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Abstract

An RNA structure prediction from a single-sequence RNA folding program is

not evidence for an RNA whose structure is important for function. Random

sequences have plausible and complex predicted structures not easily distin-

guishable from those of structural RNAs. How to tell when an RNA has a con-

served structure is a question that requires looking at the evolutionary

signature left by the conserved RNA. This question is important not just for

long noncoding RNAs which usually lack an identified function, but also for

RNA binding protein motifs which can be single stranded RNAs or structures.

Here we review recent advances using sequence and structural analysis to

determine when RNA structure is conserved or not. Although covariation

measures assess structural RNA conservation, one must distinguish covaria-

tion due to RNA structure from covariation due to independent phylogenetic

substitutions. We review a statistical test to measure false positives expected

under the null hypothesis of phylogenetic covariation alone (specificity). We

also review a complementary test that measures power, that is, expected

covariation derived from sequence variation alone (sensitivity). Power in the

absence of covariation signals the absence of a conserved RNA structure. We

analyze artifacts that falsely identify conserved RNA structure such as the mis-

use of programs that do not assess significance, the use of inappropriate statis-

tics confounded by signals other than covariation, or misalignments that

induce spurious covariation. Among artifacts that obscure the signal of a con-

served RNA structure, we discuss the inclusion of pseudogenes in alignments

which increase power but destroy covariation.
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1 | INTRODUCTION

Many functional RNAs adopt conserved structures. Conserved structural RNAs are involved in many cellular functions
from translation (ribosomal RNA, transfer RNA), to RNA cleavage (RNaseP, ribozymes), protein localization (SRP), or
gene regulation at both transcriptional and translational levels (riboswitches, microRNAs). RNA-Seq probing experi-
ments have revealed numerous expressed and uncharacterized RNAs for which it seems imperative to interrogate
whether they perform any relevant function by means of an RNA structure. Here we address the question of how to
identify new evolutionarily conserved RNA structures. We will show that a plausible computational prediction by a
standard single-sequence folding method is not evidence of a conserved RNA structure, nor is a computational predic-
tion complemented with chemical probing data. In addition to computational predictions and chemical probing,
another standard technique for analyzing an uncharacterized RNA is to compare similar sequences in related organ-
isms. A conserved RNA sequence does not necessarily imply a conserved RNA structure. We will show that it requires
a particular pattern of variation to support a conserved RNA structure. We will also show that there are variation pat-
terns that support the absence of a conserved structure as well.

2 | ALL RNAs, EVEN RANDOM ONES, HAVE PLAUSIBLE STRUCTURES

When presented with a structural RNA, one important statistical question is to predict its structure. Information about
the structure can bring important clues to decipher the RNA function. Computational methods to predict a secondary
structure from the sequence of a structural RNA have a long history (Nussinov et al., 1978; Zuker & Sankoff, 1984).
Methods such as Mfold (Zuker, 1989), ViennaRNA (Gruber et al., 2015), RNAstructure (Reuter & Mathews, 2010),
NUPACK (Dirks & Pierce, 2003), Sfold (Ding et al., 2004), or GTfold (Swenson et al., 2012) use thermodynamic parame-
ters to predict the most stable folds. Other methods use probabilistic context-free grammars (Dowell & Eddy, 2004;
Rivas et al., 2012), or conditional random fields such as CONTRAfold (Do et al., 2006) or RNAsoft (Andronescu
et al., 2003), to produce the most probable set of compatible base pairs given a single RNA sequence. These methods
whether they measure structures by free-energy stability, probability, or an arbitrary score they have the same design
principles and use similar algorithms (Rivas, 2013). They search for an optimal final configuration of the whole RNA,
and do not take into account the kinetics of the folding process, although there are specific methods that systematically
study RNA folding kinetics both computationally (Flamm et al., 2000; Mironov & Lebedev, 1993; Wolfinger et al., 2004)
and experimentally (Incarnato et al., 2017). They model base pairs and stacked interactions of base pairs as well as
details of the different loops of unpaired nucleotides that appear in an RNA secondary structure. They use dynamic pro-
gramming algorithms that can calculate the optimal structure or the maximum expected accuracy structure which
tends to be more accurate than the former regardless of the model parameterization (Hamada et al., 2009; Lu
et al., 2009). For an RNA sequence of length L, the algorithms have a complexity of O L3ð Þ when pseudoknots are not
included, and much higher (O L6

� �
) when pseudoknots are allowed by the model (Rivas & Eddy, 1999).

The success of these programs in recapitulating the structure of known structural RNAs from a single sequence
alone is on average between 65% and 70%, both for the fraction of true base pairs correctly predicted (sensitivity) and
the fraction of predicted base pairs that are correct (positive predictive value) (Andronescu et al., 2007; Rivas
et al., 2012). This overall average accuracy is comparable for all methods, but there is high variability from sequence to
sequence for a given method, and from method to method for a given sequence. These are modest but nevertheless
informative results when it is known (or safe to presume) that the sequence is a structural RNA, but whose actual struc-
ture is unknown. As an example, Figure 1a shows the known structure of the SAM-I riboswitch, a bacterial RNA,
which includes 31 Watson–Crick (WC) canonical base pairs, and 3 more A:G noncanonical base pairs forming a kink
turn RNA motif. In Figure 1b–d, we show different structures predicted by different methods using the
Thermoanaerobacter tengcongesis SAM-I riboswitch sequence. ViennaRNA and RNAstructure (not shown in Figure 1)
predict a structure with 26 base pairs, all of them correct. The methods NUPACK and CONTRAfold give worse predic-
tions for this sequence. On a different sequence, the situation may be reversed and ViennaRNA could be worse than
NUPACK or CONTRAfold. Single sequence RNA prediction methods are generally insufficient to accurately predict
base pairs of a structural RNA, specially for large RNAs such as the small and large subunits of rRNA (Doshi
et al., 2004).

That is not to say that the secondary structure methods are bad at determining the right structure, rather the prob-
lem is inherently not constrained enough by base pairing. That is, there are many different ways to create different

2 of 29 RIVAS



plausible structures from the same sequence, with similar number of base pairs and free energy, and it is hard to know
which one is correct. To illustrate that point, a straightforward calculation shows that in the T. tengcongesis SAM-I
riboswitch sequence, there are 32 helices with at least 3 consecutive base pairs, of which only 5 of them appear in the
actual structure. These possible 32 helices cannot occur all at the same time, but using subsets of those 32 helices, one
can construct many different consistent structures different from the real one and with comparable stabilities. Some of
those structures are the ones identified by the different computational methods in Figure 1b–d. This under-
determination problem increases exponentially with the length of the RNA. For instance, for the human telomerase
RNA with 451 nts, the number of possible helixes with at least 3 base pairs is 1716. This “exceedingly large number of
potential helices” (Gutell, 2014) is a reason why it is unlikely to predict an RNA structure correctly only from maximiz-
ing G:C, A:U, and G:U base pairs. In addition, it has been shown that small perturbation in the thermodynamic param-
eters, perturbations within the parameters' determination error, can result in important changes in the predicted
structure (Layton & Bundschuh, 2005).

If you are by now unsatisfied with this scenario, things get even more interesting, because in most cases, we are
presented with RNA transcripts for which we do not even know if they are structured or not.

FIGURE 1 RNA structure prediction from a single sequence with and without chemical modification data. (a) Sequence and structure

of a SAM-I riboswitch from Thermoanaerobacter tengcongesis determined by X-ray crystallography (Montange & Batey, 2006). Watson–Crick
base pairs are depicted with a black line. The SAM-I structure includes a pseudoknot and a kink-turn motif with three non-Watson–Crick
A-G pairs. (b–d) Secondary structure predictions for the SAM-I riboswitch by the software ViennaRNA (program: RNAfold) (Gruber

et al., 2015), NUPACK (program: mfe) (Dirks & Pierce, 2003), and CONTRAfold (Do et al., 2006). Base pairs correctly predicted are depicted

in red. These prediction methods cannot find pseudoknots or non-Watson–Crick base pairs. (e) Structure prediction using both the sequence

and per residue chemical reactivities obtained using the SHAPE-Seq 2.0 method, an deposited in the URL (https://rmdb.stanford.edu/detail/

SAMRSW_1M7_0001) (Loughrey et al., 2014), predicted using ViennaRNA (RNAfold –-shape <reactivities> < sequence>). (f)

Distributions of the free energies and number of base pairs observed in the best structures (calculated using ViennaRNA) for

200 randomized versions of the T. tengcongesis SAM-I sequence. (g–i) Predicted structures for one shuffled SAM-I sequence selected for

having similar number of base pairs as the ViennaRNA prediction for the real SAM-I sequence. (j) Structure predicted by ViennaRNA using

the same randomized SAM-I sequence and a set of randomized SHAPE reactivities
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Given an uncharacterized RNA transcript, the statistical question is not finding a structure, but rather whether the
RNA has a biologically relevant structure or not. This question requires a different approach. Addressing this question
requires evaluating whether we can distinguish folds of real structural RNAs from those of nonstructured RNA
sequences. At minimum, we would expect within this framework (that ignores 3D fold considerations) to be able to dis-
tinguish between real RNA folds and predicted foldings of random sequences.

Unfortunately, the situation is that in most cases we cannot. Even random sequences have plausible folds, often
with similar stability, number of base pairs, and structural complexity as the structures of real RNAs. Thus, predicted
structures of random sequences are often effectively indistinguishable from those of real RNAs. As an example, for the
SAM-I riboswitch in Figure 1a, randomized versions of that sequence are predicted to adopt stable folds with a compa-
rable number of base pairs as the original one. In Figure 1f, 22% (45/200) of the random sequences can form at least as
many base pairs as the best prediction for the real sequence with 26 base pairs. The median number of base pairs is
24, and no sequence has fewer of 16 predicted base pairs, which still look to the eye like reasonably structured RNAs.
The free energy of the real SAM-I riboswitch sequence (−33.1 kcal/mol for the ViennaRNA best prediction) is distin-
guishable from shuffled SAM-I riboswitch sequences as it falls at the edge of the free energy distribution in Figure 1f.
The difference is marginal though, and for most RNAs there is not enough signal in the free energy to reliably distin-
guish real structural RNAs from random sequences (Rivas & Eddy, 2000).

An example of a predicted structure of a shuffled SAM-I sequence with a free energy of −27.4 kcal/mol and 25 base
pairs fold using ViennaRNA is shown in Figure 1g. Other methods produce different folds (Figure 1h–i) with a compa-
rable number of base pairs as the fold of the real sequence. It would be impossible to infer based on these folds whether
the shuffled sequence is a real structural RNA or not.

The number of possible helices with at least three base pairs for a random sequence of the length (94 nts) and the
base composition (A = 31%, C = 22%, G = 32%, U = 15%) of the SAM-I riboswitch is 29 ± 12 helices. For a randomized
sample of the human telomerase RNA, the total number of potential helices with at least three base pairs is 1572 ± 150.
These numbers are not just large, they are comparable to those of the real sequences (32 and 1716 respectively). RNA
structure prediction from a single sequence cannot reliably distinguish real structural RNAs from unstructured RNAs
or even random sequences.

An additional source of information typically used to predict the structure of an RNA comes from experimentally
determined reactivities per-residue of the RNA molecule when subjected to some chemical modification. For instance,
SHAPE-Seq performs selective 2-hydroxyl acylation analyzed by primer extension (Loughrey et al., 2014). Most chemi-
cal modification methods do not provide information on specific base pairs per se, but reactivities for individual resi-
dues. Reactivities are affected by whether the residue is base paired or not, but they do not specify which base it is
paired to, except for methods such as PAIR-MaP (Mustoe et al., 2019). Thus, reactivities do not infer an RNA structure
directly. Different approaches have been proposed to incorporate chemical probing data into RNA folding algorithms
(Deigan et al., 2009; Eddy, 2014; Sükösd et al., 2013; Washietl et al., 2012; Zarringhalam et al., 2012), which have been
adopted into all major single-sequence RNA structure prediction methods.

