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Capabilities in continuous monitoring of key physiological parame-
ters of disease have never been more important than in the context
of the global COVID-19 pandemic. Soft, skin-mounted electron-
ics that incorporate high-bandwidth, miniaturized motion sensors
enable digital, wireless measurements of mechanoacoustic (MA)
signatures of both core vital signs (heart rate, respiratory rate,
and temperature) and underexplored biomarkers (coughing count)
with high fidelity and immunity to ambient noises. This paper sum-
marizes an effort that integrates such MA sensors with a cloud
data infrastructure and a set of analytics approaches based on dig-
ital filtering and convolutional neural networks for monitoring of
COVID-19 infections in sick and healthy individuals in the hospital
and the home. Unique features are in quantitative measurements
of coughing and other vocal events, as indicators of both disease
and infectiousness. Systematic imaging studies demonstrate corre-
lations between the time and intensity of coughing, speaking, and
laughing and the total droplet production, as an approximate indi-
cator of the probability for disease spread. The sensors, deployed
on COVID-19 patients along with healthy controls in both inpatient
and home settings, record coughing frequency and intensity con-
tinuously, along with a collection of other biometrics. The results
indicate a decaying trend of coughing frequency and intensity
through the course of disease recovery, but with wide variations
across patient populations. The methodology creates opportuni-
ties to study patterns in biometrics across individuals and among
different demographic groups.

wearable electronics | digital health | biomarkers |
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As of December 26, The Centers for Disease Control and
Prevention (CDC) tabulations indicate over 18 million

recorded cases of COVID-19 and more than 329,592 in deaths
in the United States (1). Accurate and widespread testing is a
key component of the response to this pandemic (2). Although
the capacity and availability of COVID-19 molecular diagnostics
continues to increase, shortcomings follow from variabilities in
the accuracy of the tests, constraints in materials and supplies,
long turnaround times associated with certain tests, inadequate
access to testing sites, and a lack of human resources (3). An
additional challenge is in limited prognostic tools to assess the

trajectory of infection and the eventual need for hospitalization
or mechanical ventilation. The CDC confirms that COVID-19
can be contracted via airborne transmission along with contact
and droplet transmission—features that underscore the need to
improve capabilities in risk stratification of exposures via con-
tact tracing and to ensure sufficient quarantining for recovering
individuals.

Significance

Continuous measurements of health status can be used to
guide the care of patients and to manage the spread of
infectious diseases. Conventional monitoring systems cannot
be deployed outside of hospital settings, and existing wear-
ables cannot capture key respiratory biomarkers. This paper
describes an automated wireless device and a data analysis
approach that overcome these limitations, tailored for COVID-
19 patients, frontline health care workers, and others at high
risk. Vital signs and respiratory activity such as cough can
reveal early signs of infection and quantitate responses to
therapeutics. Long-term trials on COVID-19 patients in clini-
cal and home settings demonstrate the translational value of
this technology.
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To address some of these needs, a range of digital health tools,
from mobile applications for collecting self-reported symptoms
to consumer wearable devices and clinical-grade medical sen-
sors for tracking physiological status, are under development and
in initial stages of deployment (4). Researchers at FitBit report
the ability to identify infection with COVID-19 via four previ-
ous days of data collected from their wrist-worn devices to yield
overnight heart rate, respiratory rate, and heart rate variability
(5). Others claim similar detection capabilities with alternative
wrist-based devices (6). Several ongoing large-scale trials aim to
evaluate these wearables for early detection of COVID-19 infec-
tion, from smart rings (Oura Ring) to skin-interfaced patches
[VitalConnect (7), Philips (8), Sonica (9)], to other smart watches
[e.g., Empatica (10)] with support from various federal agen-
cies. Devices that mount on the finger or wrist can monitor
some subset of conventional vital signs (11–15), such as heart
rate. Loose interfaces at these body locations, however, limit
the range of detectable physiological activities, particularly res-
piratory signals (16, 17). The inability to capture complex health
information reduces the potential for precise and reliable anal-
ysis (18). Development of robust metrics for early detection
and disease tracking requires multiparametric operation across
different digital biomarkers and unconventional metrics rele-
vant to the disease of interest. Challenges remain in addressing
these requirements simultaneously while maintaining simplic-
ity and ease of use of the sensing system, as is necessary for
practical deployment at scale in remote, continuous monitoring
settings (19).

