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Abstract

Motivation: Constraint-based modeling of metabolic networks helps researchers gain insight into

the metabolic processes of many organisms, both prokaryotic and eukaryotic. Minimal cut sets

(MCSs) are minimal sets of reactions whose inhibition blocks a target reaction in a metabolic net-

work. Most approaches for finding the MCSs in constrained-based models require, either as an

intermediate step or as a byproduct of the calculation, the computation of the set of elementary

flux modes (EFMs), a convex basis for the valid flux vectors in the network. Recently, Ballerstein

et al. proposed a method for computing the MCSs of a network without first computing its EFMs,

by creating a dual network whose EFMs are a superset of the MCSs of the original network.

However, their dual network is always larger than the original network and depends on the target

reaction. Here we propose the construction of a different dual network, which is typically smaller

than the original network and is independent of the target reaction, for the same purpose. We

prove the correctness of our approach, minimal coordinated support (MCS2), and describe how it

can be modified to compute the few smallest MCSs for a given target reaction.

Results: We compare MCS2 to the method of Ballerstein et al. and two other existing methods. We

show that MCS2 succeeds in calculating the full set of MCSs in many models where other

approaches cannot finish within a reasonable amount of time. Thus, in addition to its theoretical

novelty, our approach provides a practical advantage over existing methods.

Availability and implementation: MCS2 is freely available at https://github.com/RezaMash/MCS

under the GNU 3.0 license.

Contact: leonid@sfu.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Constraint-based modeling of metabolic networks has been a major

subfield of systems biology thanks to its ability to identify key quali-

tative characteristics of networks for analyzing and extracting useful

information (Bordbar et al., 2014; Lewis et al., 2012; Price et al.,

2004). A metabolic network is a collection of chemical reactions

which comprise the metabolic activities (i.e. the biochemical trans-

formation of molecules into other molecules for the purpose of

maintenance and growth) of a specific organism. One important ap-

plication of metabolic network analysis is to find interventions that

can block a reaction of interest, typically referred to as the target re-

action, with applications in drug target identification (Harder et al.,

2016; Hartman et al., 2014; Imielinski and Belta, 2008; Trinh et al.,

2006; von Kamp and Klamt, 2017) and metabolic engineering

(Mahadevan et al., 2015). When this is achieved by disabling one or

more other reactions, the disabled reactions are called a cut set. A

cut set is called ‘minimal’ if no proper subset of it can disable the tar-

get reaction. The concept of minimal cut sets (MCS) was introduced

by Klamt and Gilles (2004) and its applications are examined in de-

tail in Klamt (2006).

At the moment, the main approach used for enumerating the

MCSs for a target reaction is to compute the elementary flux modes

(EFMs) containing the target and then use a dualization procedure

to produce the MCSs (Gainer-Dewar and Vera-Licona, 2017).
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Here, flux modes are possible distributions of fluxes through the

reactions, and those can be modeled as hyperedges on the vertex set

of possible reactions. EFMs are flux modes which are support-

minimal, and it is known that any flux mode can be written as a

non-negative linear combination of EFMs. Given the full set of

EFMs, MCS can be obtained through the dualization of the hyper-

graph they define (Haus et al., 2008; Klamt and Gilles, 2004). Two

approaches to do this are Berge’s algorithm (Berge, 1984) and

Fredman and Khachiyan’s dualization procedure (Fredman and

Khachiyan, 1996). However, both suffer from poor worst-case com-

plexity and produce mixed results in practice. A comparatively new

approach (Ballerstein et al., 2012) produces the MCSs without first

computing the EFMs. It works by generating a dual network, which

is larger than the original network and depends on the target reac-

tion, and then computing a subset of the EFMs of that network with

a specific property, which guarantees that they are precisely the

MCSs in the original network. We call this the target-specific dual

network method. In this article, we develop a new method, minimal

coordinated support (MCS2), which also generates a dual network

(either explicitly or implicitly), but in a way that is independent of

the target reaction from the original network, then computes the

MCSs from those EFMs of the dual network that satisfy a certain

property, which also guarantees that they are precisely the MCSs

for the target reaction in the original network. MCS2 is based on

a generalization of some theoretical results by the last author

(Chindelevitch, 2014).