Chemical-probing-directed RNA structure prediction can help with our first statistical question and result in
better structural predictions for bona fide structural RNAs (Sükösd et al., 2013). However, RNA chemical probing
by SHAPE or other probing methods do not provide an “experimentally determined structure,” as structures deter-
mined using chemical modifications data are sometimes referred to (Somarowthu et al., 2015). Eddy (2014) quanti-
fied that there is a 5:1 ratio for a residue with low SHAPE reactivity to be base paired versus unpaired. Figure 1e
shows the predicted structure for the SAM-I riboswitch informed by SHAPE-seq 2.0 data using the chemical
reagent 1m7 obtained from Loughrey et al. (2014). In this particular example, the SHAPE-informed predicted
structure has lower accuracy than the one without it. The situation could be different for other RNAs, and chemi-
cal probing data tend to improve single-sequence RNA structure prediction when a structure can be presumed to
exist (Sükösd et al., 2013).

Unfortunately, it has become common practice to accept a structural prediction informed by chemical probing as
proof of the existence of RNA structure (see e.g., Watts et al., 2009). However, chemical probing cannot distinguish
functional RNAs (with biologically relevant structures) from nonfunctional ones because all RNAs in solution will
adopt some folding, and thus will have a chemical probing signature—even random RNA sequences. In Figure 1j, we
show a structure prediction for a shuffled SAM-I riboswitch sequence in combination with a random assignment of the
SHAPE reactivities for the real sequence resulting in an apparent RNA structure which one would not be able to reject
in comparison to any of the predictions for the real SAM-I riboswitch structure. RNA structure prediction from single
sequence even when informed by experimental chemical probing data cannot address the question of whether an RNA
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has a biologically relevant structure or not. Instead, we need to turn to evolutionary conservation to approach that
question.

3 | CONSERVED STRUCTURAL RNAs HAVE A DISTINCT PATTERN OF
VARIATION

Any functional structural RNA is expected to have some level of structural conservation. The RNA would have to inter-
act with other molecular elements, mostly proteins with conserved structures, and changes that could break the RNA
structure would not be easily tolerated if the rest of the machinery is conserved.

Structural conservation is not necessarily synonymous with conservation of the RNA sequence, but some level of
sequence conservation is also expected. Homologous structural RNAs can be very divergent, but still have a rate of sub-
stitutions at base pairs slower than (and distinguishable from) unconstrained substitutions at the two positions. This
effect is better observed when the comparison is restricted to a clade. The slower rate of substitutions at base pairs
results from most mutations being rejected, except for double compensatory substitutions that produce 3D functionally
equivalent molecules.

For a conserved RNA sequence, the pattern of substitutions observed in an alignment is informative of whether there is
a conserved RNA structure or not. Figure 2 shows three different patterns resulting in three different outcomes. In
Figure 2a using a helix from the vertebrate telomerase RNA as an example, we observe a pattern of changes in which sub-
stitutions tend to preserve A:U, G:C, or G:U base pairs. This pattern indicates a pressure to maintain the helix through evo-
lution. In contrast, the pattern observed in Figure 2b using a putative helix for the RNA HOTAIR (helix 3) indicates that
while there is a similar number of mutations as in the telomerase RNA helix, most of those changes appear to be
uncorrelated and do not seem to preserve the base pairs annotated in the human HOTAIR sequence as inferred by struc-
tural prediction informed by chemical probing data (Somarowthu et al., 2015). Figure 2c shows a different pattern observed
in another HOTAIR proposed helix (helix 11). In this case, the lack of variability in the sequence makes it impossible to
determine whether the helix is conserved or just one of the many possible helices one can find in any RNA sequence.

3.1 | Covariation is used to measure structural RNA conservation

Conservation patterns like the one presented in Figure 2a have been long recognized in structural RNAs, and they have
been successfully exploited to predict the structure of ribosomal RNA and other RNAs to great accuracy (Gutell
et al., 1985; Holley et al., 1965; Michel et al., 1982, 2000; Noller et al., 1981; Pace et al., 1989; Williams & Bartel, 1996).
Since the early covariation analyses, computational methods based on mutual information (MI) and other covariation
methods have been developed (Akmaev et al., 2000; Gutell et al., 1992).

Different covariation measures can be used to quantify the sequence variation observed in Figure 2a. MI values
(Shannon, 1948) such as those reported in Figure 2 help distinguish the variation due to the RNA structure from ran-
dom changes or no change at all. MI has been used extensively to measure RNA covariation (Akmaev et al., 2000;
Dutheil, 2012; Gutell et al., 1994; Yeang & Haussler, 2007). There are many other similar covariation statistics that have
been tested for the purpose of identifying conserved RNA structures (Lindgreen et al., 2006). In Rivas et al. (2017), we
reported that the G-test covariation measure (Woolf, 1957) has the best sensitivity and positive predictive value among
several different covariation measures tested. The G-test value for two positions i, j is defined as

G-test i, jð Þ=2
X
a,b

Obsabij log
Obsabij

Obsai Obsbj
,

where a, b are (non-gap) residues; Obsabij is the observed count of a : b pairs in positions i, j (only counting when both a,
b are residues), and Obsai is the observed count of residue a in position i. G-test and MI have similar expressions; the G-
test uses observed counts where MI uses residue frequencies. These two differ when the positions have gaps. Two pairs
of positions with the same residue frequencies will have the same MI, but the pair with fewer gaps will have higher G-
test value.
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It was noticed early on that what constitutes significant covariation evidence depends on the sequence context in
which the pairs are embedded (Gutell et al., 1994). To that effect, background corrections have been proposed by sub-
tracting the average covariation of all possible pairs in the alignment from each individual value (Dunn et al., 2007).
The average product correction (APC) is the most commonly used background correction. For any covariation measure
cov(i, j), for an alignment of length L and 1 ≤ i, j ≤ L, the APC correction is defined as

Human       UGCUGCAACCUAAACCAGCA
Ailuropoda  UGUUGCAACCCAAACCAGCA
Tupaia      UGCUGCAACCCAAACCAGCA
Ochotona    UGGUGCAACCCAAACCAGCA
Pteropus    UGCUGCGACCCAAACCAGCA
Tursiops    UGCUGCAACCCGAACCAGCA
Tarsius     UGCUGCAACCCAAACUAGCA
Canis       UGUUGCAACCCAAACCAGCA
Bos         UGCUGCAACCCAAACCAGCA
Cavia       UGCUACAACCUACACCAGCA
Pongo       UGCUGCAACCCAAACCAGCA
Pan         UGCUGCAACCUAAACCAGCA
Mustela     UGUUGCAACCCAAACCAGCA
Felis       UGUUGCAACCCAAACCAGCA
Choloepus   UGCUGCGACCCAAACCAGCA
Dipodomys   UGCUACAACCCAAACCAGCA
Callithrix  UACUGCAACCCAAACCAGCA
Macaca      UGCUGCAACCCAAACCAGCA
Rattus      UGCUACAACCCAAACCAGCA
Mus         UGCUACAACUCAAACCAGCA
Myotis      UGCUGCAACCCAAACCAGCA
Dasypus     UGCUGCGACCCAAACCAGCA
Loxodonta   UUCUACAACCCAAACCAGCA
Microcebus  UGCUGCAACCCAAACCAGCA
Otolemur    UGCUGCAACCCAAACCAGCA
Sorex       UACUGCAACCCAAACCAGCA
Echinops    UGCUGCAACCCAAACCAGCA
Equus       UGCUGCAGCCCAAACCAGCA
Gorilla     UGCUGCAACCUAAACCAGCA
Ictidomys   UGCUACAACCCGAACCAGCA
Nomascus    UGCUGCAACCCAAACCAGCA
Oryctolagus UGCUGCAACCCAAACCAGCA
Procavia    UGCUGCAACCCAAACCAGCA
Erinaceus   UGCUGCAACCCAAACCAGCA
            <<<<<..........>>>>>

HOTAIR helix 11

Human       GAGGAC-UGCUC
Ailuropoda  GUGGAC-CACCA
Tupaia      GUGGGG-UUUUG
Ochotona    ACAGCC-UGCUG
Pteropus    GUGGAC-CACCA
Tursiops    GUGGAC-UGCCA
Canis       GUGGACgCGCCA
Bos         GUGGACcUGCCA
Cavia       GUGGAC-UGCUA
Pongo       GAGGAC-UGCUC
Pan         GAGGAC-UGCUC
Mustela     GUGGAC-UGCCA
Felis       GUGGAC-CGCCA
Callithrix  GAGGAC-UGCUG
Macaca      GAGGAC-UGCUG
Rattus      GGG-GC-UGCCU
Mus         GGG-AC-UGCCU
Myotis      GUGGAC-CGCCA
Dasypus     GUGGAG-CGCCC
Loxodonta   GUGAAC-CGCUU
Microcebus  GUGGAC-UACUG
Otolemur    GUGGAC-UACUG
Sorex       GUGGAC-UGCCA
Echinops    GCCCGC-CGCUC
Equus       GUGACA-CUGUA
Gorilla     GAGGAC-UGCUC
Ictidomys   GUGGAC-GUCUG
Nomascus    GAGGAC-UGCUC
Oryctolagus GCGGCCgAGCUG
Procavia    GAGAAC-CAUCA
Erinaceus   GUGGAC-CGCUG
            <<<......>>>

HOTAIR helix 3

Human          GCCU..AGGU
Shark          GUCG..CGGC
Mustelus       GUCG..CGGC
Quoll          GUCU..AGGC
Stingray       CUCG..CGGG
Rhinoptera     CUCG..CGGG
Xenopus        CGGG..UCCG
Toad           -CUC..GAG-
Frog           -CUG..CAG-
Pyxicephalus   GCGG..CCGC
Dermophis      GCCC..GGGC
Herpele        GCCC..GGGC
Caecilian      GCCC..GGGC
Elephant       CC-C..GAGG
Manatee        CC-C..GAGG
Rabbit         CC-C..GAGG
Guinea_pig     UC-C..GAGU
Chinchilla     UC-C..GAGU
Gopher         CC-C..GCGG
Vole           GGCC..GGCC
Hamster        GGCC..GCCC
Mus_musculus   GGCC..GGCC
Mus_spretus    GGCC..GGCC
Rat            GGCC..GGCC
Shrew_northern CC-C..GAGG
Cat            CCUC..GAGG
Ferret         CC-C..GAGG
Raccoon        CC-C..GAGG
Bos            CC-C..-UGG
Pig            CC-C..GAGG
Shrew_house    CCG-..-CGG
Horse          CC-C..GAGG
Armadillo      UC-C..GAGG
Turtle         GGCC..GGUC
Macaw          GGCC..-GUC
               <<<<..>>>>

Telomerase RNA

covariation?

variation?        

evidence for 
?a RNA helix?

<<<<..>>>> <<<......>>> <<<<<..........>>>>>

Three conservation patterns
(a) (b) (c)

0.000
0.000

0.008
0.000
0.000

0.114

0.125
0.1840.986

0.776
0.804
1.019

IMIMIM

0.264

0.436
0.222

original after shuffle
0.260
0.175
0.209
0.270

original after shuffle

FIGURE 2 Three different patterns of sequence conservation with different implications for inferring RNA structure. (a) For the

vertebrate telomerase RNA, a helix from the Rfam seed alignment (RF00024). The pattern of substitutions (calculated relative to consensus

CCCC…GGGG) supports the helix being conserved throughout evolution. (b) From HOTAIR domain 1, putative helix 3 from the structural

alignment provided by Somarowthu et al. (2015). The substitutions are mostly incompatible with the annotated helix. (c) Putative helix

11 from the same HOTAIR structural alignment in (b). The small number of changes makes it inconclusive whether the helix exists or not.