As COVID-19 is a respiratory disease, cough and other sounds
from the thoracic cavity, trachea, and esophagus are examples of
highly relevant biometrics. Laboratory-scale studies demonstrate
cough-based diagnoses of diverse respiratory diseases through
measurements of frequency (20), intensity (21), persistency (22),
and unique audio features (23). Investigations on audio record-
ing data show differences between COVID-19 positive and neg-
ative subjects’ vocalizing patterns including phonation of speech
(24, 25), breathing, and coughing sounds (26–29). The results
may suggest possibilities for disease monitoring in asymptomatic
patients. Recent work applies voice profiling and computer audi-
tion to track cough, speech, respiratory, and other sounds for
risk assessment and diagnosis of COVID-19 (30, 31). Monitor-
ing cough and other vocal events (speaking, laughing, etc.) not
only provides a signature of disease but also has potential in
generating metrics of infectiousness, as these mechanisms yield
aerosols/droplets that contribute to virus transmission (32–34).
Previous studies show that the total volume of aerosols correlate
with the loudness and duration of vocal events. Measurements
of the timing and intensity of sounds may, therefore, serve as
reliable means to quantify one aspect associated with risks of
spreading the disease (35).

Point-of-care or semicontinuous methods for quantifying
coughing or other vocal activities rely on electromyography,
respiratory inductive plethysmography, accelerometry, or audi-
tory recordings captured with one or several sensors, sometimes
with other exploratory approaches (e.g., the nasal thermistor or
the electrocardiography) (36–41). Digital signal processing fol-
lowed by machine learning algorithms often serves as the basis
for classification (42–53). Microphone-based methods prevail
due to their widespread availability and their alignment with
large crowd-sourced datasets (e.g., COUGHVID, HealthMode,
DetectNow, VoiceMed). A key challenge is that background
sounds and/or environmental noises frustrate robust and accu-
rate measurements. Measurements of loudness can be unreliable
because they depend on the separation between the device and
the subject. Most importantly, audio recordings raise privacy and
legal issues, thereby limiting the scale of application.

The results presented here bypass these disadvantages, to
allow continuous assessments of respiratory biomarkers cor-

relative to health status and droplet/aerosol production, with
additional information on a range of traditional vital signs. Here,
a simple, wireless monitoring device (54) combines with a cloud
interface and a data analytics approach to allow continuous mon-
itoring of a breadth of conventional (e.g., heart rate, respiratory
rate, physical activity, body orientation, and temperature) and
unconventional (e.g., coughing, speaking) physiological param-
eters of direct relevance to COVID-19. The results serve as a
quantitative basis for 1) detecting early signs of symptoms in
health care workers and other high-risk populations, 2) mon-
itoring symptomatic progression of infected individuals, and
3) tracking responses to therapeutics in clinical settings. In addi-
tion, systematic studies presented here indicate that coughing,
speaking, and laughing events measured with these devices cor-
relate to the total amount of droplet production. This link offers
an opportunity to quantify the infectiousness of individuals, as
critical information in caring for patients and for improved risk
stratification in the context of contact tracing and individual
quarantines.

Pilot studies on COVID-19 patients at an academic medical
center (Northwestern Memorial Hospital) and a rehabilitation
hospital (Shirley Ryan AbilityLab) include 3,111 h of data span-
ning a total of 363 d from 37 patients (20 females, 17 males), in
an overall implementation that supports automated operation,
with minimal user burden. Long-term monitoring reveals trends
in various parameters, including coughing frequency, following
the test-positive date for eight patients (four females, four males)
over more than 7 d. Evaluations across 27 patients (15 females,
12 males) with ages between 21 and 75 y reveal diverse cough-
ing patterns across individuals and consistent trends during the
recovery process.

Results
Sensor Designs, System Configurations, and Wireless, Cloud-Enabled
Modes of Operation. Fig. 1A presents a schematic illustration of
the system. The circuit architecture represents an advanced ver-
sion of the soft, skin-interfaced mechanoacoustic (MA) device
reported previously (54). Briefly, a flexible printed circuit board
(fPCB; 25-µm-thick middle polyimide with double-sided 12-
µm-thick rolled, annealed copper, AP7164R, DuPont) with
serpentine conductive traces supports collections of chip-scale
components including a high-bandwidth, inertial measurement
unit (IMU) with a triaxial accelerometer (LSMDSL, STMi-
croelectronics) as the key sensing element, a Bluetooth Low
Energy (BLE) system-on-a-chip (SoC) for control and wire-
less connectivity, an on-board memory module for data stor-
age, and a wireless unit for recharging a compact battery. A
thin, soft elastomer membrane (Ecoflex, 00-30, smooth on, 300
µm) completely encapsulates the device as a compliant, non-
irritating interface to the suprasternal notch (SN), supported
by a thin, double-sided biomedical adhesive. The design of the
system for the studies reported here includes an automated
user interface that minimizes manual operations, where the
wireless charging platform serves as a hub to switch modes
from recording to data transfer. Specifically, the device remains
in data acquisition mode when not on the charger. During
charging, the device automatically stops recording and starts
transmitting data to a BLE-enabled device such as a phone
or a tablet with internet connectivity to a Health Insurance
Portability and Accountability Act (HIPPA) compliant cloud
server. Algorithms operating on the server deliver results to
a graphical dashboard for feedback to health workers and/or
patients.

