μ) [ 1 − cos (πk/n) ], fk =
(1/2π) (μ/n) sin (πk/n), and θn = 0.

Notice that the transient part of gk (t) is the product of 2 func-
tions: the first is a decaying exponential function of time (t), and
the second one is a sinusoidal function of t. The terms together
can be thought of as a damped sinusoidal function of time under
an exponential envelope. Examples of analytical buildup func-
tions, p1|0 (t), are plotted in Figure 3; the legend includes the
values of λk, and fk for μ = 5, and n = 4.

POPULATION DYNAMICS APPROACH
A complete and more intuitive way of characterizing an ensemble
(population) of trials, in which an ARP governs the switching of
states, is to track both the Z (t) and S (t). For the sake of facili-
tating exposition, it is helpful to think of S (t) as the time from
last switch (age) of a randomly drawn individual trial at time t
(Karlin, 1958). In this analogy, switching state is accompanied
by rejuvenation, in the sense that the individual’s age is reset to
zero. We take a population dynamics perspective in which there
is, by convention, a single population including both Z = 0 and
Z = 1, rather than separate populations for each. The state of
an ensemble (population) is characterized at time t by its dis-
tribution over s and z, and this distribution is quantified by a
probability density-mass function, ρi (s, t), defined as:

ρi (s, t) ds
def= Pr {S (t) ∈ (s, s + ds) ∩ Z (t) = i} (10)

We are interested in the evolution of ρi (s, t) starting from
an initial state as members of the population age, ran-
domly switch states and undergo rejuvenation. In this
approach, the hazard function, hi (s), plays a central role.
By definition, in the context of our problem, hi (s) dt =
Pr {switch out of state i in (t, t + dt)|Z (t) = i ∩ S (t) = s }. The
hazard function for state i is related to the probability density

function for the dwell time in state i, by hi (s) = fi(s)∫ ∞
s fi(x) dx

.

The pair of partial differential equations for ρi (s, t) is derived
from the principle of conservation of probability. Three essential
ideas are: (a) In a time interval of width dt, there is only one way
that probability can enter the interval s0 < s < s1, given Z (t) = i,
and that is by individuals growing older and entering (aging into)
the interval at s0. (b) One way of exiting the interval is by growing
older and exiting (aging out of) the interval at s1. (c) A second

FIGURE 3 | Buildup functions from the analytical solution for an

alternating renewal process. (A) Families (red, green, blue) of analytical
buildup functions [Equation (9)] produced by random, gamma-distributed
dwell times, T0 and T1, in states Z = 0 and Z = 1, respectively. Each color
corresponds to a different pair of mean dwell times, μ1 and μ0 for states
Z = 0 and Z = 1, respectively, as labeled on the plots. Within each color,
the shape parameter α takes on three different integer values n: 1
(dash-dot), 2 (dashed), and 4 (solid). Note that the steady-state asymptote
for each buildup function is equal to μ1/(μ1 + μ0). Each buildup function is
the sum of n exponentially damped sinusoids, given by Equation (9), with
computed coefficients ck and phases θk , where k = 1, . . . , n. For example,
for the solid green curve (n = 4, and μ1 = μ0 = 5 s), the 4 temporal
frequencies fk are 0.0900, 0.127, 0.090, 0 Hz, for k = 1, 2, 3, 4,
respectively. The corresponding exponential decay rate constants λk are:
0.234, 0.800, 1.366, 1.60 s−1. Time constants, defined for the first three
components, are given by the reciprocals of the rate constants: 11.1, 7.85,
11.1 s. (B) Gamma probability density functions fT (t) [Equation (8)] for
random duration, T . The mean duration μT is equal to 5 s for all 3 densities,
and the shape parameter α takes on 3 integer values n: 1 (dash-dot), 2
(dashed), and 4 (solid). As the shape parameter increases, probability is
more concentrated around the mean value, μT = 5. In fact,
limn→∞ fT (t) = δ (t − μT ).

way of exiting the interval is by switching out of state i at any age
between s0 and s1, with a probability per unit time, per unit age,
given by hi(s) ρi (s, t). The ideas (a—c) give rise to the coupled
partial differential equations:
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∂ρ0

∂t
(s, t) = − ∂

∂s
(ρ0 (s,t)) − h0 (s) ρ0 (s,t) (11)

∂ρ1

∂t
(s, t) = − ∂

∂s
(ρ1 (s, t)) − h1 (s) ρ1 (s, t) (12)

A fourth essential idea is: (d) When a member of the ensemble
switches out of one state (Zε {0, 1}) at age s, it appears instanta-
neously in the other state at age s = 0. Idea (d) gives rise to the
boundary conditions:

ρ0 (0, t) =
∫ ∞

0
h1 (s) ρ1 (s, t) ds (13)

ρ1 (0, t) =
∫ ∞

0
h0 (s) ρ0 (s, t) ds (14)