In green, residues that preserve the structural annotation by making a compensatory base pair substitution relative to the consensus base

pair; in blue, a half change (such as G:C to G:U) that also preserves the base pair; in red, changes that break the proposed base pair; and in

gray, residues that are not analyzed. We display the mutual information (MI) of each of the original base pairs, and after the residues in each

column are permuted to destroy all covariation
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APC-cov i, jð Þ=cov i, jð Þ− cov ið Þ cov jð Þ
cov

,

where cov ið Þ= 1
L−1

PL
j=1 j≠ið Þcov i, jð Þ and cov = 2

L L−1ð Þ
PL−1

i=1

PL
j= i+1cov i, jð Þ . Most measure of covariation after sub-

tracting a background correction improves their performance for detecting covariation in RNA alignments (Lindgreen
et al., 2006). In Rivas et al. (2017), we confirmed those results, and adopted the APC-corrected G-test statistic as the
default measure of covariation in our analysis program R-scape (RNA Structural Covariation Above Phylogenetic
Expectation).

The next issue is how to use covariation to decide whether an RNA has a conserved structure or not. After all, all
pairs of positions in an RNA alignment present some amount of covariation, unless a position is 100% conserved. The
question then becomes, when is the covariation score sufficiently large to distinguish a conserved RNA base pair from
statistical background and other sources of pairwise covariation signal in RNA sequence alignments?

4 | DISTINGUISHING RNA COVARIATION FROM INDEPENDENT
PHYLOGENETIC SUBSTITUTIONS

Even positions that do not seem to support an RNA base pair have some positive nonzero MI, as illustrated in
Figure 2b. Even random sequence alignments show some level of covariation due to statistical noise. What constitutes
significant covariation evidence of an RNA structure has to be measured against covariation produced by other sources
in the context of the same alignment. Phylogeny is an obvious source of background covariation in any conserved
sequence alignment. Covariation methods have tried to correct for this background covariation effect (Dutheil, 2012).

Figure 3 shows an example of two toy alignments that show similar variation but where only one of the cases is associ-
ated with a conserved RNA base pair. In Figure 3a, two independent substitutions produce by chance what appear to be a
compensatory double mutation. In Figure 3b, eight mutation coordinated as four compensatory pairs preserving a base
pair produce descendent sequences with exactly the same pairwise residue frequencies as in Figure 3a.

In Rivas et al. (2017), we designed a statistical test to distinguish between these two different covariation scenarios,
implemented in a program named R-scape. In the R-scape test, the covariations in an alignment are compared to the dis-
tribution of covariation scores observed in simulated alignments of similar degree of divergence and phylogenetic correla-
tion, but where structural correlation has been removed. The simulated alignments reproduce the same number of
substitutions in the same branches as the real alignment. But in the simulated alignments, the substitutions for a given
branch do not occur at the same positions as in the real alignment, but at different random positions selected from the
pool of positions with the same residue. For instance, for the evolutionary history in Figure 3b, the two depicted columns
arise from an evolutionary history of four correlated pairs of mutations occurring in four different branches, at just two
positions. In the simulated alignments, those mutations will be replaced as eight independent mutations in the same four
branches, but occurring at random positions in the alignment that allow those particular mutations.

Using many simulated alignments, we obtain the distribution of covariation scores for an evolutionary history simi-
lar to that of the input alignment, but after removing any positional co-evolution in the real alignment. The empirical
distribution for this null hypothesis of covariation due solely to phylogeny is used to estimate the number of expected
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FIGURE 3 Spurious pairwise covariations can arise from uncorrelated substitutions on a phylogenetic tree. Two aligned positions (gray

background) with identical mutual information, (a) one resulting from two independent substitutions (C to U and G to A) that happen to

occur at the same branch in the phylogenetic tree, (b) the other resulting from four pairs of compensatory substitutions preserving a

canonical RNA base pair (two C:G base pairs becoming U:A, and two U:A becoming C:G). Each of the four pairs of compensatory

substitutions occurs at a different branch in the phylogenetic tree
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false positives due to phylogeny, called the E-value, per pair of positions. The E-value estimates the expected number of
pairs related by phylogeny alone what would have a score at least as large as the pair in question. The smaller the E-
value, the fewer expected pairs related just by phylogeny that would have a comparable covariation score.

4.1 | Significant covariation in structural RNAs

Figure 4 shows how R-scape works using two examples of structural RNAs, the SAM-I riboswitch with an average
length of 110 nts, and the longer vertebrate telomerase RNA (vTR in Figure 4 legend) with 445 nts on average. Figure 4
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FIGURE 4 RNA significant covariation above phylogenetic expectation, R-scape. Statistical test for the structures of the SAM-I

riboswitch and the vertebrate telomerase RNA (vTR) using the Rfam seed alignments (with 433 and 37 sequences respectively). The SAM-I

riboswitch consensus structure is derived from the X-ray 3D crystal structure (Montange & Batey, 2006). The vTR consensus structure is

derived from Zhang et al. (2010). Using R-scape option -s, two independent statistical tests are performed: one for the set of base pairs in

the given structures and another for the rest of the pairs (blue and red respectively in panels c and d). (a,b) Depicted in green are the base

pairs in the structures that significantly covary with an E-value <0.05 using R-scape statistical test for the proposed structures. The top six

base pairs with lowest E-values are marked with an arrow. For the SAM-I riboswitch structure, 31 of the 38 base pairs covary above the

phylogenetic signal. For the vertebrate telomerase RNA, 27 of the 107 base pairs significantly covary. For the SAM-I riboswitch, there are

two significant triple interaction not part of the proposed structure labeled “sc” (side-covariation) and “xc” (cross covariation) respectively.
(c,d) Cumulative distribution of covariation scores for the proposed base pairs (in blue) and all the rest of the pairs (in red). Covariation

scores larger than 88 for the base pairs (larger than 179 for the rest of pairs) in the SAM-I riboswitch are significantly covarying with E-

values <0.05. For the vTR, significant scores are those larger than 23 for the set of base pairs, and larger than 40 for the rest of pairs

8 of 29 RIVAS



uses the Rfam seed alignments for these two structural RNAs. Figure 4a,b shows the consensus structures given in the
Rfam alignments where base pairs with significant covariation support (E-values smaller than 0.05) have been marked
green. Figure 4a,b shows that in both molecules most helices have covariation support for at least one of the base pairs.
Figure 4c,d shows in blue the distribution of covariation scores for the base pairs in the annotated structure. Shaded in
blue are the base pairs with E-value smaller than 0.05, that is those for which their score corresponds to an expected
number of false positives smaller than 0.05 under the null distribution (plotted in black). For the SAM-I riboswitch, this
analysis identifies 30 out of the 38 annotated base pairs as significantly covarying, and 27 out of 107 for the vertebrate
telomerase RNA.

The R-scape analysis also calculates the significance of the covariation support for all other possible pairs besides
those in the given consensus structure. Figure 4c,d shows in red the distribution of covariation scores for nonbase pairs.
In shaded red are those nonbase pairs with a score that would result in an expected number of false positives less than
0.05. For the SAM-I riboswitch, two tertiary interactions are found significant (named “sc” for side-covariation and “xc”
for cross-covariation in Figure 4a). They appear to be indirect correlations between residues involved in the highly cor-
related base pairs of helix P4.

4.2 | Significant covariation in alternative RNA structures

Riboswitches are examples of RNAs with alternative structures with covariation evidence. Figure 4a shows the structure
of the SAM-I riboswitch aptamer, but riboswitches have another functional domain called the expression platform. The
aptamer and expression platforms overlap by a region that can form two alternative helices. Figure 5a shows the R-
scape analysis of alignments including both the aptamer and the expression platforms for the SAM-I riboswitch from
Zhu and Meyer (2015) and the purine riboswitch obtained from Ritz et al. (2013). These extended alignments show evi-
dence of covariation in both the terminator and anti-terminator alternative helices.

Another example of an RNA with conserved alternative structures is the U2 spliceosomal RNA. The Stem-IIa and
Stem-IIc are two competing structures that promote different splicing steps (Perriman & Ares, 2007). In addition, the
branching interacting stem loop (BSL) rearranges with Stem-I (Perriman & Ares, 2010). Figure 5b shows that there is
covariation evidence for the two alternative Stem-IIa and Stem-IIb. Stem-I also has covariation support, but the
sequences forming the BSL are very conserved and lack covariation.

4.3 | Lack of significant covariation in conserved lncRNAs

R-scape has shown that proposed structures for some long noncoding RNAs (lncRNAs) such as the eutherian
HOTAIR (Somarowthu et al., 2015), Xist RNA (Fang et al., 2015; Maenner et al., 2010), and ncSRA (Novikova
et al., 2012), although they have been said to be evolutionarily conserved, in fact do not present any statistically
significant evidence of structural covariation (Rivas et al., 2017). The published structures proposed for HOTAIR,
Xist, and ncSRA were constructed using experimental chemical probing in combination with different prediction
algorithms on single sequences (Fang et al., 2015; Maenner et al., 2010; Novikova et al., 2012; Somarowthu
et al., 2015), yet alignments of vertebrate homologs with the proposed consensus structure do not show any signif-
icant covariation above phylogenetic expectation. This covariation analysis however does not distinguish whether
the lack of covariation in these lncRNAs occurs despite sufficient variability as in Figure 2b or whether it is
merely due to lack of variability as in Figure 2c. The former case gives evidence against the presence of a con-
served RNA structure, while the latter cannot rule out the presence of a conserved structure that could be eventu-
ally inferred and supported from a more diverse alignment.

5 | SEQUENCE VARIATION WITHOUT COVARIATION SIGNALS THE
ABSENCE OF CONSERVED RNA STRUCTURE

To distinguish between the two possible scenarios for why covariation support would be absent, Rivas
et al. (2020) quantified the covariation potential defined as the number of base pairs expected to covary given the
variability observed in the alignment. While the R-scape E-values are a measure of false positives expected under
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the null hypothesis (specificity), power is a measure of the expected true positives (sensitivity). Power is estimated
by empirically calculating the probability that bona fide RNA base pairs would be reported as significantly covary-
ing as a function of the variability. For conserved RNA structures, we expect a concordance between covariation
and power. Alignments of real structural RNAs often show both covariation and power. Real structural RNAs can
produce alignments with low power, for instance when the aligned sequences belong to a specific clade of species.
Low power means that there is not conclusive evidence as to whether there is an evolutionarily conserved RNA
structure or not. On the other hand, power in the absence of covariation would suggest an evolutionary signal not
compatible with RNA structure.

As examples of structural RNAs, Figure 6a shows the covariation versus power for the 3444 RNA families in the
Rfam database. There is a strong correspondence between the observed number of covarying base pairs and expected
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number of base pair to covary given the variability present in the Rfam seed alignments. In contrast, Figure 6b shows
that for the lncRNAs HOTAIR, ncSRA, and repA RNA (a fragment of Xist RNA exon 1 that includes the repA repeat)
for which conserved RNA structures have been proposed, there is a discordance between the number of expected
covariations and the almost complete absence of covarying base pairs (only one found for RepA). This pattern of varia-
tion in the absence of covariation is evidence against the presence of a conserved RNA structure in these conserved
lncRNAs (Rivas et al., 2020).

5.1 | Low power means inconclusive evidence for a conserved RNA structure

Another conservation pattern that covariation power helps elucidate is that described in Figure 2c. In that case, low
covariation is in concordance with low power, and it is not possible to decide on the presence or not of a conserved
RNA structure. This happens when the alignment lacks sufficient variation for covariation analysis.