When interfaced to the SN, the device captures subtle vibra-
tions of the skin as signatures of a wide range of physiological
processes (54). Fig. 1B shows an example of three-axis accel-
eration data recorded from an inpatient (female, age 53 y)
wearing the device for 48 h. The sampling rate for motions
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Fig. 1. The health monitoring system incorporating an MA sensor, Bluetooth and cloud-based data transmission, automated data processing platform, and
a user interface with a minimum need for manual operation. (A) Schematic illustration of the operational flow of the system, which consists of a device,
cloud, and data processing platforms. (B) Sample three-axis acceleration raw data acquired continuously over 48 h on a COVID-19 patient. Dashed lines
indicate occurrences of various representative body processes of interest, shown in (C) zoomed-in 2-min windows.

perpendicular to the surface of the skin (z axis) is 1,666 Hz; the
rates for the x axis (perpendicular to the axis of the neck) and
y axis (along the neck) are 416 Hz. Fig. 1C shows time series

representations of sample events in 2-min windows. Features
associated with coughing and speaking include high-frequency
components with significant amplitudes (∼ 10◦ g) along the z and
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y axis but small amplitudes (∼ 10−1 g) along the x axis. Physical
activity induces comparatively large accelerations (∼ 10◦ g)
along all axes. During the periods without such activities, subtle
vital signals from respiratory and cardiac cycles are readily appar-
ent. Recordings during sleep can also yield body orientations and
snoring events, including those that are scarcely audible.

Algorithm Development. The focus here is on extraction of differ-
ent vocal and respiratory events from these raw data. Methods
for determining other important parameters, such as overall
activity levels, heart rate, and respiration rate, can be found else-
where (54). In the context of COVID-19, a particular interest
is in identifying and tracking coughing events, in the pres-
ence of other MA signals. Fig. 2 presents a scheme for data
preprocessing that exploits time–frequency features to differen-
tiate coughing from other common daily activities. Algorithm

development uses recordings captured from 10 healthy normal
subjects in controlled experiments with a protocol (see Materi-
als and Methods for details) that generates a large number of
events of interest in various body postures. Fig. 2A shows typi-
cal z axis data from a representative experimental session. Each
testing sequence begins and ends with three taps of the fingers
on the device as time stamp markers. In between are consec-
utive 10 forced coughs, 10 laughing events, 10 throat clearing
events, 30 s of walking, 10 cycles of breathing, and more than
20 s of speaking. Fig. 2B shows time series and spectrogram rep-
resentations of such events, the latter of which uses short-time
Fourier transform and a Hanning window with a width ∆t = 0.4
s moving in time steps of δt = 0.01 s. The algorithm considers
each set of windowed data independently in the process of cough
determination. The coughing signals feature a broad-bandwidth
impulse-like response, followed usually by a high-frequency

A

B

C

D

E

Fig. 2. The signal preprocessing steps that identify broadband events of interest from quiet and speaking times from MA measurements. (A) The raw z
axis data generated from controlled experiments on healthy normal subjects, with all of the events of interest repeated in sequence following a designed
protocol (see Materials and Methods for details). (B) Example 400-ms clips of the raw z axis data and their corresponding spectrogram features. (C) Speaking
signals distinct with a clear presence of harmonics (P(f1) and P(f2) of fundamental frequencies f1 in the spectrogram analysis P(f), where 2f1≈ f2; see ref.
54 for details). Detected speaking periods are shaded in blue in the spectrogram. (D) After excluding speaking time, the detection of the high-frequency
(f > 10 Hz) MA power peaks with a minimum time interval of 0.4 s and a threshold of −10,000 yields time stamps for cough-like events that feature the
impulse-like broadband acoustics. (E) A flow diagram summarizing the preprocessing steps that take in the raw z axis data and output the time stamps for
cough-like and speaking events, along with their MA power, PMA.
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chirp (>200 Hz). Speaking signals also have high-frequency
components, but usually with distinct harmonic features. An
algorithm based on such harmonics can screen the data for
prominent speaking periods (Fig. 2C). After excluding speaking
events, a minimum amplitude threshold Pthrs = −10,000 detects
peaks of the logarithm of spectral power integrated across the
high-frequency band (>10 Hz) (PMA) and labels them as cough-
like events, with a minimum time interval between peak events of
0.4 s (Fig. 2D). Here, cough-like events include laughing, throat
clearing, and also some speaking periods that exhibit unclear har-
monics. Fig. 2E shows the data processing flow, which begins

with raw z axis data and returns the time stamps for speaking
and cough-like events, as well as their associated integrated loga-
rithm power. Such an analysis applied to the testing data detects
26.4 s of speaking with clear harmonics features, and identifies
10 coughing, 20 laughing, 12 throat clearing, 36 speaking, and 6
tapping instances as cough-like (Fig. 2A).