The solution of the system in Equations (10) and (11), with given
initial conditions, gives the joint distribution for the random state
Z (t) and random age S (t). The probability that a member of the
ensemble is in state i at time t is given by integrating over age,
i.e., Pr{Z (t) = i} = ∫ ∞

0 ρi (s, t) ds. The problem we solved above
by more elementary means corresponds to the initial conditions
ρ1 (s, 0) = δ (s), and ρ0 (s, 0) = 0. In other words, all members
of the ensemble are in state Z = 1 with age s = 0 at time t = 0.
We derived our analytical buildup function by solving the pair
of linear partial differential equations and boundary conditions
Equations (11)–(14) for the joint probability density-mass func-
tion for age and perceptual state defined in Equation (10). At an
intermediate stage, the solution was in the form of a coupled pair
of integral equations, each involving a convolution. We solved
these by taking the Fourier transform of each convolution equa-
tion and then solving a linear pair of algebraic equations in the
two density-mass functions. Integrating these over the continu-
ous age variable, s, gave us the buildup function as defined in
Equation (1).

COMPETITION MODEL SIMULATIONS
We use a competition model as a test-bed for the theory of the
ARP for different dynamical regimes of perceptual alternation—
in particular, for noise-driven switches, for which correla-
tion between successive dominance durations is low, and for
adaptation-driven switching, in which correlation is high. We
chose to use existing observer models for perceptual bistabil-
ity to produce buildup functions to see if we could relate these
to the underlying dominance durations using renewal theory.
Previous investigations (Wilson and Cowan, 1972; Wilson, 2003;
Shpiro et al., 2009; Laing et al., 2010; Pastukhov et al., 2013)
have used population firing rate models with competition archi-
tecture to model perceptual bistability. In these pseudoneuronal
mutual inhibition models, there are separate populations whose
firing rates represent the perceptual strength of each interpre-
tation of the stimulus. They make inhibitory connections onto
one another, so the population with the highest firing rate typi-
cally dominates the other (Figure 4A). These models were origi-
nally developed to describe binocular rivalry, but have also been
used to account for the psychophysical results of experiments
with ambiguous grouping–namely, moving plaids with coher-
ent/transparent motion (Shpiro et al., 2009; Pastukhov et al.,

FIGURE 4 | Buildup functions from neuronal competition model with

attractor dynamics. (A) Mutual inhibition population firing rate model
producing buildup. We choose initial conditions to ensure that the
population representing the grouped percept, u0, is always dominant at the
beginning of a given trial time course. (B) Competition model simulation
results for parameters that produce attractor dynamics with noise-driven
switching: γ = 0.1 and σ = 0.12. Correlations between successive
durations are low (r = 0.11). Top, population activity time course for one
20-s trial. We simulated 500 trials to produce the buildup function, lower
right (blue). Histograms of the dominance durations, with maximum
likelihood estimated gamma density parameters (α0 = 2.02, μ0 = 3.17;
α1 = 2.40, μ1 = 3.34) and the associated density functions (gray), are
shown in the lower left. These parameters allow us to compute analytically
the resulting buildup function for an alternating renewal process (red). The
buildup function looks similar to those reported in the psychophysical
literature, and the statistical model’s prediction is good (R2 = 97%).

2013) and triplets with streaming integration/segregation (Mill
et al., 2013).

In competition models, the relative firing rates of the two pop-
ulations are taken to produce the simulated observer’s perceptual
reports. The population with the higher firing rate corresponds
to the dominant percept. Because the two populations mutu-
ally inhibit each other, in most cases only one population is
active at any given time. In addition, each population undergoes
adaptation in response to its own firing rate. The alternation of
dominance epochs between the two populations can be driven
by two mechanisms. If adaptation is strong enough, then the
activity of the dominant population will decay over time, while
the suppressed population recovers from any prior adaptation.
This leads to periodic alternations between dominance states with
noisy oscillator dynamics. However, if adaptation is weak, the
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system will display attractor dynamics, in which alternations are
driven by noise in the externally applied inputs. The brain appears
to be a very noisy system, with random fluctuations occurring
at multiple scales such as vesicular release and spiking variabil-
ity. The competition models with attractor dynamics, in which
switching between dominance epochs is driven by noise, appear
to be more consistent with the statistics of dominance durations
observed in psychophysical experiments (Shpiro et al., 2009),
and we exploit the fact that the models operating within this
regime produce buildup functions that are consistent with those
measured experimentally.