An example of inconclusive results due to low power is shown in Figure 6c for 106 RNA structures reported in the
SARS-CoV-2 genome. These RNA structures cover approximately 30% of the SARS-CoV-2 genome (Rangan et al., 2020).
The structures were obtained by a combination of chemical probing and computational prediction. We built Infernal
models (Nawrocki & Eddy, 2013) of each of the 106 RNAs, and searched a collection of 124 Nidovirales from RefSeq, the
viral order of SARS-CoV-2. We used R-scape to analyze the covariation and covariation power of the alignments. For com-
parison, we also analyzed the 14 SARS-CoV-2 RNA families in Rfam. Nine of the Rfam coronavirus RNA families have at
least five covarying base pairs and similar power. On the other hand, for the majority of the 106 RNA structures in
Rangan et al. (2020), it remains inconclusive whether there is a conserved RNA structure (2 RNAs have 3 evolutionarily
conserved base pairs, and 10 others have 2). We use the term evolutionarily conserved base pair to describe base pairs sig-
nificantly covarying according to R-scape analysis of a particular alignment using an E-value cutoff of 0.05.

An analysis presented in Tavares et al. (2019) (reproduced here in Figure 7 and Table 1) observes that alignments of
diminishing power result in less covariation. For seven structural RNAs (5S rRNA, 5.8S rRNA, RNaseP, tRNA, U2
snRNA, U5 snRNA, and MALAT1), the Tavares analysis compared the Rfam seed alignments (black in Figure 7) to
other restricted alignments obtained by increasing the percentage identity of the sequences (blue), and to alignments
obtained by selecting sequences from mammal species only (orange). The observation is that as the power of the align-
ment decreases, so does the covariation signal. Alignments with less power become increasingly less informative toward
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tRNA

Opossum              CCGAUCUCGUCUGAUCUCGG  1e-30
Guinea_pig           CCGAUCUCGUCUGAUCUCGG  5e-30
Black_fruit_bat      CCGAUCUCGUCUGAUCUCGG  2e-28
Marmoset             CCGAUCUCGUCUGAUCUCGG  5e-30
Baboon               CCGAUCUCGUCUGAUCUCGG  5e-30
Mouse                CCGAUCUCGUCUGAUCUCGG  2e-30
Rat                  CCGAUCUUGUCUGAUCUCGG  2e-28
Bos                  CCGAUCUCGUCUGAUCUCGG  5e-30
Elephant             CCGAUCUCGUCUGAUCUCGG  1e-30
Galago               CCGAUCUUGUCAGAUCUCGG  7e-26
Platypus             CCGAUCCCGUCUGAUCUCGG  8e-27
Orangutan            CCGAUCUCGUCUGAUCUCAG  4e-27
Vesper_bat           CCGAUCUCGUCUGAUCUCGG  2e-30
Gibbon               CCGAUCUCGUCUGAUCUCGG  4e-30
Human                CCGAUCUCGUCUGAUCUCGG  5e-30
Monkey               CUGAUCUUGUCUGAUCUCAG  1e-26
Sheep                CCGAUCUCGUCUGAUCUCGG  1e-30
Camel                CUGAUCUUAUCUGAUCUUGG  2e-24
Chimpanzee           CCGAUCUCGUCUGAUCUCGG  1e-28
Rhesus_macaque       CCGAUCUCGUCUGAUCUCGG  7e-29
Brandt's_bat         CCGAUCUCGUCUGAUCUCGG  2e-30
Naked_mole-rat       CCGAUCUUGUCUGAUCUCGG  2e-23
Horse                CCGAUCUCGUCUGAUCUCGG  4e-31
Boar                 CCGAUCUCGUCUGAUCUCGG  2e-30
Chinese_hamster      CCGAUCUCGUCUGAUCUCAG  1e-28
Cat                  CCGAUCUCGUCUGAUCUCGG  3e-30
Little_brown_bat     CCGAUCUCGUCUGAUCUCGG  2e-30
Rabbit               CCGAUCUCGUCUGAUCUCGG  4e-30
Tree_shrew           CCGAUCUCGUCUGAUCUCGG  2e-30
Crab-eating macaque  CUGAUCUUGUCUGAUCUCAG  3e-25
Damaraland_mole-rat  CUGAUCUCGUCUGAUCUCAG  4e-28
Tasmanian_devil      CCGAUCUCGUCUGAUCUCGG  4e-31
Panda                CCGAUCUCGUCUGAUCUCGG  8e-31
                     <<<<----<<___>>->>>>

Infernal E-value
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assessing the presence or not of a conserved RNA structure. Tavares et al. framed that result as a failure of covariation
analysis. The correct interpretation is that those restricted alignments have little variability, and as a result, they do not
have sufficient power to decide on whether the structures are conserved or not. Lack of covariation under conditions of
no variation does not necessarily imply lack of a conserved structure but the inability to decide on the subject.

5.2 | Pseudogenes increase power but destroy covariation

The analysis presented in Tavares et al. (2019) also shows another important point. How erroneously including
pseudogenes in an alignment can disrupt a covariation analysis.

FIGURE 7 Covariation versus covariation power as a function of sequence diversity. (a) An illustration of the expected covariation and

power in alignments of: structural RNAs (green), not structural RNAs (red), RNAs too conserved in sequence to be able to decide whether

they have a conserved structure or not (blue). Operationally, the red stripe described the region with at least six base pairs expected to

covary, and no covariations observed. We use the term “observed covariation” to describe pairs that are called significant by R-scape with an

E-value smaller than 0.05. (b–e) For several structural RNAs, the covariation and power for three different alignments are shown: the Rfam

seed alignment (black), Tavares et al. (2019) high-id alignment (blue) derived from the seed alignments by selecting sequences with high

percentage identity, and Tavares only-mammals alignment (orange) produced from the Rfam full sequences using Infernal. (f) For

MALAT1, black corresponds to a 132 vertebrates alignment, and orange corresponds to a 13 mammals alignment derived from the previous

one, both introduced in Tavares et al. (2019). (g,h) For 5S rRNA and RNaseP RNA, we analyze also another mammals-only alignment that

includes the same species as Tavares but where the selected sequence is the best E-value Infernal hit per species (maroon). Details of the

alignments, their covariation, and power are given in Table 1. (i) Detail of helix 3 of the 5S rRNA Tavares mammals-only alignment. The

human sequence in this alignment is located in chromosome 8 (26,136,880-26,136,998), and it appears to be a pseudogene. (j) Detail of helix

3 of the 5S rRNA best-hit Infernal mammals alignment. The human sequence is 1 of 16 identical genes, and belongs to the longest tandem

array of 5S rRNA genes located in chromosome 1 (Sørensen et al., 1991) (e.g., chr1:228,632,631-228,632,749, named RNA5S11). The E-value

of the Infernal search for each species is reported next to the alignment. Human coordinates are from assembly GRCh38/hg38. The

alignments are provided in the Supplemental Materials

TABLE 1 Power of covariation and observed covariation in RNA alignments of different diversity

RNA Alignment % ID # seqs Base pairs Observed cov Expected cov

RNaseP RNA Rfam seed 48 116 62 51 41 ± 3 Supports structure

Higher %ID (seed) 69 46 62 8 11 ± 3 Supports structure

Mammals only (best-hit) 81 44 55 2 3 ± 2 Cannot assess

Mammals only (Tavares) 68 45 55 1 9 ± 2 Pseudogenes

5S rRNA Rfam seed 56 712 34 22 33 ± 1 Supports structure

Higher %ID (seed) 73 33 34 14 6 ± 2 Supports structure

Mammals only (best-hit) 96 33 37 0 0 ± 1 Cannot assess

Mammals only (Tavares) 75 33 34 0 7 ± 2 Pseudogenes

MALAT1 Vertebrates (Tavares) 71 132 43 8 15 ± 3 Supports structure

Mammals only (Tavares) 81 13 43 0 1 ± 1 Cannot assess

HOTAIR D1 Tavares 74 37 149 0 22 ± 4 Evidence

HOTAIR D2 Tavares 74 31 134 0 29 ± 4 against

HOTAIR D3 Tavares 68 34 125 0 30 ± 5 a

HOTAIR D4 Tavares 69 31 165 0 37 ± 5 conserved

Rep A Tavares 71 57 328 1 100 ± 8 structure

Note: For different RNAs, we compare the covariation signal in alignments of different power and analyze the relationship between the two. In blue,
alignments for which the observed and expected number of covariations are consistent with each other representing either an alignment with enough power to
supports a conserved RNA structure or an alignment with little power that cannot provide information about whether a conserved RNA structure exists or not.

In red, alignments with power but little or no covariation suggesting the absence of an RNA structure. The alignments' names are color coded as in Figure 7a.
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Tavares et al. (2019) used some mammal-restricted alignments to show examples of alignments with variability but
not covariation, and concluded that covariation cannot be used to identify structural RNAs (Figure 7g,h). However,
their alignments include pseudogenes.

For example, Figure 7i shows the 5S RNA Tavares alignment (helix 3). Tavares' human 5S RNA sequence located in
chromosome 8 is a 5S rRNA pseudogene (Sørensen et al., 1991). 5S rRNA is notorious for its large number of
pseudogenes, estimated to be over 500 in the human genome (International Human Genome Sequencing
Consortium, 2001). Pseudogenes are not subjected to preserving a conserved structure, and their conservation pattern
resembles more that of Figure 2b than that of Figure 2a.

A simple fix for avoiding most pseudogenes is to take the best hit per genome (Figures 7j). The best-hit 5S rRNA mam-
mal alignment with the same species as the Tavares alignment has low power and behaves normally (Figures 7g). This is a
cautionary tale; on building alignment for covariation analysis, one should be careful excluding any possible pseudogenes.
Pseudogenes can obscure RNA covariation evidence by adding variation inconsistent with an RNA structure.

The alignments for lncRNAs HOTAIR, ncSRA, and repA, on the other hand, do not contain pseudogenes. Thus the
discordance found in their alignments with low covariation but high power cannot be attributed (as it is the case for
the Tavares mammals-only alignments) to the presence of pseudogenes in a structural RNA alignment.