Distinguishing actual coughs from the pool of cough-like
events demands further classification by machine learning. A
convolutional neural network (CNN) uses as inputs Morlet
wavelet transforms of 0.4-s raw z axis data (shaped by the Han-
ning window) of these events (Fig. 3A). The wavelet transform

A

B

C

D E F

Fig. 3. The machine learning algorithm for the classification of cough-like events extracted by the preprocessing algorithm. (A) Steps of feature scalogram
generation from raw data. (B) Representative scalograms of events of interest. (C) The architecture of a CNN that takes in a feature scalogram and outputs
its probabilities of classes. (D) The averaged confusion matrix from the iterated 20 leave-one-out testings. (E) The overall testing accuracy on each left-out
subject using a model trained on the other 19 subjects. (F) The macroaveraged ROC curves of each left-out subject using a model trained on the other 19
subjects and the corresponding AUC. a.u., arbitrary unit.
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offers advantages compared to the short-time Fourier transform
because of its favorable resolution in characterizing nonstation-
ary signals, which improves the accuracy of classification. Fig. 3B
shows scalograms of cough-like events, including tapping (one
type of motion artifact), coughing, laughing, throat clearing, and
speaking events. These scalograms, with shapes of 60× 666× 1,
serve as inputs to the CNN model. As shown in Fig. 3C, the CNN
starts with a three-channel convolutional layer with a kernel size
of 3× 3, followed by a standard 50-layer residual neural net-
work (ResNet), a CNN architecture for image classification (55).
The output of the ResNet flattens to a layer of 86,106 neurons,
followed by two fully connected layers with rectified linear unit
activation and two dropout layers (p = 0.5) alternately. The final
fully connected layer of the CNN model has five neurons with
Softmax activation, which corresponds to probabilities associ-
ated with the five types of events of interest: coughing, speaking,
throat clearing, laughing, and motion artifact, where most of the
motion artifacts are those events arising from physical contact on
or around the device.

Data collected from 10 healthy volunteers yield labeled time
windows consisting of 1,379 coughing, 1,441 speaking, 1,313
laughing, 1,423 throat clearing, and 2,890 motion artifact events.
Because sample events generated in controlled experiments can
differ from those that occur naturally in uncontrolled settings,
the training of the CNN model uses not only scalograms of
labeled events from 10 healthy volunteers (subjects 1 to 10)
but also 10 COVID-19 patients during natural daily behav-
iors (subjects 11 to 20). Determinations of ground truth from
the patient data involve listening to soundtracks created from
the accelerometer data and then manually labeling the data
(see Materials and Methods for code availability). Most of the
events associated with coughing, speaking, and motion artifacts
can be determined unambiguously in this manner. Difficulties
arise in distinguishing between laughing, throat clearing, and
certain periods of speaking, thereby leading to some level of
uncertainty. Such manual analysis of data collected from 10
COVID-19 patients generates a total of 1,405 coughing, 1,449
speaking, 193 laughing, 210 throat clearing, and 2,905 motion
artifact events. SI Appendix, Table S1 includes detailed demo-
graphic and data collection information for all of the training
subjects.

The generalization performance of the CNN model can be
determined using a leave-one-out strategy, where one leaves a
subject out of the training set (19 subjects for training) and
then tests the trained model on this subject. Iterations apply
this approach to each of the 20 subjects. Each training set con-
sists of a random collection of 80% of the labeled events from
the 19 subjects, with the remaining 20% used for validation.
The training uses an Adam optimization algorithm. Fig. 3D
shows the averaged confusion matrix of 20 leave-one-out test-
ing cycles. The model achieves accuracies of 0.90± 0.08 for
coughing, 0.88± 0.1 for speaking, 0.79± 0.14 for throat clear-
ing, 0.81± 0.14 for laughing, and 0.98± 0.02 for motion artifact.
The classifications for throat clearing and laughing have compar-
atively lower average accuracies and higher standard deviations,
due to their similarity to certain speaking signals, as evidenced
by the confusion matrix (Fig. 3D). Fig. 3E shows the over-
all five-way classification accuracies on each subject using a
model trained on the other 19 subjects. The minimum over-
all accuracy is 0.85 for all subjects. The receiver operation
characteristic (ROC) curve characterizes the trade-off between
sensitivity and specificity in binary classification—varying the
threshold of the cutoff probability at the final output layer
generates ROC curves of each of the five types of events (cough-
ing vs. noncoughing, speaking vs. nonspeaking, etc.). Fig. 3F
presents the macroaveraged ROC curves for each subject. The
high area under the curve (AUC) of >0.97 for all subjects
indicates that the model achieves a good balance between sen-

sitivity and specificity (see SI Appendix, Table S2 for detailed
information).