Competition model simulations followed the procedures
reported previously in Shpiro et al. (2009) for population firing
rate model with spike frequency adaptation. Specifically:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇0 = −u0+f (−βu1 − γ a0 + I0 + n0)

τaȧ0 = −a0+u0

ṅ0 = − n0
τn

+ σ

√
2
τn

η (t)

u̇1 = −u1 + f (−βu0 − γ a1 + I1+n1)

τaȧ1 = −a1 + u1

ṅ1 = − n1
τn

+ σ

√
2
τn

η (t)

(15)

The variable u0 corresponds to the short-time averaged firing rate
of the population representing the “grouped” perceptual state,
and u1 to the firing rate of the population representing the “split”
perceptual state. The variables a0 and a1 represent the spike-
frequency adaptation. Parameter γ controls the strength of the
adaptation, and β controls the strength of suppression from the
competing population. I0 and I1 are the external inputs driving
the two populations, and n0 and n1 are independent Ornstein-
Uhlenback noise generators with mean zero and variance σ , and
a timescale of τn. The input-output function used was a sigmoid,
with f (x) = 1/[1 + exp((x − θ)/k)].

The simulation was carried out in non-dimensionalized time,
with the convention that one unit of time corresponds to 10 ms.
Time constants given in simulation time units were τa = 200,
τn = 10. The following parameter values are used: k = 0.1, θ = 0,
β = 1. All simulations used the same input strength: I0 = I1 =
0.6. According to our computations, the border between attractor
and oscillator dynamics (noise free case) for this strength of exter-
nal input lies in the range γ = 0.45 to γ = 0.5 although the esti-
mate reported in Shpiro et al. (2009) was close to γ = 0.25. For
attractor dynamics, we used the parameter values: γ = 0.1 and
σ = 0.12. For dynamics near the border of attractor and oscilla-
tor dynamics (but within the attractor regime), we set γ = 0.4
and σ = 0.09. For full oscillator dynamics, we set γ = 0.7 and
σ = 0.06. The value of σ was scaled in relation to the integra-
tion time step by 1/

√
dt to keep specified variance per unit time.

Simulations were implemented in MATLAB using forward Euler
integration with a time step of 0.1 (1 ms in dimensioned time).

For each combination of parameter values, we simulated 500
trials of length 20 s with initial conditions u1(0), a0(0), a1(0),
n0(0), n1(0) = 0 and u0(0) = 0.5; this initial condition for u0,
guarantees that at the beginning of each simulated trial, the first
population to become dominant was always that corresponding
to the grouped percept. Simulated experimental buildup curves

were constructed by computing the average for each time point
across trials of the binary time course u1 > u0.

We obtained dominance durations by finding the times of
switching {ts}, i.e., when u0 (t) = u1(t). To test the application
of the ARP model, we viewed dominance durations of each
state from the short simulated trials as samples from underlying
gamma distributions. Because our competition model simula-
tions generated trials that were only 20 s long, a large proportion
of these durations were truncated by the end of the trial. We
estimated gamma parameters α and θ that maximized the like-
lihood of the complete as well as the right-censored dominance
durations for each model perceptual state. Using the samples of
dominance durations obtained for each population (over 1000
durations for each population with each parameter set), we fit-
ted gamma densities using maximum likelihood estimation. We
compared the simulated empirical buildup functions, using 212

sample points, with those predicted under our statistical model
for these fitted gamma parameters by computing R2, the coeffi-
cient of determination.

RESULTS
MONTE CARLO SIMULATED AND ANALYTICALLY COMPUTED BUILDUP
FUNCTIONS AGREE
We propose that the buildup function arises from a system that
alternates between two states from a known starting state, and
that the dwell times in each state are independent with durations
drawn from two probability density functions. Using renewal
theory, we found an analytical solution that relates the buildup
function to the density functions describing the state durations.
We also performed Monte Carlo simulations to generate random
samples from two gamma density functions with parameters α

and μ [Equation (8)], construct simulated trials from these sam-
ples, and compute buildup functions (Figure 2). The statistical
model uses the 4 parameters of the duration density functions to
make a prediction for the buildup function under an ARP, and the
Monte Carlo simulated buildup functions converge with this pre-
diction. Given a pair of gamma density parameters describing the
dwell times in each state, that is, grouped or split perceptual orga-
nization, we can generate an accurate prediction of the buildup
function produced under an ARP.

An exploration of the relationship between gamma den-
sity parameters and buildup functions shows that higher shape
parameters α produce buildup functions with more damped
cyclic behavior (Figure 3). This is because a higher shape param-
eter results in probability being more focused around the mean,
meaning the durations are less variable. If the durations were
fixed, i. e. if the densities for durations were delta functions, then
every trial would proceed deterministically and look exactly like
the buildup function, which would be binary. It is only the vari-
ability in switch times that makes the buildup function appear
smooth.

BUILDUP FUNCTIONS FROM COMPETITION MODEL DYNAMICS ARE
WELL DESCRIBED BY AN ALTERNATING RENEWAL PROCESS, BUT
QUANTITATIVE ACCURACY IS LOWER WHEN CORRELATIONS ARE
HIGHER
We used pseudo-neuronal competition models to produce
experimental time courses similar to those reported in the
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psychophysical literature on ABA- tone sequences. Our statisti-
cal model makes three assumptions describing an ARP: the initial
state is always the same, the state alternates back and forth, and
the state durations are random, independent and stationary. By
setting the initial conditions to ensure that the neuronal popu-
lation representing the grouped percept was always active first,
we were able to satisfy the assumption that the initial perceptual
state is fixed. The competition models also satisfy the assump-
tion of alternation between perceptual states of grouped and split.
However, the state durations are not necessarily independent or
stationary—depending on the dynamical regime in which the
competition model is operating, attractor or oscillator, there can
be significant history dependence between state durations.