We implement MCS2 and find it to be effective on most instances

we test it on. We compare it to three alternate methods for enumer-

ating all the MCSs for a target set. The first two methods are to

compute the EFMs, and then dualize them with either Berge’s algo-

rithm, or an optimized implementation of Fredman–Khachiyan

dualization, respectively. For Berge’s algorithm, we used the imple-

mentation in CellNetAnalayzer (Klamt et al., 2007), containing the

enhancements described in Eiter et al. (2008) and Haus et al.

(2008). For Fredman–Khachiyan dualization, we used the recent im-

plementation of Sedaghat et al. (2018).

The target-specific dual network method (Ballerstein et al.,

2012) first creates a dual network based on the given stoichiometric

matrix and the given target reaction. It then proceeds to compute

the EFMs of that dual network. Following some post-processing, the

supports of these EFMs are reduced to give the required MCSs; be-

cause the MCSs correspond to only a subset of the vectors produced,

this post-processing includes removing any supersets. Like MCS2,

the target-specific dual network method reports all the MCSs with-

out first computing the EFMs or requiring them as an input. The

authors of Ballerstein et al. (2012) did not provide a publicly avail-

able implementation of their method, so we did so ourselves, includ-

ing all the enhancements mentioned in their Supplementary

Materials. Most of these enhancements have improved the perform-

ance of the target-specific dual network method, for instance by

reducing the size of the intermediate results.

For the majority of the models we investigated, we find that

MCS2 is more efficient than these other methods, in terms of both

running time and memory use. On the negative side, we show that

our approach does not allow the enumeration of all MCSs through a

given target reaction in incremental polynomial time, something

that therefore remains a major open problem in the field.

Given the challenges in enumerating all MCSs (in part due to

their large number, which can be exponential in the size of the net-

work), some recent work (von Kamp and Klamt, 2014; Vieira et al.,

2016) uses mixed-integer linear programming (MILP) formulations

to enumerate a subset of the MCSs, in increasing order of size. In

some practical applications, quickly obtaining a few MCSs of min-

imum size may be more desirable than enumerating the complete

set. We therefore adapt the MCS2 approach to use MILP formula-

tions to address this task. We also implement this method, which we

call MCS2-MILP, and compare it to MCSEnumerator, the target-

specific dual network approach adapted to MILP (von Kamp and

Klamt, 2014). The comparison shows that MCS2-MILP performs at

least as well as MCSEnumerator using a state-of-the-art MILP solver

(IBM).

We conclude that MCS2 is a promising approach for the compu-

tation of MCSs in metabolic networks, and expect it to be a benefi-

cial addition to the analysis tools available for metabolic network

models.

We now introduce the terminology we will be using throughout

this article. When we speak of a metabolic network, it is understood

that we are talking about a model in the constraint-based modeling

formalism.

Definition 1 (Stoichiometric matrix). The stoichiometric matrix S is an

m� n matrix with each row representing a metabolite (indexed from 1

to m) and each column, a reaction (indexed from 1 to n). The entry Sij

indicates how many units of metabolite i are produced (if Sij > 0) or con-

sumed (if Sij < 0) by reaction j. A vector v is feasible with respect to S if

it is in the null space of S, i.e. if it satisfies Sv ¼ 0.

Definition 2 (Reaction irreversibility). The set I of irreversible reactions

is a subset of the set of reactions constrained to have only non-negative

fluxes. Its complement IC, the set of reversible reactions, is allowed to

have fluxes of any sign. A vector v respects the reaction irreversibility

constraints if vi � 0 8 i 2 I , also written as vI � 0.

Definition 3 (Metabolic network). A metabolic network M is a pair

ðS; IÞ, where S 2 Qm�n is a stoichiometric matrix and I � ½n� is the set

of irreversible reactions. A vector v is a flux mode if it is feasible with re-

spect to S and respects the irreversibility constraints, i.e. Sv ¼ 0 and

vI � 0. The set of all such vectors is called the network’s flux cone.