Homo        GAGUCUGAUGUUUACAAGACCAGAAAUGCCACGGCCGC-GUCCUGGCAGAGA--AAAGGCUGAAAUGGAGGAC-C
Mus         AAGUCCUGUGUUUACAAGACCAGAAAUGCCCAGCGCUAA-GUCCUUCCAGAGA-gAAAGGCUGAAAUGGAGGAC-C
Rattus      AAGUCCUGUAUUUACAAGACCAGAAAUGCCAGCGCUCC-GUCCUUCCUGAGA-gAAAGGCUGAAAUGGAGGAC-C
Ailuropoda  GAGUCCAGUGUUUACAAGACUAGAAAUGCUAUGGCCUU-GUCCCGGCAGAGA--AAAGGCUGAAAUGGAGGAC-C
Tupaia      GAGCCUGGUGUUUACAAGAGCAGAAAUGCCACGGCCAC-GUCCUGGCAGAGA--AAAGGCUGAAAUGGAGGAC-C
Pteropus    GAGUUCAGUGUUUAC-AGACCAGAAAUGCCACGGCCAC-GUCCUGGCAGAAA--AAAGACUGAAAUGGAGGAC-C
Tursiops    GAGUCCAGUGUUUACAAGACCAGAAAUGCCACGGCCAC-GUCCUGGCAGAAA--AAAGGCUGAAAUGGAGGAC-U
Canis       GAGUCCAGUGUUUACGAGACUAGAAAUGCUACGGCCAC-GUCCUGGCAGAAA-gAAAGGCUGAAAUGGAGGAC-C
Dipodomys   GAGUCCAGUGUUUACAAGACCAGAAAUGCCACUGCUGC-UUCCUUCUAGAGA--AAAGGCUGAAAUGGAGGAC-C
Cavia       CAGUCCAGUGUUUACAAGACCAGAAAUACCACUGCCAA-GUCCUUCUGGAGA--AAAGGCUGAAACAGAGGAC-U
Pongo       GAGUCCGAAGUUUACAAGACCAGAAAUGCCACGGCCGC-GUCCUGGCAGAGAgaAAAGGCUGAAAUGGAGGAG-C
Pan         GAGUCUGAUGUUUACAAGACCAGAAAUGCCACGGCCGC-GUCCUGGCAGAGA--AAAGGCUGAAAUGGAGGAC-C
Mustela     GAAUCCAGUGUUUACAAGACUAGAAAUACUACGGCCUU-GUCCUGGCAGAAA--AAAGGCUGAAAUGGAGGAC-C
Choloepus   GAGUCCGGUGUUUACAAGCCCAGAAAUGCCAUGGCCAC-GUCCUGGCACAGA--AAAGGCUGAAAUGGAGGAC-C
Callithrix  GAGCCCGGUGUUUACAAGACCAGAAAUGCCACCGCCAC-GUCCUGGCAGAGA--AAAGGCUGAAAUGGAGAAC-G
Macaca      GAGUCCGAUGUUUACAAGACCAGAAAUGCCACGGCCGC-GUCCUGGCAGAGA--AAAGGCUGAAAUGGAGGAC-C
Myotis      GAAUUCAGUGUUUACAAGAUCU----UG----------g-------CAGAAA--AAAGACUGAAAUGGAGGAC-C
Loxodonta   GAGACCGGUGUUUACAAGUCCAGAAAUGCUACGGCCAC-GUCCUGGCAGAGA--AAAGGCUGAAAUGGAGGAC-C
Microcebus  GAGUCCGGUGUUUACAAGACCAGAAAUGCCACGGCCAC-GUCCUGGUGGAGA--AAAGGCUGAAAUGGAGGAC-C
Otolemur    GAGUCCGGUGUUUACAAGACCAGAAAUGCCACGACCAC-GUCCUGGCAGAGA--GAAGGCUGAAAUGGAGGAC-C
Echinops    GAGAUCGAUGUUUACAAGACCAGCAAUGCUACGGCCAC-GUCUUGGCGGAGA--AAAGGCUGAAAUGGAGGAC-C
Equus       GAGUCCAGUGUUUACAAGACCAGAAAUGCCACGGCCGC-GUCCUGGCAGAAA-gAAAGGCUGAAAUGGAGGACcC
Gorilla     GAGUCCGAUGUUUACAAGACCAGAAAUGCCGCGGCCGC-GUCCUGGCAGAGA-aAAAGGCUGAAAUGGAGGAC-C
Ictidomys   GAAUCCAGUGUUUACAAGAUGAGAAAUGCCACUGCCGC-GUCCUUCUGGAGA--AAAGGCUGAAAUGGAGGAC-C
Nomascus    GAGUCCGAUGUUUACAAGACCAGAAAUGCCACGGCCGC-GUCCUGGCAGAGA--AAAGGCUGAAAUGGAGGAC-C
Oryctolagus GAGUCCAGUGUUUACAAGACCAGAAAUGCCACAGCCGC-GUCCU-GCAGCGA-gAAAGGCUGAAAUGGAGGAC-U
Procavia    GAGACCAGUGUUUACAAGACUAGAAAUGCCACAGCCAC-AUCCUGGCAGAGA--AAAGGCUGAAAUGGAGGAC-C
            ::<<<<--<<<<<-<-<<-<<-----<<<<<-<<<____>>>->>>>>--------->>>>>>>>>>-->>>>::

::<<<<--<<<<<-<-<<-<<-----<<<<<-<<<____>>>->>>>>--------->>>>>>>>>>-->>>>::
HOTAIR putative helix 10

334 344 352 370 380 387

after shufflingoriginal

R-scape

after shufflingoriginal

0.027 0.016352:370

(human sequence coords)

344:380

334:387

Tavares 2019 Somarowthu 2015

double inconsistent

1

1

1

half

3

1

1

1

2

0

base pair

FIGURE 8 Examples of misidentified conserved RNA base pairs. (a) Example of three base pairs called “significantly covarying” in
HOTAIR putative helix 11. The 352:370 pair (in human sequence coordinates) was called significantly covarying in both Somarowthu

et al. (2015) and Tavares et al. (2019); the 334:387 and 344:380 pairs were also called significantly covarying in Somarowthu et al. (2015) but

not in Tavares et al. (2019). Somarowthu' analysis calls the three base pairs significant solely on the basis that there is one compensatory

mutation (circled in green) and less than 10% of the sequences are inconsistent with a canonical base pairs. Tavares' analysis still calls the

352:370 pair significantly covarying even after the residues in each column are permuted to destroy all covariation. Tavares used R-scape

with command: R-scape --RAFSp ––window 500 ––slide 100 HOTAIR_D1.sto. Green: compensatory base pair substitutions

relative to most abundant canonical base pair; blue: “half flips” (such as GC to GU); red: substitutions inconsistent with proposed base pair.

In the current R-scape, option --RAFSp can only be used in combination with --naive to report the full list of RAFS scores without the

statistical test of covariation. Derived from Supplementary Figure 4 of Rivas et al. (2017) and Figure 2 of Rivas and Eddy (2018)
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6 | ARTIFACTS THAT FALSELY IDENTIFY CONSERVED RNA STRUCTURE

Other artifacts can have the opposite effect of erroneously creating spurious covariation. We illustrate some of those
artifacts using examples from the recent literature.

6.1 | Misusing the RNA drawing program R2R

The original analysis of the HOTAIR lncRNA alignments reported a structure which the authors say is “evolutionarily
conserved” (Somarowthu et al., 2015). For example, three proposed base pairs in HOTAIR helix 10 (Figure 8) were
reported by Somarowthu et al. (2015) as covarying.

The Somarowthu et al. (2015) analysis used a data visualization program called R2R that does not perform statistical
analysis. The R2R authors explicitly warn against interpreting the R2R drawing for the purpose of covariation analysis
(Weinberg & Breaker, 2011). R2R only requires a single compensatory pair substitution to annotate a pair as

Putative Cyrano RNA cloverleaf structure 

                (((((((((((((((,,<<<<<<____>>>>>><<<<<-----<<<<<<<_______>>>>>>>----->>>>>,<<<<<<____>>>>>>)))))))-))))----))))
human           GUGGACAAAUGUUACAAGUUGUUUAAGAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUUUGUAAGCAUUAGUGCUUGGUAGCAUAUUGUAGUGCCAU
mouse           GUGGACAAGUGUUACAAGUUGUUGAAGAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUUUGUAAGCAGUAGUGCUUGAUAGCAUAUUGUAGUGCCAU
zebrafish       UUGUACAAAAGUGACAAGUUGUUCGCAAACAACAAAAUCACCAAUGUCUUCCAUUAAAUGAUGU--AUAGUUUCAUCUGCUUUAGGGCGGGAU------UUGUAGUGCCAG
bos             GUGGACAAAUGUUACAAGUUGUUUAAGAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUUUGUAAGCAUUAGUGCUUGGUAGCAUAUUGUAGUGCCAU
sus             GUGGACAAAUGUUACAAGUUGUUUAAGAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUUUGUAAGCAUUAGUGCUUGGUAGCAUAUUGUAGUGCCAU
pan             GUGGACAAAUGUUACAAGUUGUUUAAGAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUUUGUAAGCAUUAGUGCUUGGUAGCAUAUUGUAGUGCCAU
felix           GUGGACAAAUGUUACAAGUUGUUUAAGAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUUUGUAAGCAUUAGUGCUUGGUAGCAUAUUGUAGUGCCAU
rabbit          GUGGACAAAUGUUACAAGUUGUUUAAGAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUUUGUAAGCAUUAGUGCUUGGUAGCAUAUUGUAGUGCCAU
bat             GUGGACAAAUGUUACAAGUUGUUUAAUAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUUUGUAAGCAUUAGUGCUUGGUAGCAUAUUGUAGUGCCAU
hamster         GUGGACAAGUGUUACAAGUUGUUUAAUAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUUUGUAAGCAGUAGUACUUGGUAGCAUAUUGUAGUGCCAU
chicken         GUGGACUGAUGUUACAAGUUGUUUGAAAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUCCAUAAGCAUUAGUGCUUUGUAGCAAACAGUAGUGCCAU
opossum         GUGGACAAAUGUUACAAGUUGUUUGAGAACAACAAAAUCACCAAUGUCUUCCAUUUUGAUAUGUGUAUAGUUUUUUAAGCAUUAGUGCUUUGUAGCAAACUGUAGUGCCAU
shrew           GUGGACAAAUGUUACAAGUUGUUUAAGAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUUUGUAAACAU---UGCUUAGUAGC---UUGUAGUGCCGU
frog            GUGAACAAAUGUUACAAGUUGUCUGAGAACAACAAAAUCACCAAUGUCUUCCAUUUUGAGAUGUGUAUAGUUCCAAAAGCAUUAGUGCUAUGUAGCAAAUUGUAGUGCCAC
elephant        GUGGACAAAUGUUGUAAGUUGUUUAAGAGCAACAAAAUCACCAAUGUUUUCCAUUUUGACAUGUGUAUCGUUUUGUAAGCAUUAGUGCUUGGUAACAAAUUGCAGUGCUAU
tasmanian_devil GUGGACAAAUGUUACAAGUUGUUUAGAAACAACAAAAUCACCAAUGUCUUCCAUUUUAUAAUAUGUAUAGUUUCAAAAGCAUUAAUGCUUUGUAGGAAAAUGUAGUGCCAU
coelacanth      GUGAACAGACGCAACAAGUUGUUUAAGAACAACAAAAUCACCAACGUCUUCCAUUUUGAGAUGUGUAUAGUUCCAUAUGCAUUAGUGCUUCGUAGCAAACUGUAGUGCCAU
hedgehog        GUGCAGAAAUGCCCCCAG--GAUUAAGAACAACAAAAUCACCAAUGCCUUCCACUUUGAGAUGUGUAUAGUUUUGUAAGCAUUAGUGCUUGGUAGCAUAUUGUAGUGCCAU
wallaby         GUGGACAAAUGUUACAAGUUGUUUGAGAACAACAAAAUCACCAAUGUCUUCCAUUUUAUAAUAUGUAUAGUUUGAUAAGCAUUAAUACUUUGUAGAAAAAUGUAGUGCCAU
galago          AUGGACACAUGUUCCAAGUUGUUUAAGAACAACAAAAUCGCCAGCGUUUUCCACUCCGAGAUGAGCACGGUUUUGUAAGCAUUAGUGCUUGGUAGU---GUGUUACAGCAC
guinea_pig      AUGGACAAGUGUUACAAGCUGUUUAAAAACAAGAAAAUCAUUAAUGUCUUGCAUUUUGACACAAGUAUCAUUUUGUA----UUAGAACUUGACAGCAUAUUGUAGUGCCAU
orangutan       GUGGACAAAUGUUAAAAGUUGUUUAAGAACAACAAAAUCACCAGUGUCUUCCGUUUUAAGAUGUGUAUAGUUUUG----------------UUAG----UAGUAGAGACAC
vole            GUGGACAAGUAUUACAAGCUGUUCAAUAACAACAAAAUCACCAGUGUCUUACAUUUUGAGAUGUGUUUAGCAUUGUAAACAGCAAUGCUUGGCCGCAUACUGUAUUAACAU
gar             GUGAACAAGUG--ACAAGUUGUUUGAGAACAACAAAAUCACCAACGUCUUCCAUUAUAAGAUGU--AUAGUUUCAUUAGCUUAAUAGCAAA-----ACA--GUAGUGCCAU
rat             GUAGACACAUAUUCUAAACUGUUCAAAAAUAACAAAACCACUAAUAUCUUCCAUUUUGAGCUCUAUAUAGUUUGGUAAGCAGUACUGUUUAGUGGCACAUUGUAGUCAUAU
bony_fishes     GUAUAAACAAGUGACAAGUUGUUUGAAAACAACAAAAUCACCAAUGUCUUCCAUU--AAGAUAUGUAUAGACUCAUG------------CAUUAGCUU-AUUUAGCGGGAC
fugu            GUAUAAACAAGUGACAAGUUGUUUGAAAGCAACAAAAUCACCAAUGUCUUCCAUU--AAGAUAUGUAUAGACUCAUG------------CAUUAGCUU-GUUUAGCAGGAC
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FIGURE 9 Covariation and power of covariation analysis of the Cyrano RNA putative structure. Proposed cloverleaf structure in the

long noncoding RNA Cyrano. Boxed in black, base pairs that Jones et al. (2020) describe as evolutionarily conserved. The alignment was

produced by searching 100 vertebrate genomes with an Infernal model built from the human Cyrano RNA cloverleaf sequence and structure

provided in Jones et al. (2020). The hypothetical miR-7 binding site is overlined in purple. The notation describing the alignment positions is

given in Figure 4 (blue box)
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“covarying,” so long as no more than 10% of the sequences are inconsistent with canonical base pairing of the two posi-
tions. Somarowthu et al. (2015) customized R2R's tolerance to allow up to 15% inconsistent base pairs. This is why R2R
marked as covarying the three pairs of helix 10 indicated in Figure 8, although the three base pairs include each just
one compensatory change, and just as many changes inconsistent with a base pair.