The difference between oscillator and attractor dynamics in
these competition models is most simply understood by observ-
ing how the system would behave without noise (Moreno-Bote
et al., 2007; Shpiro et al., 2009). For oscillator dynamics, adapta-
tion would cause the dominant population to reduce its activity
over time, reducing the inhibition on the suppressed population,
allowing it to become active. In a noiseless system, stable fixed
points in the system appear and disappear over time, and alter-
nations will occur deterministically with a constant period. Noise
in such a system will affect the distribution of dominance dura-
tions for each state, but is not required for switching. Conversely,
attractor dynamics occurs when a system has multiple stable states
at the same time. In the absence of noise, the initial conditions
determine which state becomes active, and the system behaves in
a winner-take-all fashion. That is, the population that becomes
dominant first is permanently active, and the other population is
permanently suppressed. However, injecting noise into such a sys-
tem can cause switches from one stable state into another. In this
case, the switching between perceptual dominance states is caused
by the noise itself.

When the switches between perceptual states are driven by
noise, as under attractor dynamics, correlations between succes-
sive dominance durations tend to be low (r ≈ 0.11). An example
trial time course is shown in Figure 4B, top. To obtain a buildup
function from the simulated competition dynamics we identify
the split state, Z(t) = 1, according to the condition, u1 (t) >

u0 (t), then by averaging Z(t) over many trials we obtain an
empirical buildup function. We fitted gamma parameters to the
dominance durations, and used these parameters to generate
analytical buildup functions using the ARP model (Figure 4B,
bottom). The predicted buildup function for an ARP with
the underlying duration distributions with those fitted gamma
parameters very strongly fits (R2 = 97%) the buildup function
obtained empirically by averaging over many trials for this case
with weak adaptation, γ = 0.1. When the adaptation strength,
γ , is increased adequately the competition dynamics transition
from noise-driven attractor mode to noisy oscillator mode, cor-
relations increase, and the buildup function takes on a damped
cyclic behavior. For near-oscillator dynamics (γ increased from
0.1 to 0.4, see Materials and Methods), the damped cyclic behav-
ior is apparent and the correlation between successive percept
durations increases from 0.11 to 0.25 (Figure 5A). In the oscilla-
tor regime (γ = 0.7, Figure 5B), the buildup function is strongly
damped cyclic and the correlation coefficient is higher still,

r ≈ 0.30. With these increases in correlations as γ increases,
the quantitative accuracy of the ARP in describing the buildup
function decreases, from R2 = 91 to 77% for γ = 0.4 to 0.7,
respectively. Although the ARP provides a strong quantitative pre-
diction of the buildup function for data with weak correlations, it
loses quantitative accuracy for duration distributions that are less
independent.

DAMPED CYCLIC BUILDUP FUNCTIONS CAN ARISE FROM
COMPETITION IN OR NEAR THE OSCILLATOR REGIME
It has previously been found that noisy oscillator dynamics are
not entirely consistent with a number of statistical features of
the dominance durations reported in psychophysical experiments
(Shpiro et al., 2009; Pastukhov et al., 2013). The mean and
coefficient of variation of dominance durations for noisy oscilla-
tor dynamics when alternations are primarily adaptation-driven
do not fall within the range of those observed for perceptual
reports of ambiguous visual displays. Furthermore, when adapta-
tion drives alternations in the dominance of population activity,
we observe moderate and significant correlations between succes-
sive percepts. On the other hand, data from the psychophysical
literature suggests that the durations of subsequent percepts are
only weakly correlated, if at all (Levelt, 1968; Rubin and Hupé,
2004; Pressnitzer and Hupé, 2005, 2006).

We examined buildup under both oscillator and attractor
dynamics in order to determine whether we could find corre-
spondence between the buildup functions produced by compe-
tition models and those reported in the psychophysical literature.
Previously reported psychophysical data indicate that the buildup
function is typically monotonic. To our knowledge, no psy-
chophysical experiments using an ABA- stimulus have shown a
buildup function time course with a damped oscillatory approach
to steady state, although Anstis and Saida (1985), using a two-
tone stimulus, present non-monotonic psychometric functions
on reports of temporal coherence that appear to be damped cyclic.
Buildup functions produced with moderate adaptation in our
competition model (Figure 5) display damped cyclic behavior,
even when the mechanism of alternation is noise-driven attrac-
tor dynamics (Figure 5A). These buildup functions are derived
from the model’s perceptual time courses for which there are sig-
nificant correlations between successive percept durations, such
that the duration of the present perceptual state depends on the
cumulative history of previous percepts. Although the correlation
coefficient between durations of subsequent percepts was sub-
stantial (r ≈ 0.25), the fit to the buildup function by finding the
parameters of density functions for long-term percept durations
was strong (R2 = 91%). The gamma density functions describing
dominance durations from competition models operating in or
near the oscillator regime with moderate noise look more like
delta functions—the dominance durations are not highly vari-
able, and so switches are more likely to occur at similar times
on different trials. This is why such gamma density functions
produce buildup functions that look damped cyclic. While such
buildup functions have not typically been reported for stimuli
with ambiguous grouping cues, Borsellino et al. (1972) report
that subjects who are fast switchers when viewing stimuli such as
the Necker cube have more regular distributions of switch times,
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FIGURE 5 | Competition model simulation results for model