Definition 4 (Reconfigured network). Let ðS; IÞ be a metabolic net-

work. We can reconfigure this network by replacing S with S0 ¼
½S j � SIC � which SIC contains the columns of S that are not in I , and

then consider all reactions as irreversible. This is equivalent to split-

ting each reversible reaction in the network into its forward reaction

and reverse reaction.

Definition 5 (Null space matrix and network). Let S be a matrix. A null

space matrix of S is a matrix whose rows form a basis of the null space

of S. The null space network of a metabolic network with stoichiometric

matrix S is the fully reversible metabolic network (i.e. with I ¼ /)

whose stoichiometric matrix is a null space matrix of S.

Definition 6 (Positive and negative support). Let v be a vector. The posi-

tive support of v, RþðvÞ, is the set of positions i where vi is positive:

RþðvÞ :¼ fijvi > 0g. The negative support of v, R�ðvÞ, is the set of posi-

tions i where vi is negative: R�ðvÞ :¼ fijvi < 0g. Their union RðvÞ is the

support of v:RðvÞ :¼ RþðvÞ [ R�ðvÞ.

Definition 7 (Coordinated support). Let v be a vector of size n and let

A � f1; 2; . . . ; ng be a set of positions. The A-coordinated support of v,

RAðvÞ, is the union of its negative support on the positions in A and its

support everywhere else: RAðvÞ :¼ ðR�ðvÞ \ AÞ [ ðRðvÞ \ ACÞ, where

AC is the complement of the set A with respect to f1; 2; . . . ; ng.

Definition 8 (EFM). LetM¼ ðS; IÞ be a metabolic network, and let v be

a flux mode of M. It is an EFM if its support is minimal among all the
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flux modes ofM, i.e. for any flux mode w which RðwÞˆRðvÞ ) w ¼ 0

(Gagneur and Klamt, 2004; Schuster et al., 2000).

Definition 9 (MCS). LetM¼ ðS; IÞ be a metabolic network, and let t be

a reaction. C is a cut set for t if Sv ¼ 0; vI � 0; vC ¼ 0) vt ¼ 0. C is a

MCS if it is inclusion-minimal: for any set D;DˆC implies that

9v s:t: Sv ¼ 0; vI � 0; vD ¼ 0; vt 6¼ 0 (Klamt and Gilles, 2004).

Definition 10 (Canonical form of a network). LetM¼ ðS; IÞ be a meta-

bolic network. We say thatM is in canonical form if it satisfies:

1. No blocked reactions: for every reaction i, there exists a flux vector

v with vi ¼ 1

2. Proper directedness: for every reaction i 2 IC, there exists a flux vec-

tor w with wi ¼ �1

3. No enzyme subsets: no reaction pair i 6¼ j satisfies vi ¼ jvj with j 2
Q for all flux vectors v

4. No redundant constraints: S has full row rank

A metabolic network can be reduced to an equivalent one in canonical

form (a.k.a. compressed form) in time polynomial in m and n

(Chindelevitch, 2014).

2 The MCS2 method

Let Si be the ith row of the stoichiometric matrix S. Then Sir repre-

sents the amount of metabolite i consumed or produced by reaction

r (in these cases, Sir < 0 and Sir > 0, respectively). Assume that re-

action r produces metabolite i if it has a positive flux. Then, in a

steady state where no reaction consuming metabolite i is active, re-

action r must be inactive in the forward direction. If reaction r hap-

pens to be reversible, it must be consuming metabolite i, and its

flux must be negative. This shows that reaction r is blocked in the

forward direction if we disable every reaction that can consume

metabolite i, i.e. every irreversible reaction with a negative value in

row i and every reversible reaction with a non-zero value in row i.

Disabling a reaction can be done by removing the corresponding

column from the stoichiometric matrix or adding the constraint

that this reaction’s flux is zero to the problem. The set of such

reactions is then a cut set for the forward direction of reaction r.