MA Sensing of Droplet Production. Given the transmissibility of
many types of viruses through droplets and aerosols, MA mea-
surements that correlate the timing and intensity of activities
associated with droplet production may yield reliable metrics of
the risks of the population spread of COVID-19. Robust identi-
fication of coughing events, along with their frequency, intensity,
and, in the future, detailed time dynamics (i.e., effective sounds),
has relevance in this context. Other forms of vocalization such
as speaking, singing, shouting, etc., are also important. Previ-
ous studies show that different types and volumes of vocal or
respiratory-related events yield significantly different levels of
aerosol production (35), with direct relevance to evaluating the
risks of viral transmission. Fig. 4A presents results that calibrate
the high-frequency power PMA associated with the z axis accel-
eration component of the MA signals to measurements with a
decibel meter PdB in a quiet (background noise of<40 dB) envi-
ronment for cases of coughing, speaking (repeating words “ter-
minator”), and laughing from a healthy normal subject (male,
Asian, age 30 y). The results show a linear correlation PMA =
p1PdB + p2 for all three classes in the audible range of 55 dB
to 85 dB, with p1 = 200± 20 dB−1, p2 =−12,000± 1,700 dB−1

for coughing; p1 = 105± 10 dB−1, p2 =−7,000± 700 dB−1 for
speaking; and p1 = 114± 30 dB−1, p2 =−5,800± 1,200 dB−1

for laughing (SI Appendix, Fig. S1).
Fig. 4 B and C shows the experimental setup of quantita-

tive imaging studies (see Materials and Methods for details) that
examine correlations between MA data and droplet produc-
tion, with a focus on relationships between the total number of
droplets and the intensities of coughing, speaking, and laughing.
The measurements include droplet dynamics captured via par-
ticle tracking velocimetry (PTV; see Materials and Methods for
details), power levels from the MA data (PMA), and audio lev-
els from a decibel meter (PdB ). Fig. 4 D–F shows a sequence
of results from the MA sensor and the PTV analysis for cough-
ing, speaking, and laughing, respectively, where markers indicate
events correctly identified and classified by the automated algo-
rithm. Fig. 4 G–I are images of coughing, talking, and laughing
at the peak of corresponding marked boxes in Fig. 4 D–F. The
PTV method tracks individual particles in the Lagrangian frame
of ref. 59. Fig. 4 J–L shows the detected particles, with sizes indi-
cated by the diameters of the gray circular symbols. As expected,
the findings indicate that a larger number of droplets (deter-
mined across the investigation area of ∼ 34×∼ 17 cm2, and
with radius R > 50 µm in the detectable range) results from
coughing (200 to 800 droplets) than from speaking or laugh-
ing (10 to 200 droplets) at comparable decibel levels and time
durations. More than 60% of droplets are smaller than 150 µm
in radius for all measured respiratory activities (SI Appendix,
Fig. S2).

Interpolated horizontal velocity (u) contours from droplet tra-
jectories indicate a large swirling motion for coughing, with
positive velocity near the mouth and negative velocity in the
bottom of the investigated area (Fig. 4J). Droplets show ballis-
tic behavior for speaking and dispersive behavior for laughing
(Fig. 4 K and L). The ballistic behavior of droplets results from
enhanced jet-like transport of the expelled airflow induced by
plosive sounds (56). Drastically different inertial particle dynam-
ics occur depending on the size of droplets, even within the same
cycle. Specifically, small droplets linger in the air and respond
to ambient flows. Large droplets travel at high velocities and
are minimally influenced by flows, within a range investigated.
Statistical analyses of the total number of droplets (Nd ) of all
measured respiratory activities at various audio levels appear in
Fig. 4 M and O. The number of droplets exhibits some correla-
tion to the audio decibel level and the power intensity of the MA
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Fig. 4. MA sensing to quantify the transmission of droplets. (A) MA power vs. decibel meter measurement for coughing, speaking, and laughing. (B)
Experimental setup for optical imaging of droplets. (C) Sample image of coughing. (D–F) Time series of MA z axis acceleration (ZACC) in sync with the analysis
of MA power and the imaging detection of the number of the particles. (G–I) Instantaneous images of coughing, talking, and laughing at the peak of
corresponding marked boxes in D–F. (J–L) Detected particles with sizes indicated by the diameters of the gray circular symbols, overlapped with velocity
contour fields at the corresponding instances in G–I; the color denotes stream-wise velocity in the horizontal (x axis) direction. (M–O) Box and whisker plots
showing the number of particles with mean, median, and interquartile range (IQR) for all measured cycles of coughing, speaking, and laughing, respectively.
See Materials and Methods for full description.

data, for all activities. SI Appendix, Fig. S3 and Movie S1 include
additional results from the imaging analysis of droplet dynamics.