parameters near or past the border of noisy oscillator dynamics.

When adaptation is a moderate or strong factor in our simulations of the
neuronal competition between grouped and split percepts, the buildup
function displays damped cyclic behavior. (A) Attractor dynamics near
border with oscillator dynamics for neuronal competition model. With
parameters γ = 0.4 and σ = 0.09, this model would not show alternations
between states in the absence of noise, but adaptation is still a
significant factor in facilitating switches. The buildup function displays
damped cyclic behavior, and there are correlations between successive
dominance durations (r ≈ 0.25). The alternating renewal process model
with parameters α0 = 9.06, μ0 = 2.38; α1 = 11.34, μ1 = 2.48 provides a
good estimate of the buildup function from the distribution of dominance
durations (R2 = 91%), but the prediction is not as strong as when the

parameters are further from the border with oscillation dynamics (see
Figure 4). (B) Oscillator dynamics with neuronal competition model
parameters γ = 0.7 and σ = 0.06. Correlations between successive
durations are high (r ≈ 0.30). The dominance durations are much more
regularly timed than those produced under attractor dynamics, reflecting
the clock-like cycling of the underlying oscillator (the period of the
noise-free oscillator is 2.2 s). These oscillations are dramatically present in
the average over 500 simulated trials, lower right (blue). The maximum
likelihood estimated gamma density functions are shown in the lower left
(gray), and the analytically computed buildup function for an alternating
renewal process with those gamma parameters (α0 = 21.51, μ0 = 1.60;
α1 = 23.04, μ1 = 1.65) is shown in the lower right (red). The fit between
the analytical solution and the trial average is much weaker (R2 = 77%)
than for the attractor dynamics as in Figure 4.

whereas slow switchers demonstrate more variability in percept
durations; if this relationship holds true for plaid and auditory
triplet stimuli, we could speculate that fast switchers may exhibit
non-monotonic buildup functions.

INFERENCE OF ARP PARAMETERS FROM THE BUILDUP FUNCTION
One might reasonably enquire whether ARP model parameters
can be inferred based solely on an empirical buildup function
(Figure 6). We studied this question in two ways. First, we gen-
erated empirical buildup functions by Monte Carlo simulations
in which the durations of “perceptual states” were indeed gener-
ated by an ARP with parameters of our choice. Then, proceeding
as if we did not know the parameters, we searched parameter
space to minimize the sum of squared errors between the empiri-
cal buildup function and the theoretical one generated at various
points in parameter space. We always found ARP parameters that
provided a good fit to the empirical buildup function. Usually,
we were also able to obtain accurate estimates of the generating
gamma density functions (Figure 6A). However, this method did
not consistently recover the correct parameter values (Figure 6B);
it appears that the trial averaged buildup function itself does not
constrain particularly well the parameters of the gamma den-
sity functions that describe the state durations on individual
trials.

In a real experimental setting, even if buildup function were
generated by an ARP, the “true underlying parameters” may be

difficult to estimate accurately. Nevertheless, we conducted a sec-
ond test in which we asked how well the original parameters in
the generative model could be recovered by fitting the buildup
function in the time domain. Although we did not conduct an
exhaustive study of this type, our experiments suggested that the
only limitation to parameter recovery was inevitable noise in the
empirical buildup function. In other words, if the exact theo-
retical buildup function is provided as input data, the original
parameters are recovered essentially exactly (Figure 6C).

DISCUSSION
During presentations of ambiguous stimuli subjects may perceive
switching between integration and segregation. For short presen-
tations (i. e., 10 s trials, as in Micheyl et al., 2005; Pressnitzer et al.,
2008), there may be only one or a few switches after the initial
percept—in the van Noorden ABA- paradigm discussed in this
paper, and for visual plaids, the initial percept is typically inte-
gration (Hupé and Pressnitzer, 2012)—but for long presentations
(i.e., 4 min trials as in Pressnitzer and Hupé, 2006; Denham et al.,
2010), haphazard alternations typically occur.