Every row gives us some, not necessarily minimal, cut set in

this manner.

We can apply the same reasoning to linear combinations of the

metabolites. Consider a new virtual metabolite x, which represents a

linear combination of rows Si and Sj corresponding to metabolites i

and j respectively, say for example ux ¼ 2Si � Sj.

Since the fluxes producing and consuming each metabolite are

balanced in any admissible vector, so are the fluxes of their linear

combinations, so the virtual metabolite x must also be balanced. If

we pick a reaction with a positive value in ux, it produces a virtual

metabolite x when it has a positive flux. It will therefore be blocked

if we cut all irreversible reactions with negative values in ux and all

reversible reactions with non-zero values in ux. Thus, we can obtain

cut sets from the vector ux, which is a member of the row space of S,

as we did with Si and Sj. A proposal for finding cut sets by analyzing

the row space of the stoichiometric matrix was introduced in the

Ph.D. thesis of Chindelevitch (Chindelevitch, 2014). The intuition

we described shows how vectors in the row space can generate cut

sets. However, the lemmas proven in Chindelevitch (2014) work

only for the fully reversible networks (i.e. with I ¼ /) or fully re-

versible networks (i.e. with I ¼ ½n�). We generalize them here to net-

works with both irreversible reactions and reversible reactions.

2.1 Enumerating the full set of MCSs
In the MCS2 method, the dual network is the null space network of

the original network, i.e. a fully reversible network whose stoichio-

metric matrix is the null space matrix of the original stoichiometric

matrix. The EFMs in this dual network map to MCS of the original

network, though, as we will see, the mapping can be many to one.

The dual network has the same number of reactions, n, as the origin-

al one, but it typically has fewer metabolites; if the original network

has m metabolites and the stoichiometric matrix is full rank, the

dual has n – m metabolites.

Lemma 1 (MCSs for an irreversible reaction). LetM¼ ðS; IÞ be a meta-

bolic network. Let t 2 I be an irreversible target reaction. Then C is a

cut set for t if and only if there exists a vector u in the row space of S,

u 2 RowðSÞ, such that ut ¼ 1 and RIðuÞ � C.

Proof. This lemma is an extension of Lemma 3 of Chindelevitch

(2014). We observe that C being a cut set for irreversible reaction t is

equivalent to:

S�Cv ¼ 0 and 8i 2 I � C vi � 0) vt ¼ 0 (1)

Based on Farkas’ Lemma and the irreversibility of t, we only need to find

a constraint that implies vt � 0. Thus, there exists a y such that:

yTS�C ¼ et þ
X

i2I�fC[tg
aiei; s:t: 8i 2 I � fC [ tg ai � 0 (2)

Here, ei is a vector with a 1 in the ith position and 0 elsewhere. Thus:

yTS ¼ u; ut ¼ 1;8i 2 I �C ui � 0 ; 8j 2 IC � C uj ¼ 0 (3)

Therefore R�ðuÞ \ I � C \ I and RðuÞ \ IC � C \ IC, and so

RIðuÞ � C.

For the other direction, suppose that u satisfies Equation (3) for some

C. Then the union of the indices i in I for which ui < 0 and the indices i

in IC for which ui 6¼ 0 is a subset of C, i.e. RIðuÞ � C. Then equality (2)

holds and, by Farkas’ lemma, so does condition (1). h

Lemma 2 (MCSs for one direction of a reversible reaction). Let M¼
ðS; IÞ be a metabolic network. Let t be a reversible target reaction. Then

C is a cut set for the forward (reverse) direction of t if and only if there

exists a vector u 2 RowðSÞ such that RIðuÞ � C and ut ¼ 1 (ut ¼ �1),

respectively.