For instance for the 352:370 base pair in helix 10, the 352 position is a highly conserved G, and the 370 position is a
mostly conserved C. There is only one pairwise compensatory substitution (an A:U in Cavia porcellus), an inconsistent
substitution (A:C in Mustela), and many inconsistent substitutions at other pairs in the proposed helix. In addition, the
mouse/human pairwise comparison in this HOTAIR region shows six substitutions inconsistent with the proposed
structure and no compensatory base pair substitutions. Overall, the analysis of the proposed HOTAIR structure is a
combination of helices such as proposed helix 10 (Figure 8) and helix 11 (Figure 2c) with a pattern of little variation,
mixed with helices such as proposed helix 3 (Figure 2b) showing a pattern of large variation but not covariation.

This HOTAIR analysis shows the danger of not using the appropriate tool to assess covariation. In the words of the
R2R authors, as it reads in any R2R output: “R2R is not intended to evaluate evidence for covariation or RNA structure
where this is in question. It is not appropriate to use R2R's covariation markings to declare that there is evidence of struc-
tural conservation within an alignment. R2R is a drawing program.” A statistical analysis of the same HOTAIR alignments
shows that none of the proposed base pairs in Somarowthu et al. (2015) significantly covary (Rivas et al., 2017), while the
alignments have sufficient power to find covariation due to RNA structure if those were present (Rivas et al., 2020).
The choice of covariation statistics mattersDifferent statistics have been developed for analyzing pairwise covari-
ation in RNA alignments. For the purpose of predicting a consensus RNA structure for an RNA known to have one, it is
advantageous to consider not only covariation but also consistency with base pairing. A completely conserved G col-
umn and a completely conserved C column show no covariation, but are consistent with a conserved G:C base pair. A
structure prediction program might want to choose a statistics that rewards consistency, though perhaps not as much
as covariation. One such statistic developed for RNA structure prediction is RAF (RNAalifold measure) used by the pro-
gram RNAalifold (Hofacker et al., 2002), and the related statistic RAFS (RNAalifold with stacking) (Lindgreen
et al., 2006).

However, for the purpose of distinguishing RNAs that have versus do not have an evolutionarily conserved struc-
ture, it is important to use a “pure” covariation measure such as MI or the G-test used by R-scape. A statistic like RAF
(or RAFS) can erroneously assign significant “covariation” support to completely conserved base pairs.

An example of the inappropriate use of the RAFS statistic to provide support for an evolutionarily conserved RNA
structure is Tavares et al. (2019). Figure 2c depicts the Tavares alignment of HOTAIR putative helix 11 showing a five
base helix. Tavares' analysis reports the three middle base pairs as “significantly covarying” because RAFS sees them as
consistently conserved. There is no covariation and no compensatory base pair substitutions at these three pairs, by def-
inition, because the AGC on the right side of the proposed three pairs is invariant.

Figure 8 shows the HOTAIR alignment for putative helix 10. Tavares calls the 352:370 as significantly covarying
(not the other two called by their previous Somarowthu et al. (2015) analysis though). A control for whether Tavares'
analysis is detecting covariation is to shuffle the alignment by permuting the residues in each individual column. This
destroys all covariation while preserving position-specific sequence conservation. On a permuted HOTAIR alignment,
Tavares' analysis still calls helix 10 positions 352:370 “significantly covarying” (E = 0.016). Using Tavares' --RAFSp
--window 500 --slide 100 analysis on the complete HOTAIR D1 alignment, similar numbers of “significantly
covarying pairs” are detected in permuted alignments (range 28–39, in 10 different shuffles) as in the original alignment
(30, at threshold E < 0.05). More details about this analysis are given in Rivas and Eddy (2018).

6.2 | A good CMfinder score does not mean an evolutionarily conserved structure

RNA homology methods such as Infernal (Nawrocki & Eddy, 2013) or CMfinder (Yao et al., 2006) use both sequence
and structure conservation, together with consistency with an RNA structure, in order to predict conserved RNA struc-
tures. As a result, sequence conservation and/or consistency with an RNA structure can drive a good homology score
even in complete absence of covariation. Thus, a good homology score either from Infernal or CMfinder is not guaran-
tee of an evolutionarily conserved RNA structure. Figure 9 shows an example of this situation for the case of a proposed
structure for Cyrano RNA (Jones et al., 2020).

Cyrano RNA is a long intergenic noncoding RNA (lincRNA) first identified in zebrafish with homology in verte-
brates (Ulitsky et al., 2011). Cyrano RNA includes a putative binding site for microRNA miR-7. This interaction has

16 of 29 RIVAS



SRP RNA  -  Muscle alignment (b)

R Y Y R
R

R
R

R Y
R Y

R

Y Y

Y
A
G
G

R

R
R A

G
C

AG
C

Y
R

Y
R R R R Y R Y R

pk_1

pk_1

pk_2

pk_2

tr_1tr_2 , tr_3 , tr_4

xc_3 , sc_2 , sc_3
tr_2 , xc_1 sc_1 , sc_3
tr_1 , xc_3 xc_1 , xc_2 , sc_2

tr_3 , xc_2

sc_1

tr_4 , tr_5

tr_5

5´

pk_1
Y R

pk_2
sc_1

R R
R

sc_2
R

sc_3
R R

tr_1 tr_2 tr_3

tr_4 tr_5 xc_1

xc_2
R

xc_3
R

G C
Y
G
R
G
C

R
G
UR R C

G

R
G
C
Y
U
G

U R A
C
C
Y

R
A G

Y
G
G
G

G G C A Y
A
R
R
R
U
GR
Y

R
R

R
G

Y

Y
G
G
Y
Y
Y
GY

C
C

U
C
C

A
A

G
Y

GR

U
RYYYRYG

R
AR R Y R R Y Y Y R Y Y

U
A R A

R G
R

G
A Y

G C G U
A GG

C U
G

GYUUCAC
A

GA
GCAR

C
G

AA
CY

CY
Y

C
UY

Y

C R
G

UG
G
A
R GG

A
U

AC
R
R
G
Y
Y

Y

Y

R

Y
Y

Y
Y

R

Y
R

R
A

C

YY
A
Y
Y
U
U

U

tr_2

tr_1
tr_1

tr_2

5´

tr_1
R

tr_2

33 nts29 nts

A.thaliana        UU.UGUGC.CCUAAUUUGA..U.CC.UCAGGUUUGG..G.UUCAAGUCGCC....GGA 
A.lyrata          UU.UA.UUCCCUAAUUUGAU.C.CU..CAGGUU.GG..G.UUCGA...AGUCGCCGGA 
C.rubella         UU..GUGCCCUA...AUUU.GAUCC.UCGGCUUUGGGUUC.AAGU..CGCC.....GG
A.alpina          UU..GUGCCCUA..AUUUG.GAUCC.UCAGGUUCGGU.UCUUAAG.UCGCCU....GA 
E.salsugineum     UCC.GUGCCCUA...AUUU.GA.UCCUCAGGUACGGU.UC.AAGU..CGCCA....GA
B.rapa            UC.UGUGCCCUA...AUUU.GAUCC.AGAGGUUCGGU.UC.AAGU..GGCC....GGA
                  <<-<<-<<-------<<<<-<<-<<_________>>-->>->>>>--->>>---->>>
             

A.thaliana                 UUUGUGCCCUAAUUUG.AUCCUCAGGUUUGGGUU.C.AAGUCGCCGGA
A.lyrata                   UUUAUUCCCUAAUUUG.AUCCUCAGGUU-GGGUU.CgAAGUCGCCGGA
C.rubella                  CUUGUGCCCUAAUUUG.AUCCUCGGCUUUGGGUU.C.AAGUCGCCGGA 
A.alpina                   UUUGUGCCCUAAUUUGgAUCCUCAGGUUCGGUCUuU.AAGUCGCCUGA 
E.salsugineum              UCCGUGCCCUAAUUUG.AUCCUCAGGUACGG-UU.C.AAGUCGCCAGA
B.rapa                     UCUGUGCCCUAAUUUG.AUCCAGAGGUUCGG-UU.C.AAGUGGCCGGA 
                           <<<<-<<----<<<<<.<<<<________>>>->.>.>>>>->>>>>>

GCCCUAAUUUG
UCCCUAAUUUG
GCCCUAAUUUG
GCCCUAAUUUG
GCCCUAAUUUG
GCCCUAAUUUG

AAGU
AAGU
AAGU
AAGU
AAGU
AAGU

GC.CCUAAUUUG
UCCCUAAUUUG

GCCCUA...AUUU.GAA
GCCCUA...AUUU.GAA
GCCCUA...AUUU.GAA

AAGU
AAG.UC

A...AGU
CAAGU

AAGU
AAGU

GCCCUA..AUUUG

AU
AU
AU
AU
AU
AU

AU
AU
AU

gAU
AU
AU

A
GA
GAA
AUAA

GA
GA

A
A
A
A

GA
GA
GA
GA

GA
GA
GA

Hawkes et al., NAR 2016 (Figure 2A and Figure S2C)

Infernal alignment 

..U.C
U.C.CU

UCC
UCC
.UC
UCC

AU
AU
A
AU

UCCU
UCCU
UCCU
UCCU
UCCU
UCCA

U
U
U
U
U
U

CC
U Y G

U
G C

C
C Y

U C C
C A

G
G

UUY
GGRGCCGA

5´

U Y U G
U
G C

C
C U

A
A U U U G A U C C

U C A
G
G

UUY
GG

U
UCAAGUCGCCRGA

5´

-<< <---
A

<<<<<<<_ >>>>>>

Coolair RNA putative helix H10 

CUCC

(a)

5 spurious covariations

90%
97% 75%

50%

nucleotide
present

nucleotide

75%N

N 97%
N 90%

identity

90%
97% 75%

50%

nucleotide
present

nucleotide

75%N

N 97%
N 90%

identity

no covariation, no power

GGUGA    UCAUC
G-UGA   <<<<<    >>>>>UCA-C

GGUGA    UCAUC
GUGA-   <<<<<    >>>>>-UCAC

  

  

(c)

SRP RNA - Infernal alignment (d)

* ** * * ** * **

FIGURE 10 Legend on next page.