We introduced and explored a statistical model for the buildup
function, the probability of segregation versus time. Our model
accounts for the buildup function as the mean over trials in
the short presentation case, or the switch-triggered average time
course for long runs (see Section “Switch-Triggered Buildup
Function,” below), in terms of an ARP. Evidence accumulation
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FIGURE 6 | Recovery of parameters for duration distributions from

analytic buildup functions. Recovery of percept duration distributions
from a buildup function. We fitted parameters for the analytic buildup
function by minimizing the squared error between the original and the fitted
buildup function. This allows us to estimate the parameters of the
underlying gamma density functions for percept durations. (A) Recovery of
generating gamma density functions from buildup functions that were
computed via Monte Carlo simulation (1000 trials). Usually the density
functions corresponding to the fitted buildup function were a good match
for those that had generated the sample buildup function. (B) Because the
fitting process was very sensitive to noise, the density functions obtained
from the fitted buildup function occasionally differed from the generating
duration distributions. (C) From buildup functions that were computed
analytically using our model, we always recovered the parameters of the
gamma densities (i.e., α0 = 1.47, μ0 = 6.47; α1 = 3.14, μ1 = 21.45 for this
buildup function) that had generated those buildup functions.

or adaptation is not involved in our statistical dynamics model;
the dynamics of buildup alone do not implicate an accumulative
process. By definition a renewal process has no memory about
the duration of the preceding percept; there are no correlations

between successive percepts, consistent with reports from behav-
ioral experiments (Pressnitzer and Hupé, 2006). The model con-
tains no explicit description for an accumulative or adaptive
mechanism.

The buildup function for our ARP model can be computed
with Monte-Carlo simulations or it can be evaluated with the
analytical solution (in terms of Fourier transforms) of the par-
tial differential equations for the probability mass functions
Equations (9) and (10) in the two states. In this direct framework,
one assumes that the duration distributions for the two percepts
are known, under stationary switching, say, for long runs. For
our case studies, we assume gamma distributions, as they are
often applied and fitted to behavioral data for bistable percep-
tual dynamics. To restate, the model enables one to understand
and predict from the stationary statistics the system’s transient
behavior—the buildup function from a specified initial state. We
applied the ARP model to predict buildup functions for neuronal-
like competition models. The predictions compared well with the
simulated empirical buildup functions for examples of mono-
tonic buildup (as typically reported from experiments) as well
as, to a lesser degree, non-monotonic (damped cyclic) buildup
time courses—however, when perceptual state dwell times vio-
late the model’s assumption of independence, the prediction loses
quantitative accuracy. Adaptation-driven switching is inconsis-
tent with previous psychophysical reports, and the buildup func-
tions obtained from neuronal simulations with strong adaptation
and percept-to-percept correlations are unlike those reported in
the literature. The ARP does describe well those neuronal models
that produce perceptual state durations with statistics consistent
with those from psychophysical experiments.

It is worth considering that bistable perception is a special case
that exposes features of ordinary perception that frequently go
unnoticed. In trying to interpret noisy sensory signals, competi-
tion between alternative perceptual states is constantly on-going,
but usually the odds in favor of one interpretation are over-
whelming (Pressnitzer et al., 2011)—particularly when attention
is engaged to boost one signal and suppress all others. The cock-
tail party problem involves segregation and attention. Our model
could trivially describe the stability of segregation when the per-
cept durations in the segregated state are vastly longer than the
durations in others, so that the durations of the unheard per-
cepts were essentially always zero. The model also describes how
the transient dynamics of buildup are linked to the stationary
dynamics of random switching between alternative perceptual
states when the stimulus is ambiguous.

RELATIONSHIP BETWEEN STEADY-STATE AND TRANSIENT BEHAVIOR
If the ARP model provides an accurate statistical description
of experimentally measured buildup functions, the entire time
course of the buildup function could be computed accurately
from short-trial data that records only a few switches before a
trial ends, even if that time is well before the buildup function
reaches a steady state. Allowing for a special probability density
function for the first percept, the only requirement for accurate
reconstruction is the observations of a large enough minimal set
of outcomes. In terms of the perceptual state variable Z, the min-
imal set of Z sequences (in which a switch out of the last percept
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in the sequence has not yet occurred at termination time) con-
sists of {(0) , (0, 1) , (0, 1, 0) , (0, 1, 0, 1)}. A large enough set of
samples including these outcomes allows an accurate estimate of
three duration density functions in the ARP model for: the first
segregated percept; the integrated percept; and the (non-initial)
segregated percept. In the context of the ARP model, no addi-
tional observations are required to predict the entire time course
of the buildup function.

In a similar vein concerning predictive power, the ARP model
enables one to understand and predict, from the stationary
statistics, the transient time course of the buildup function: the
temporal evolution, starting at time zero, of the probability of seg-
regation, onward as that probability approaches its steady state.
From a dynamical systems point of view, it may seem surprising
to predict transients from knowledge of a steady state only. In our
case of a two-state switching system with renewal, the two dwell
time distributions contain all the information that is needed, just
as long as the duration of the first percept is not special. If it is,
then the steady-state statistics still characterize a relative of the
buildup function that is obtained by defining time zero in each
trial as the instant at which the switch out of the first state occurs.