Multiparametric Monitoring from a Cohort of COVID-19 Patients.
Scaled deployment of the MA device and the machine
learning algorithm on COVID-19 patients in a clinical set-

ting demonstrates practical utility and patient compliance
without user or physician burden. The studies involve con-
tinuous, long-term (>7 d) monitoring of parameters rele-
vant to patient status, not only coughing dynamics but also
other forms of vocalization, along with heart rate, respira-
tion rate, body orientation, and overall activity. These pilot
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studies correspond to 3,111 h of data from 37 patients
(20 females, 17 males; see SI Appendix for detailed demo-
graphic information) with 27,651 detected coughs. Fig. 5A shows
data and analysis results for a representative 1-h session with a
female patient. The CNN model, trained using a process that
is blind to any of the patients described in this section, returns
predicted classes for each cough-like event detected by the pre-
processing step. A manual labeling process based on audio files

provides reference labels for comparison. Statistical analysis, on
a total of 10,258 randomly sampled events from 10 patients (6
females, 4 males; patient IDs listed in SI Appendix, Table S1)
with manual labels shows macroaveraged sensitivity (i.e. recall)
of ≥ 0.87, specificity of ≥ 0.96, and ≥ 0.85 precision for cough-
ing (N = 2,785) and artifacts detection (N = 2,768) (Fig. 5B
and SI Appendix, Table S2). The sensitivity and precision for
speaking (N = 2,758), throat clearing (N = 1,212), and laughing

A B

C

D

E

F

G

Fig. 5. Deployment of MA devices on to the COVID-19 patients in clinical settings. (A) Representative z axis acceleration data measured from a female
patient. The automated algorithm detects cough-like events and outputs five-way classification for the events to coughing (0), speaking (1), throat clearing
(2), laughing (3), and motion artifacts (4). (B) The macroaveraged testing performance (sensitivity/recall, specificity, and precision) of each type of event on
the 10 patients with manual labels, which include 10,258 randomly sampled events in total. (C and D) Example results for the detected coughing and talking
frequency and intensity (color-coded) in 5-min windows from continuous 48-h monitoring of the same patient (raw acceleration data are shown in Fig. 1
B and C). (E–G) The vital signs information includes heart rate (HR) in a unit of beats per minute (BtPM) and respiration rate (RR) in a unit of breaths per
minute (BrPM), and physical activity (PA), extracted from the same measurement, with their amplitude information color coded. a.u., arbitrary unit.
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Fig. 6. Long-term monitoring of coughing and other biometrics of COVID-19 patients. Long-term MA sensing of (A) cough frequency per hour,
(B) talk time per hour, (C) heart rate, (D) respiration rate, and (E) physical activity for the same patient shown in Fig. 5 A and C–G, with the intensity
or amplitude information of the associated events color coded in each time bin. (F) The time series plot of coughing counts organized in days post the
test-positive date from eight COVID-19 patients. (G) The age distribution of the 27 patients whose data are not used to build the machine learning
model. (H) The histogram of coughing frequency of the 27 patients. Ages for 3 females and 2 males are not reported (NR). (I) The cough intensity ver-
sus cough frequency analyzed for each hour of data, clustered by four demographic groups. a.u., arbitrary unit; BrPM, breaths per minute; BtPM, beats
per minute.
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(N = 735) are as low as 0.58, likely due, in part, to the ambi-
guities in ground truth labeling. SI Appendix, Table S2 includes
additional details on statistical analyses with subject-specific
information. Fig. 5C presents results of coughing counts per 5
min in bars and the associated coughing effort (i.e., PMA) in
color. In general, the coughing frequency and intensity peak in
the morning, and distribute evenly throughout the day. Fig. 5D
presents a similar analysis of speaking, with uniformly distributed
speaking time and loudness (i.e., PMA) during daytime.

Previously reported algorithms applied to these same MA data
streams yield other important parameters (54). For example, Fig.
5 E–G summarizes heart rate, respiration rate, and physical activ-
ities, where the color-coded intensity values correspond to peak
amplitudes of cardiac signals in the frequency band 20 Hz to
55 Hz and root-mean-square values for low-passed respiration
cycles in the band 0.1 Hz to 1 Hz. Fig. 6 A–E presents this col-
lective information (coughing counts, speaking time, heart rate,
respiration rate, and physical activity, and their associated inten-
sity or amplitude) for the same patient over 1 mo. Gray shaded
areas indicate periods when the patient is not wearing the device.
The same analysis has been applied to a total of 27 patients (15
females, 12 males) whose data are not used in building the CNN
model. SI Appendix, Figs. S4–S20 shows the results for an addi-
tional 17 patients (9 females, 8 males; patient IDs listed in SI
Appendix, Table S1) with a minimum of 7 d of enrollment.