Proof. If we assume that t is irreversible for a moment, the first part al-

ready follows from the previous lemma. For the second part, replace t

with –t in S to create S0. Reaction t is blocked in the forward direction in

S0 if and only if reaction t is blocked in the reverse direction in S, and

there is a bijection between the vectors in Row(S) and those in RowðS0Þ
via the mapping that multiplies the tth coordinate by –1. h

With these lemmas, Algorithm 1 can be used to find the MCS for a set of

target reactions T ¼ ft1; t2; . . . ; tkg in an arbitrary metabolic network

M¼ ðS; IÞ, where T has separate elements for the opposite directions of

a reversible reaction. We call this method MCS2 because it computes

MCSs as the MCS2 of the EFMs in the dual network.

The MCS2 method computes the null space network of the ori-

ginal network. Then, by applying coordinated support to the EFMs

in which each target reaction is active in turn, it generates the cut

sets related for this target. All the MCSs are among these cut sets,

and are obtained by pruning. The null space network is fully revers-

ible, and since the null space of the null space is the original space,

the dual network of the dual network is equivalent to the original

network all of whose reactions have become reversible. An example

MCS2: minimal coordinated supports for fast enumeration of minimal cut sets in metabolic networks i617



is shown in Figure 1, where the dual network appears alongside the

original one. As shown in the example, flux modes with an active

target reaction in the dual network map to cut sets for the target re-

action in the original network.

Flux modes finders such as FluxModeCalculator (van Klinken

and Willems van Dijk, 2016) reconfigure the network before apply-

ing the double description method. The double description method

is an algorithmic approach for finding the extreme rays of a pointed

cone described by linear constraints. The reconfigured network is

N0 ¼ ½N ;�N�, where N is the null space network of S. Figure 2

shows the null space matrix of N0, which is the starting point of dou-

ble description method. The double description method begins by

using elementary row operations to put the matrix in the form sug-

gested in Wagner (2004) which contains an identity matrix of size

mþn. When the double description method finishes, it outputs the

extreme rays describing a cone in 2n-dimensional space (Terzer and

Stelling, 2008). These extreme rays are the non-zero vectors in the

flux cone with minimal support. On the other hand, I -coordinated

support does not count non-zero values in some dimensions, namely,

those that correspond to positive values in irreversible reactions. If

we ignore these dimensions, we project the cone into a lower-

dimensional subspace. While the image of a pointed cone remains a

pointed cone, the extreme rays of the new cone are those in the ori-

ginal flux cone with minimal support in the remaining dimensions.

Figure 3 shows why all the MCS2 are among the minimal supports,

while arguing that there may be some redundant results among

them as well. The next theorem formalizes this:

Theorem 1 (Correctness of the method). Algorithm 1 returns precisely

the set of MCS of the networkM for a single target reaction.

Proof. Let t be the target reaction. We prove the inclusion in both direc-

tions. First, let C 2 C0 be one of the sets returned by the method above.

Then C is a cut set for t in the reconfigured network, by Lemma 1 and

by construction. Indeed, F contains flux modes of N involving t, which

are precisely the vectors in the row space of S involving t, and C (as well

as C0) contains the I -coordinated supports of these vectors.

Now, let C be a MCS for t inM. We will show that C 2 C0. By Lemma

1, there exists a vector u 2 RowðSÞ such that ut ¼ 1 and C ¼ RIðuÞ.
Since u 2 RowðSÞ () u 2 NullðNÞ, u is a conical combination of the

EFMs of N. Note that the results of Müller and Regensburger (2016)

imply that since the space to which u belongs is linear (i.e. it does not

need to satisfy any non-negativity constraints), this conical combination

can be chosen to be conformal, meaning that there are no cancellations

involved in any component. Let such a conformal conical combination

be given by

81 � i � k u ¼ a1f1 þ � � � þ akfk where ai > 0 (4)

Since all the coefficients are strictly positive in (4), we deduce that

RIðuÞ ¼ RIðf1Þ [ . . . [RIðfkÞ:

Indeed, each j 2 RIðuÞ \ I must have a negative component in at least

one of the fi, as otherwise the jth component of the right-hand side of (4)

will be non-negative, which gives the � direction, and the fact that the

combination is conformal gives the 	 direction, as otherwise there

would be a cancellation.