RIVAS 17 of 29



been studied for the possible influence of Cyrano on animal behavior (Bitetti et al., 2018; Kleaveland et al., 2018). How-
ever, proposed functions of Cyrano RNA have been called into question by recent publications that find that Cyrano is
dispensable in zebrafish development (Goudarzi et al., 2019), and dispensable as well for pluripotency of human stem
cells (Hunkler et al., 2020). In a recent manuscript, Jones et al. (2020) proposed an RNA structure for Cyrano which is
said to be evolutionarily conserved from fish to mammals.

Figure 9 shows the cloverleaf structure for human Cyrano proposed by Jones et al. (2020). The structure was identi-
fied using CMfinder. The base pairs framed in two black boxes are said to be evolutionarily conserved because they
have a good CMfinder score (Jones et al., 2020).

In order to assess whether the proposed Cyrano cloverleaf structure is evolutionarily conserved, we created the ver-
tebrate alignment shown in Figure 9. The alignment was created using an Infernal model for the human Cyrano clover-
leaf sequence and structure. This Cyrano Infernal model was used to search the UCSD 100 vertebrate genome database.
An alignment of the best hits was created using the Infernal program cmalign. The alignment with 27 sequences
includes mammals, marsupials, and fish species.

The R-scape analysis of this Cyrano alignment shows one covarying base pair, and consistently it expects 3 ± 2 base
pairs to covary. This means the alignment has little variability from which it is not possible to assert the presence of a
conserved RNA structure. While the analysis of the overall structure clearly concludes that the alignment lacks variabil-
ity, the analysis of individual base pairs indicates that at least two of them 45:63 and 48:60 have enough power to start
questioning whether the variability observed is consistent with an RNA base pairing at all.

The Cyrano sequence is conserved from fish to human, but it is impossible to decide whether the proposed structure
is conserved as well. The fact that the Cyrano sequence is conserved is not enough. This Cyrano region is completely
duplicated in human (Cyrano: chr15 41300362 41300860+; Duplication: chr1 240759949 240759453−) as well as in
mouse (Cyrano: chr2 119601930 119602533+; Duplication: chr3 129505993 129505339−). The fact that the sequence
seems to be mostly consistent with the proposed cloverleaf structure is also not enough, as sequences, even random
ones, usually conform with consistent structures. The covariation and power analysis is the way to assess whether the
RNA structure is conserved or not. The alignment in Figure 9 is at best inconclusive on that regard.

6.3 | Misalignments can induce spurious covariation

Observing structural covariation strongly relies on having an alignment where homologous base pairs are aligned
respecting the structural constraints of the molecule. Conserved RNA structures can have important differences from
species to species: sometimes helices have different number of base pairs; even entire helices may be missing in particu-
lar groups of species. The alignment of structural RNAs is further complicated by the fact that the pattern of mutations
is more often dictated by base pairing correlations than by simple position conservation. Because helices can have vari-
able number of base pairs and compensatory substitutions, alignments built without taking into account the conserved
structure can easily misalign residues in helical regions.

Perhaps counterintuitively, misalignments can create spurious covariations. Figure 10a shows an example of spuri-
ous covariations found in an alignment for the lncRNA COOLAIR (Hawkes et al., 2016). As illustrated in Figure 10b, a
misaligned helix in which base paired residues slide relative to the consensus for a fraction of the sequences will result
in spurious covariations.

Alignments with base pair misalignments can be identified by performing structural realignments. A technique to
identify spurious covariations consists of realigning the sequences using an Infernal model build with the proposed
structure. An Infernal realignment of the COOLAIR sequences in Figure 10a shows that the same COOLAIR structure

FIGURE 10 Spurious covariations due to misalignments. (a, top) COOLAIR alignment presented in Hawkes et al. (2016). The green

asterisks indicate the position of the five spurious covariations. (a, bottom) Realignment of the same sequences using the program Infernal.

The realignment supports the same structure without substitution or gaps in the base paired positions. Derived from Figure 2d of Rivas

et al. (2020). (b) Cartoon illustrating the sequence sliding effect that results in spurious covariations. (c) CaCoFold structure prediction for a

collection of 312 signal recognition particle (SRP) RNAs from different species including metazoan, protozoa, plants, and bacteria (large and

small). The SRP sequences are aligned using the program MUSCLE. (d) Reanalysis of the same sequences, by creating an Infernal model for

just one of the sequences (Zea mays SRP) using the CaCoFold predicted structure. An alignment is produced using the Infernal program

cmsearch with default E-value cutoff. The Infernal alignment includes 75 out of the 312 SRP sequences that report a significant hit
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is supported by an alignment that has no variation or covariation. This shows that there is a consistent structure
between conserved sequences, but too conserved to infer the presence or not of a conserved RNA structure.

Infernal (Nawrocki & Eddy, 2013) performs structural alignments using both the sequences and a consensus struc-
ture. Given a multiple sequence alignment and a consensus secondary structure for all the sequences, Infernal builds a
profile context-free grammar (Durbin et al., 1998) that can be used to find structural homologs (Infernal program
cmsearch), and to make an alignment of the homologs (program cmalign). An Infernal model simultaneously scores
conservation, covariation, and consistency with the proposed RNA structure. Using Infernal, the database Rfam has col-
lected reliable alignments of over 3000 structural RNA families (Kalvari et al., 2018).

As a particular case, Infernal can build a model based only in one RNA sequence annotated with a structure. We
built an Infernal model for the Arabidopsis thaliana sequence and the structure proposed in Figure 10a. The realign-
ment of all sequences using this one sequence/one structure Infernal model produces the COOLAIR alignment in
Figure 10b which supports the same structure but the helix is completely conserved.

As a different example, Figure 10c shows for a collection of 312 metazoan, protozoa, plants, and bacteria signal rec-
ognition particle (SRP) RNAs, the covariation found in a nonstructural alignment of all sequences created using the
method MUSCLE (Edgar, 2004). Most of the covariations are spurious, and they do not relate to the structure of SRP.
On the other hand, an alignment of the sequences using the method Infernal by building a one sequence/one structure
covariance model results in a very different pattern of covariation that recapitulates the SRP structure (Figure 10d).

7 | DISTINGUISHING BETWEEN DIRECT AND INDIRECT COVARIATION

Direct coupling analysis (DCA) is a method of describing residue-to-residue correlations by inferring the direct pairwise
statistical interactions in a biological sequence, as opposed to indirect interactions, where two residues that do not
directly interact are correlated because both interact to a third residue resulting in a network effect (Weigt et al., 2009).

DCA methods are based on the statistical mechanical Potts model (Potts, 1952). Potts models are a theoretical
advance relative to other correlation measures taken directly from the alignment, such as the above mentioned G-test
and MI which cannot distinguish direct from indirect interactions.

Indirect interactions in RNA can appear due to base triples and other tertiary interactions (Batey et al., 1999). RNA
bases have three distinct edges: the WC, Hoogsteen, and Sugar edges. RNA base pairing occurs by direct interaction
between any two edges which can form at least two hydrogen bonds, and can have cis or trans orientation resulting in
12 different types of direct base pairs (Leontis & Westhof, 2001). The most common pairs are cis WC base pairs, all other
11 types are usually referred to as the non-Watson–Crick (non-WC) base pairs. Triple base pairs form when a base
directly interacts with two other bases using two different edges (a found example is an A forming a cis WC pair with a
U and a Hoogsteen-type pair with another U). Base triples can induce indirect correlations between the other two bases.
Because non-WC direct interactions tend to show low covariation signal, indirect interactions due to base triples which
involve at least one non-WC pair are not expected to have strong covariation signal.

A Potts model describes the probability of a sequence s1…sL as,

P s1…sLð Þ= 1
ZL

exp +
X
i< j

J ij si,sj
� �

+
X
i

hi sið Þ
( )

: ð1Þ

The parameters {Jij}i < j are referred to as the direct couplings. The partition function ZL provides the appropriate nor-
malization over all possible sequences of length L.

The Potts model in Equation (1) is the maximum entropy probabilistic model (Jaynes, 1982) that reproduces
observed arbitrary single and pairwise residue frequencies. Thus, for a Potts model to be consistent with an alignment,
it has to satisfy that the marginal probabilities for one and two positions are equal to the corresponding empirical fre-
quencies fi(a) and fij(a, b) observed in the alignment, that is,

X
s1

…
X
sL

^si

P s1…sLð Þ= f i sið Þ, ð2Þ
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X
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…
X
sL

^si,sj

P s1…sLð Þ= f ij si,sj
� �

, ð3Þ

where 1 ≤ si ≤ K, for an alphabet of size K.
DCA methods calculate the correlation between two positions i, j using the direct information (DI) statistic (Weigt

et al., 2009),

DI i, jð Þ=
X
a,b

Pij
dir a,bð Þlog P

ij
dir a,bð Þ

f i að Þf j bð Þ , ð4Þ

where the “dir” probabilities

Pij
dir a,bð Þ�

exp + Jij a,bð Þ+ ĥi að Þ+ ĥj bð Þ
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FIGURE 11 Comparison of different measures of covariation on

19 structural RNAs. We report the number of total base pairs detected as

a function of the positive predictive value (PPV, fraction of predictions

that are base pairs). G-test scores are calculated using R-scape (option

––naive). EC (evolutionary coupling) scores are those provided in

Weinreb et al. (2016) on the same alignments. BL-DCA scores are

calculated with the code provided in Cuturello et al. (2020). Dashed

lines correspond to 50% PPV (horizontal) and 50% sensitivity (vertical).

Results for each structural RNA are given in Figure S1 and Table S1.

The seed alignments come from Rfam v14.2. The full alignments are

those provided in Weinreb et al. (2016). The annotation of both Watson–
Crick (WC) as well as non-Watson–Crick (non-WC) base pairs are

derived from the PDB files using the program RNAview (Yang

et al., 2003) (R-scape option: ––pdb)

TABLE 2 Comparison of RNA base pair detection by different covariation measures on a set of 19 structural RNAs

Base pairs
Rfam alignment Covariation method

Detected at 50% PPV Time (min)

RNA WC Non-WC WC Non-WC Avg Max

19 RNAs 954 163 Seed G-test 67% (640/954) 10% (16/163) 0.03 0.11

BL-DCA 60% (572/954) 11% (18/163) 378.64 1999.27

Full G-test 70% (667/954) 10% (16/163) 3.61 33.53

BL-DCA 57% (540/954) 9% (15/163) 55.79 279.37

ECs 66% (630/954) 17% (28/163) — —

Note: We report the total number of detected base pairs (sensitivity) at 50% positive predicted value (PPV, the fraction of the detected base pairs that are true
base pairs). G-test APC corrected scores are calculated using the program R-scape (option: --naive). BL-DCA scores derived from DCA couplings trained

using Boltzmann learning are calculated using the code provided with (Cuturello et al., 2020). Evolutionary couplings (ECs) scores calculated from Potts
models trained using pseudo-maximum likelihood optimization come directly from (Weinreb et al., 2016). Running times for ECs were not given.
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FIGURE 12 Covariation not related to RNA structure. In orange, significant covariations not attributed to RNA structure. In green,

significant covariations attributed to RNA structure. (a) The tRNA alignment shows three significantly covarying pairs in the AC loop not

related to the RNA structure. For each pair, we provide information about the observed correlations. A:B mean that probability of finding B

at the 30 end of the pair, given there is an A at the 50 end, that is P(Bj A), is higher than 0.85; A:Bh means that it is between 0.5 and 0.85; and

A:notB means that the probability of B given A is lower than 0.05. In pink, we also show a singly hydrogen-bonded base pair with

covariation support found at the junction of the AC loop and stem (Auffinger & Westhof, 1999). Some covarying pairs between the D and T

loops also due to RNA structure are omitted for clarity. (b) In 6S RNA, one covarying pair between two residues contiguous in the backbone

involving the first position of the RNA product (pRNA) produced by the molecule (Chen et al., 2017). (c) Multiple short-range covariations

in the mRNA-like domain of the tmRNA (Ramrath et al., 2012). Many of the residues also show significant covariations due to the RNA

structure. The covariation analysis was performed in the corresponding Rfam seed alignments using R-scape and CaCoFold. Figure is

derived from Figure 5 and Figure S6 of Rivas et al. (2020)
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depend on the Potts model coupling parameters Jij(a, b), and on some modified parameters ĥi að Þ, ĥj bð Þ defined by the
conditions

P
j

P
bP

ij
dir a,bð Þ= f i að Þ , and P

i

P
aP

ij
dir a,bð Þ= f j bð Þ . The DI scores are usually corrected using the APC

(Dunn et al., 2007).
DCA methods have proven successful in predicting amino acid contacts from protein alignments, which in turn can

be used to predict a protein 3D structure (Ekeberg et al., 2013; Jones et al., 2012; Kamisetty et al., 2013; Marks
et al., 2011; Morcos et al., 2011). DCA models have been applied as well to calculate RNA covariations in structural
RNA alignments (De Leonardis et al., 2015; Weinreb et al., 2016).