Fig. 6F presents a time series plot for eight patients (four
females, four males; patient IDs listed in SI Appendix, Table
S1) with the date of a positive PCR test for COVID-19, where
the event of interest is coughing count organized by days after
the test. The results suggest a correlation between coughing
frequency and the gradual process of recovery, as might be
expected. The significant variation in decay rates, however, indi-
cates individual-specific recovery and aerosolization potential.
Fig. 6G summarizes the age distribution for the total of 27 testing
patients. Fig. 6H compares the histogram of coughing frequency
of these individuals, to reveal the diverse regularity of cough-
ing across time. Fig. 6I shows the coughing frequency versus
the average coughing intensity for all hourly measurements, clus-
tered into four demographic groups (males of age<55 y, males of
age ≥55 y, females of age<55 y, females of age ≥55 y). The avail-
able results suggest that females tend to cough more than males.
SI Appendix, Table S1 includes detailed demographic and data
collection information for all of the testing patients. The statistics
may provide insights for creating guidelines for disease manage-
ment and containment. Further studies on an expanded patient
population with detailed demographic information are, however,
necessary to enable big-data–based studies of the demographic
dependence and/or individual variance of relevant biometrics.

Discussion
This paper introduces an automated hardware–software solution
for sensing of diverse health information relevant to patient sta-
tus, with a focus on underexplored respiratory biomarkers such
as cough and their changes with COVID-19 disease state. Scaled
studies indicate applicability to COVID-19 patients in both clin-
ical and home settings. The approach relies on a soft, wireless
sensing device placed on the SN, to capture data that can be
processed through a combination of digital filtering and machine
learning techniques to separate and quantify different body pro-
cesses. In addition to patient status, these data show promise
in tracking droplet/aerosol production and, therefore, disease
transmission related to cough and other expiratory events. The
results have implications for early detection, patient care, and
disease management, with specific relevance to COVID-19.

These systems allow for multiparametric monitoring with min-
imal burden, through a range of conventional and unconven-
tional signatures of health status. Cough is an example of a
potentially important biomarker that can yield insights to com-

plement those from analysis of traditional vital signals. Exten-
sions of the approaches reported here can be considered in
strategies that extract additional information from specific forms
of speech (e.g., plosive consonants), advanced assessments of
coughing and respiratory sounds, and correlations between body
positions and these activities, as well as coupled responses and
timing intervals between different events. MA sensing of dis-
tinctive features in respiratory biomarkers and physiological
characteristics between COVID-19 patients and healthy subjects
suggests a versatile platform for disease monitoring and manage-
ment. The addition of optical sensors will enable measurements
of blood oxygenation, without affecting the ability to simultane-
ously capture MA signals. The results offer many possibilities
in data fusion for precision healthcare, including but not con-
strained to COVID-19 (19, 57, 58). Scaled deployment will yield
large amounts of accessible biometric data, as the potential basis
for predictive disease models, cost-effective care of patients, and
containment of disease transmission.

Materials and Methods
Device Design and Components. The fPCB schematic diagram and board
layout were designed using AUTODESK EAGLE (version 9.6.0) for a
stretchable and bendable MA device. Serpentine-shaped outlines con-
nect three separated islands (main body, sensor, and charging coil).
A summary of the bill of materials for the device includes 0201
and 0402 inch footprint (imperial code) passive components (resistors,
capacitors, and inductors), four turns of wireless charging coil pat-
tern (resonance frequency: 13.56 MHz), full-bridge rectifier, power man-
agement integrated circuits (IC) (Bq25120a, Texas Instruments), 3.0-V
step-down power converter (TPS62740, Texas Instruments), 3.7-V lithium
polymer battery (75 mAh), voltage and current protection IC for Li-
Polymer battery (BQ2970, Texas Instruments), BLE SoC (nRF52840, Nordic
Semiconductor), flash memory (MT29F4G, Micron), and IMU (LSM6DSL,
STMicroelectronics).

Device Fabrication and Encapsulation. Panels of fPCB were manufactured,
and surface-mount device processes were performed by an Interna-
tional Organization for Standardization 9001-compliant manufacturer. Cus-
tomized firmware was downloaded by Segger Embedded Studio, followed
by an fPCB folding and battery soldering process. Each aluminum mold for
top and bottom layers was prepared with a freeform prototyping machine
(Roland MDX 540), and the devices were encapsulated using precured top
and bottom layers (Silbione-4420, each 300 µm thick) after filling with sil-
icone elastomer (Eco-Flex 0030, 1:1 ratio) in the cavity in which the device
was positioned. After fixing and pressing top/bottom molds using clamps,
the mold was placed into an oven that holds a temperature of 95 ◦C
for 20 min to cure the silicone elastomer. The mold was then taken out
of the oven and placed in a room temperature area for 20 min to cool
down. After cooling down, the clamps were removed, the encapsulated
device was placed on a cutting surface, and excess enclosure material was
removed using a prefabricated hand-held die cutter. A CO2 laser formed
the shape of the double-sided adhesives and yielded a smooth and clean
contour cut.

Data Collection. All of the participants provided written/verbal consent
prior to their participation in this research study (see SI Appendix, Table
S1 for demographic information of all individuals studied). Study proce-
dures were approved by the Northwestern University Institutional Review
Board (STU00202449 and STU00212522) and were registered on Clinical-
Trials.gov (NCT02865070 and NCT04393558). All study-related procedures
were carried out in accordance with the standards listed in the Declaration
of Helsinki, 1964. During the study, participants wore an MA device at SN
(Fig. 1A). In the case of patients, a clinician/research staff assisted in placing
the sensor.