SWITCH-TRIGGERED BUILDUP FUNCTION
Although our model can account for experimental data in which
the initial percept duration distribution is different from the
steady state, this issue can be circumvented by a different aver-
aging technique, similar to those commonly used in neurophys-
iological studies of several sensory modalities. In this approach,
one constructs a steady-state buildup function by averaging over
time points aligned by switches into the grouped percept, thereby
producing a buildup function from a single long trial. Discarding
the first and second percept durations, we can construct buildup
functions by estimating the probability over time for the split
percept based on an event-triggered average aligned to each
switch into the grouped percept. This method produces a buildup
function for the steady state of alternations, the probability of
perceiving the split organization not just from the beginning of
the trial but rather from the beginning of any grouped percept
over the course of a long presentation. Similarly, if one con-
structs a buildup function for the steady state of switching into the
grouped percept, there would be two buildup functions available
for analysis. A statistical advantage in parameter estimation from
laboratory data might be afforded by measuring two buildup
functions. The value for analysis of having two buildup func-
tions could be realized also in cases of bistable dynamics, such
as in binocular rivalry, when the initial percept could differ across
trials.

WHAT IF THE FIRST PERCEPT IS SPECIAL?
For ambiguous stimuli, the time until the first perceptual switch
can be on average notably longer than subsequent durations of
the same percept (Pressnitzer and Hupé, 2006); this feature has
been dubbed “inertia” (Hupé and Pressnitzer, 2012). The dis-
tribution of initial grouped percept durations would then be
different from other grouped percepts. If recorded trials are short,
say, containing one or fewer switches from integrated to the seg-
regated percept, the distribution of initial switch time and the

one just afterwards would be sufficient to describe a renewal
process accounting for the very early phase of buildup. But
these data would not likely suffice for predicting the steady state
behavior. If trials are longer with many alternations, however,
one could distinguish between initial and subsequent grouped
percept durations. Our theoretical model can incorporate both
the steady state and initial percept distributions. However, in
the model/parameter identification problem, this would intro-
duce a third duration distribution, and increase the number of
parameters to 6. For simplicity’s sake, we have only shown the
4-parameter model, which assumes that the initial percept dura-
tion is drawn from the same distribution as other grouped percept
durations.

It is worth noting that there are circumstances in which the
first percept is not longer than subsequent integrated percepts,
such as when buildup resets after a switch in attention (Denham
et al., 2010). Stationary distributions might be appropriate for
such circumstances. Furthermore, our model is agnostic as to the
mechanism by which the first percept is determined—possible
underlying mechanisms have been thoroughly discussed in Hupé
and Pressnitzer (2012). Our model functions as a statistical
description of how probabilities evolve with random independent
switching from a particular initial state.

MECHANISTIC AND COMPUTATIONAL MODELS
An important component of a physiological model that accounts
for the perceptual dynamics underlying the buildup function
would be some description of the sensory coding mechanisms
that underlie the formation of perceptual organization, as a start.
Such a model would not necessarily account for the stochas-
tic switching. The specific mechanisms for switching in human
stream segregation may be complex; Kondo and Kashino (2009)
find that feedforward and feedback processes in a thalamocor-
tical loop might be differentially engaged for switches into and
out of the perceptual organization that is strongest. The renewal
process model is agnostic as to the specific mechanism by which
states are found and alternations occur. We have used existing
competition models for the sake of illustration and as a com-
putational test-bed. Similar competition-like processes have been
used to explain the alternations observed in ambiguous motion
(Pastukhov et al., 2013) and stream segregation (Mill et al., 2013)
experiments. A better understanding of the characteristics of the
neural populations on the encoding side of perceptual organiza-
tion could enable us to more accurately model the psychophysical
data.

Previous computational approaches to describing the buildup
function (Micheyl et al., 2005; Pressnitzer et al., 2008) have
pointed to the accumulation of adaptation as a critical feature
for the increase over time in the probability of a split percept.
Multi-second habituation in the auditory periphery (Pressnitzer
et al., 2008) can predict the buildup function obtained through
psychophysics. It may therefore be surprising that the ARP, which
seemingly lacks any notion of adaptation, can provide a good
statistical model for buildup. However, we believe that previ-
ous approaches and our own can be reconciled, and may even
be complementary. The choice of gamma densities to gener-
ate dominance durations implicitly invokes adaptation (Wilbur
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and Rinzel, 1982) for the following reason. In an ARP one can
define a hazard function, the probability per unit time of a
switch out of state Zi, given an elapsed time s since entering
this state. The hazard function for a gamma density, in con-
trast to an exponential distribution, is dependent on the elapsed
time since switching into each state. Therefore, there is a within-
epoch memory which might be thought of as a local adaptation
However, it is important to note the distinction between this
dependence on time since last switch, s, and the clock time depen-
dence of cumulative habituation, a memory that spans multiple
epochs, or the dependence on neuronal activity of global adap-
tation. Rubin and Hupé (2004) have found stability over time of
the statistics of durations, indicating that there is no cumulative
adaptation.