Using DCA statistics requires inferring the coupling parameters from the given alignment. That is not a trivial pro-
cess, and several different DCA methods exist depending on different optimization methods to train the coupling
parameters. For RNA, several methods have been developed using pseudo-maximum likelihood optimization such as
DCA scores (De Leonardis et al., 2015), and evolutionary couplings (ECs) (Weinreb et al., 2016); and others using
Boltzmann learning such as BL-DCA (Cuturello et al., 2020).

Here, we study the effectiveness of these methods in predicting RNA base pairs, and we compare the ECs and BL-
DCA scores to those of a simpler G-test statistic which does not require parameter training and in principle does not
distinguish between direct and indirect interactions.

For 19 structural RNAs with experimentally determined 3D structures, we report the number of base pairs detected
as a function of the positive predicted value (PPV or fraction of the detected base pairs that are true base pairs) for each
of the three methods (Figure 11 and Figure S1). The list includes two ribozymes (RNaseP RNA and GlmS), tRNAs and
selenocysteine tRNA, transfer-messenger RNA (tmRNA), 5.8S rRNA, two SRP RNAs (metazoan and bacterial), group II
intron, and 10 riboswitches. For each RNA, we use two different Rfam alignments (seed and full) annotated with the
same RNA structure. The annotated base pairs are inferred from crystal structures and include both WC and non-WC
(Table S1).

Overall, our experiments show that for structural RNAs, there is little performance difference using DCA methods
versus a simpler G-test statistic. For most RNAs, we observe a sensitivity threshold at which there is a sharp transition
from high PPVs to low PPVs (Figure S1). This sensitivity threshold seems to be mostly dependent on the alignment,
and all three methods tend to perform closely to each other (with some variability across RNAs) by the time it is
reached. In Table S1, we report the sensitivity threshold, operationally measured at 50% PPV.

Figure 11 summarizes these results. We observe that the sensitivity (measured at 50% PPV) of the G-test versus
DCA methods is almost identical: 61% of base pairs detected using G-test versus 59% with ECs (Figure 11 and Table 2).
This similarity is likely to be the consequence that, unlike proteins, most RNA interactions are direct. The detection of
WC base pairs ranges from 70% with G-test to 66% with ECs. DCA couplings seem to provide a small increase in the
determination of non-WC bases (from 10% sensitivity at 50% PPV with G-test to 17% with ECs). This result could be
because some non-WC interactions create network effects as they are not necessarily disjoint interactions. On the other
hand, the time requirements for training a Potts model are vastly larger than those of calculating the G-test statistic
(Table 2 and Table S1).

8 | OTHER SOURCES OF COVARIATION

A conserved RNA structure results in covariation, but a conserved RNA structure is not the only source of covariation
in an RNA alignment. The method R-scape (Rivas et al., 2017) introduced an empirical model to test the hypothesis of
covariation due just to the phylogenetic relationships between the sequences without involving any correlations
between specific positions. Using a null model of phylogenetic covariation has enabled identification of significant
covariations in alignments of many structural RNAs (Rivas et al., 2020).

However, a significant covariation above phylogenetic expectation does not mean that it has to be due to a con-
served RNA structure. We have observed various sources of nonphylogenetic and non-RNA structure covariations while
analyzing many RNA alignments (Rivas, 2020). Three examples observed in Rfam seed alignments are given in
Figure 12. One source of covariation not due to base pairing are interactions with other molecules. Examples are: (1) in
Figure 12a: a covariation between the tRNA middle anticodon position (residue 35) and the discriminator located at the
50 end of the molecule (residue 73). Both the discriminator and the anticodon bind to the tRNA synthetase, and they
are both involved in determining the aminoacylation identity of the tRNA (Giegé et al., 1998). There are two other
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proposed structure (option -s ––fold). In blue, motifs identified by covariation alone. Figure is derived from Figures S4, S5, and S7 of
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significant covariations in the AC loop involving the 30 end position of the anticodon (residue 36) and other AC loop
residues. Those covarying pairs are 36:37 and 36:38. The correlations observed in these two pairs appear to be related to
translational efficiency (Yarus, 1982). Another AC loop covariation observed between positions 32:38 and adjacent to
the AC stem is a single hydrogen-bond base pairs (Auffinger & Westhof, 1999). (2) In Figure 12b: a covariation in 6S
RNA involving two contiguous residues at which the synthesis of the RNA product initiates. The 6S RNA structure
mimics an open promoter and serves as a transcription template.

Figure 12c shows another source of covariation not due to RNA structure. The tmRNA is responsible for removing
defective mRNAs without a stop codon stacked at the ribosome by providing a short mRNA template ending on a stop
codon. For the mRNA-like domain (MLD) of tmRNA, we observe both covariations associated to RNA structure (part
of the MLD sequence is involved in an RNA helix), as well as multiple other covariations between contiguous residues
due to the coding structure of the MLD region.

9 | POSITIVE AND NEGATIVE EVOLUTIONARY INFORMATION TO
PREDICT RNA STRUCTURE

The development of power calculations, in addition to significance testing, makes it possible to identify pairs of bases
which have plenty of variation, yet not significant covariation. Such pairs of positions are unlikely to form consensus
RNA base pairs. We call this “negative” evolutionary information (evidence against a conserved base pair). RNA struc-
ture prediction can be made more reliable by using both positive and negative evolutionary information in the form of
base pairs that covary and base pairs that vary but do not covary. Given an RNA alignment, the method CaCoFold
infers a consensus RNA structure that incorporates all covarying base pairs and avoids all negative base pairs
(Rivas, 2020). CaCoFold uses a battery of probabilistic folding grammars that incorporate in layers all observed covary-
ing pairs. A visualization of the resulting structure and the significant covariation that supports it helps identify which
parts of the predicted structure are reliable based on their covariation signal, and which are only a prediction consistent
with RNA base pairing.

Covariation analysis helps identify structural elements that otherwise would remain undetected, such as a single
base pair pseudoknot in the glutamine riboswitch (Figure 13a). The pseudoknot is not reported by Rfam or methods
like RNAalifold, but because the base pair significantly covaries, R-scape confirms the interaction, and CaCoFold inte-
grates the base pair as part of the structure. A G:A interaction reported in the E-loop is very conserved, and no covaria-
tion is detected.

Covariation helps predict new structural elements. For instance, for the coronavirus 30UTR pseudoknot, the covaria-
tion analysis of the proposed Rfam structure identifies a new hairpin loop with an AA bulge, a standard RNA motif
(Lilley, 1995). The extra proposed helix converts the already identified pseudoknot between a hairpin loop and a single
stranded region to a kissing loop pseudoknot between two hairpin loops (Figure 13b). In vivo SHAPE data for SARS-
CoV-2 provides support only for one of the three helices in this 30UTR motif, even though all three helices have covaria-
tion support (Manfredonia et al., 2020).

Covariation also provides a critical assessment of which parts of the structure are well determined versus which are
not. Figure 13c shows predictions for the structure for the vTR RNA (repeat structure of the Escherichia coli tyrT
operon). Covariation helps identify one additional helix with covariation support which frames a tandem GA, another
recurrent RNA motif (Gautheret et al., 1994). It also helps extend another helix due to additional covariation support.
We also observe that parts of the structure of the vTR RNA (Figure 4b) are still unconfirmed by the current evolution-
ary information as there is one proposed helix without any covariation support.

10 | FINAL REMARKS

A conserved structural RNA implies a slower rate of substitutions at base paired positions, thus conserved structural
RNAs from a clade will result in alignments with sequence conservation. However, a conserved RNA sequence does
not imply the existence of a conserved RNA structure. Fortunately, there is a distinctive pattern of sequence change
associated to a conserved RNA structure different from that of other conservation signals. The identification of novel
RNA structures from uncharacterized conserved RNAs is enabled by covariation analysis, and a method to assess which
covariations can significantly be excluded from having a phylogenetic source.
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Single-sequence methods of RNA structure analysis (computational and/or experimental) do not reliably identify
conserved RNA structure. Covariation and variation information found in alignments of conserved RNAs help distin-
guish conserved RNA structures from conserved RNAs not supporting a structure. On the other hand, conserved RNA
structure cannot be inferred from conserved RNAs without variability.

Covariation analysis requires a covariation measure and a test to distinguish covariation due to RNA structure ver-
sus covariation due to other sources. Acceptable covariation statistics are those that measure covariation alone, such as
MI, G-test, or DCA couplings. Covariation measures that also score conservation and consistency with an RNA struc-
ture are not acceptable to decide on the presence of a conserved RNA structure as both conservation and consistency
occur frequently in RNA sequences, almost with independence of the presence or not of an RNA structure.

R-scape provides a statistical test to identify base pairs with covariation above phylogenetic expectation. Statistically
significant pairwise covariation could still sometimes be due to other sources than a conserved RNA structure. The
method CaCoFold which proposed an RNA structure with arbitrary topology using all covariation information present
in the alignment is able to display the RNA structure supported by covariation, other covarying interactions not attrib-
uted to RNA base pairing, and the regions of the structure with poor determination due to the absence of covariation
support.

The accuracy of alignments is fundamental in recovering the evolutionary signals left by a conserved RNA structure.
Most alignment algorithms assume a position independent pattern of substitutions which often disrupts the pattern of
structural RNAs and may even induce spurious covariation. Starting from a one-sequence/structure Infernal model to
produce the alignment of all conserved sequences is usually better (even if the one-sequence structure is only partially
correct) than using alignments by other standard methods. Emphasis on improving RNA structural alignment methods
so that they can be informed not just by the nested base pairs but by all arbitrary RNA base pairing will greatly help the
identification of novel conserved structural RNAs.

There are other RNA homology methods comparable to CMfinder that attempt to extract from a genome regions
with a conserved RNA structure such as QRNA (Rivas & Eddy, 2001), RNAz (Gruber et al., 2010), or EvoFold
(Pedersen et al., 2006). RNA genefinding efforts have been effective in small bacterial genomes (del Val et al., 2007;
Rivas et al., 2001), but in eukaryotic genomes they produce too many predictions with too low specificity (Parker
et al., 2011; Pedersen et al., 2006; Torarinsson et al., 2006, 2008; Washietl et al., 2005, 2007, 2011). These methods use
both sequence and structure conservation. On the other hand, R-scape measures only covariation and has a tunable
false discovery rate, which opens a new line of attack on structural RNA genefinding (Rivas et al., 2017).
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