Healthy controls were asked to perform 18 repetitions of the follow-
ing sequence of activities with some variability in the intensity of each of
the activities over a 2- to 4-h period: three taps on the sensor, 10 coughs,
10 laughs, 10 throat clearings, 30 s of walking, 10 cycles of breathing
(inhale and exhale), more than 20 s of speaking, and three taps on the sen-
sor. Of these repetitions, sedentary activities in five sets were performed
while sitting, five sets during standing, and eight sets while lying down
(two in supine, two in prone, two in left recumbent, and two in right
recumbent) positions. In the case of patients, a reduced set of activities

10 of 12 | PNAS
https://doi.org/10.1073/pnas.2026610118

Ni et al.
Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home

settings for COVID-19 patients

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026610118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026610118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026610118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026610118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026610118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026610118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026610118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026610118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026610118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026610118/-/DCSupplemental
https://doi.org/10.1073/pnas.2026610118


EN
G

IN
EE

RI
N

G

were used at the beginning of each test, which included three taps on
the sensor, five coughs, five cycles of deep breathing, and three taps on
the sensor.

Sterilization Process. After each use, the MA sensor was thoroughly disin-
fected/cleaned with isopropyl alcohol (70% or above) or Oxivir TB wipes
(0.5% hydrogen peroxide) and left to dry at room temperature, and the
same process was repeated twice.

Convolutional Neural Network. The CNN starts with a convolution with a ker-
nel size of 3× 3 and three different kernels, followed by a standard 50-layer
ResNet as described in detail in ref. 55. At the output of the ResNet, a flat-
tening layer of 86,106 neurons follows. Finally, three fully interconnected
layers with 512, 128, and 5 neurons, respectively, and two dropout layers
with P = 0.5 follow alternately. The CNN uses an Adam optimizer for train-
ing. The training process follows a leave-one-out strategy, where one leaves
a subject out of the training set (19 remaining subjects for training) and
then tests the trained model on this subject. Each training set applies a
fivefold cross-validation procedure. This approach iterates through each of
the 20 subjects. SI Appendix, Table S2 includes detailed information on the
cross-validation results for each subject.

Data Analytics. All analysis used Python 3.0 with SciPy, PyWavelets, and
TensorFlow packages.

Code Availability. The codes used for audio soundtrack conver-
sion and manual labeling processes are available on GitHub at
https://github.com/nixiaoyue/MA-cough. The analysis codes used in this
study are available from the authors upon request.

Droplet Dynamics via PTV. Droplet dynamics of coughing, speaking, and
laughing were quantified by PTV. Coughing, speaking (the word “ter-
minator” was used), and laughing were repeated 14, 26, and 15 times,
respectively, at various decibel levels. More data samples for speaking were
collected to cover a wider range of decibels up to 100 dB. Each respira-
tory activity was performed in the customized box made of acrylic glass
with an inner dimension of 45× 30× 30 cm3 (L×W×H). The investigation
area for tracking droplets was ∼ 34×∼ 17 cm2 illuminated by 16 arrays for

600 lumen LED light bars. PTV experiments were recorded by a 2,048 ×
1,088 Emergent HT-2000M with 50-mm F1.4 manual focus Kowa lens at
the frame rate of 338 frames per second. To achieve continuous and
simultaneous measurements with MA sensor and audio meter (Decibel
X, calibrated by SD-4023 sound level meter and R8090 Sound Level Cali-
brator), approximately 10,000 frames were recorded for each respiratory
activity. Preprocessing, calibration, tracking, and postprocessing are per-
formed by a previously developed PTV code (59). Image sequences were
preprocessed by subtracting the background noise and enhancing the
contract. Droplets are detected at the subpixel level with the area esti-
mation. The scattering cross-section of a detected droplet and refractive
index of droplet as well as the surrounding medium, air, and wavelength
of the light source were used to calculate the actual radius of detected
droplets based on the Mie scattering theory (60, 61). The minimum radius
of droplets measured in this work is ∼ 60 µm. Detected droplets were
tracked using the Hungarian algorithm and linked by performing a five-
frame gap closing to produce longer trajectories. Velocity and Lagrangian
acceleration were filtered and computed using fourth-order B splines. Vec-
tor contour fields were obtained by interpolating scattered Lagrangian
flow particles at each frame based on the natural neighbor interpolation
method.

Data Availability. All relevant data are included in the article and SI
Appendix. Additional supporting data are available from the correspond-
ing authors on request. All request for raw and analyzed data and materials
will be reviewed by the corresponding authors to verify whether the request
is subject to any intellectual property or confidentiality obligations. Patient
related data not included in the paper were generated as part of clinical
trials and may be subject to patient confidentiality.
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