Our statistical model for buildup is agnostic on the mech-
anism of switching, and this is a strength in some important
respects. We take observations from the experimental literature as
our starting point—that perception alternates randomly between
grouped and split (Anstis and Saida, 1985; Pressnitzer and Hupé,
2006; Denham et al., 2012), that the durations in each state
are random and independent (Levelt, 1968; Rubin and Hupé,
2004; Pressnitzer and Hupé, 2005), and that the initial percept
is the grouped one (Anstis and Saida, 1985; Shamma, 2008;
Hupé and Pressnitzer, 2012). We formalize these into a theoreti-
cal framework that makes explicit the link between averaging over
random switch times between states, and the dynamic descrip-
tion of the probability of being in one state, which is the buildup
function.

Furthermore, our general, non-mechanistic, ARP model also
provides a cautionary message with regard to mechanistic
hypotheses for buildup: Buildup does not necessarily imply some
sort of dynamical adaptation or accumulation of evidence across
epochs. All switches after the first one follow rules that are fixed
with time thereafter. There is no internal dynamical variable (such
as one labeled as “adaptation” or “evidence”) that governs the
timecourse of buildup. In other words, at the moment a switch
into state Z = i, is made, the random dwell time in that state,
before switching into state, Z = NOT i, is always drawn from the
same bucket. From this viewpoint, the timecourse of the buildup
function could be merely a reflection of the relaxation of the
ensemble-average of the inherently stochastic state variable Z(t)
to a steady-state value.

A heuristic analogy is provided by the fraction of open voltage-
gated K+-channels in the Hodgkin and Huxley model for K+-
conductance in neural membranes (Hodgkin and Huxley, 1952).
When one observes individual K+-channel behavior, as in the on-
cell patch clamp method of Neher and Sakmann (1976), one can
see that the single-channel contribution to the population gating
variable is made by a dichotomous random variable, just like our
Z (t) , which we will call N(t). The critical point is that rate con-
stants (probability per unit time) underlying the transition from
N = i to N = NOT i depend instantaneously on the membrane
voltage, V(t). The consequences at the level of the ensemble aver-
age are revealed when one measures the net fraction of maximal
K+-conductance, in which contributions made by thousands of
K+-channels in the membrane of the neuron. A highly germane
experiment is the classical voltage-clamp experiment (Hodgkin

and Huxley, 1952); the fractional conductance is analogous to
our buildup function. In a voltage-clamp experiment in which
the membrane voltage is first held fixed at a level below the rest-
ing membrane voltage, and then stepped up instantaneously to
a “command” voltage well above the resting voltage at time zero
and then held fixed, the overall fractional conductance follows a
sigmoidal time course, starting near zero, and reaching a plateau
between zero and 1. The dynamics are completely determined by
the command voltage at the instant of the voltage step. The time-
course reflects the relaxation of the overall conductance to a level
governed by the command voltage. The important point is that
each individual channel is undergoing independent state transi-
tions (one state of which corresponds to an open channel) with
probabilities per unit time that are fixed forever after the step. The
timecourse of the conductances stems from the fact that the tran-
sition rates going toward the open-channel state are larger, and
the transition rates leading to all closed-channel states are smaller,
at the command potential established at t = 0 than they were for
t < 0. It seems that the notions of adaptation, accumulation, and
analogous processes are not relevant here. In other words, there is
no external function of time driving the evolution of the channel
ensemble.

CONCLUDING REMARKS
We developed the statistical ARP model to demonstrate that
buildup does not necessarily implicate accumulation or adapta-
tion as dynamic mechanisms. Rather, the buildup function may
simply reflect the evolution of probability after trial-averaging for
state 1 having started in state 0 under random, independently-
timed, switching between states.

Additional data, say for non-stationary conditions or strong
correlations between percept durations, may help to distinguish
among mechanistic models, but buildup alone provides insuf-
ficient support. Even with a transiently perturbed stimulus, the
subsequent relaxation of probability to a steady value can be
described with the ARP model. The ARP model can account for a
wide range of buildup time courses, monotonic or not. We illus-
trated that non-monotonic and damped cyclic buildup occurs
in the ARP model when the duration distributions are sharply
localized. The competition model in the noisy oscillator regime
can have small variance durations. Given that nearly all reported
buildup functions are monotonic [with the possible exception
of those in Anstis and Saida (1985)], our results support the
suggestion in Shpiro et al. (2009) that the dynamics of percep-
tual switching favor a qualitative basis of noise-driven attractor
dynamics over noisy oscillator dynamics—but without speaking
for a specific neuronal mechanism. Our ARP model provides a
novel description and insight that links transient dynamics of
the buildup function to any underlying steady state process that
generates perceptual alternations, and it produces surprisingly
good predictions with minimal assumptions.
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