In particular, we deduce that RIðfiÞ � RIðuÞ for each 1 � i � k. In

this case, the minimality of C implies that either RIðfiÞ ¼ RIðuÞ or fi has

a 0 in position t, for each 1 � i � k. But since u has a 1 in position t,

there must be at least one fi in the first category, so that RIðfiÞ ¼
RI ðuÞ ¼ C and therefore, C 2 C. Once again, by the minimality of C we

conclude that C 2 C0 since it cannot be a superset of the I -coordinated

support of another vector in C, concluding the proof. h

2.1.1 Limitations

Our method is limited to blocking one direction of a given reaction.

In practice, blocking one direction of a given reaction is the typical

objective (Burgard et al., 2001). To block multiple reactions, it is

possible to compute the MCSs of every target reaction, take unions

Fig. 1. Example of a metabolic network with its associated dual network cre-

ated by the nullspace matrix. Some of its FMs involving target reaction 1 are

shown; their I�coordinated supports result in cut sets for it in the original

network

Fig. 2. This ðm þ nÞ � 2n matrix is the nullspace of the reconfigured nullspace

of stoichiometry matrix S. The double description method begins on this

space and finds extreme rays with length 2n

Fig. 3. Each extreme ray of the projected cone is an image of an extreme ray

in the original cone, while some extreme rays of the original cone do not pro-

ject to extreme rays. It is also possible that two or more extreme rays in the

original cone project onto the same one. Our desired projections lie in the

plane where the value in the target position is 1

i618 R.Miraskarshahi et al.



of all possible combinations, then remove the supersets. However,

this may not always be efficient.

A more critical issue is the possibility of generating a large num-

ber of non-MCS before the post-processing. The following Lemma

shows that this type of blow-up can occur in theory:

Lemma 3 (Large number of supersets in the final step). For every integer

k � 2 there exists a network containing kþ 2 metabolites, 3kþ 3 reac-

tions and 2k�1 þ 1 elementary vectors for the target reaction t¼ 1 that

map to the exact same MCS. This network is in canonical form, and is

elementally balanced as per Zabeti et al. (2018).

Proof. We construct the network as follows. There are two special

metabolites, denoted MI (initial) and MF (final), and k intermediate

metabolites, denoted Mi for 1 � i � k. For each metabolite, we have an

export reaction and an import reaction, with the export reactions for

each intermediate metabolite coupled with an import of the final metab-

olite. Lastly, each intermediate metabolite except the first one can be

transformed into the first one, M1, which itself can also be transformed

into the initial metabolite MI. All reactions in the network are irrevers-

ible and all the stoichiometric coefficients are 61.

We order these reactions as follows (for simplicity of argument):

R1 : /!MI

R2 : MI ! /
R3 : M1 !MI

R3þi : Miþ1 !M1 1 � i � k� 1
Rkþ2þi : /!Mi 1 � i � k

R2kþ2þi : Mi !MF 1 � i � k
R3kþ3 : MF ! /:

The stoichiometric matrix then looks as follows (shown for k¼ 2):

S ¼

þ � þ
� þ þ �
� þ �

þ þ �

0
BB@

1
CCA

Here, a þ represents a 1 and a – represents a –1. We now proceed to

show each part of the desired statement:

• The network is elementally balanced because every reaction that is

not pure import or pure export is an exchange of one metabolite for

another in a 1-1 ratio, so we can consider each metabolite as contain-

ing exactly 1 atom.

• The network is in canonical form because every reaction can be ac-

tive and no pair of reactions is constrained to have proportional

fluxes; this is evidenced by the following flux modes:

R1 þ R2

R2 þ R3 þRkþ3

R1 þ 2R2 þ R3 þRkþ3

R2 þ R3 þR3þi þRkþ3þi 1 � i � k� 1
Rkþ2þi þ R2kþ2þi þR3kþ3 1 � i � k

This set of fluxes includes every reaction at least twice, and in at least

two of these the sets of other active reactions are disjoint. The only

exceptions are R1 and R3, which need R2 to be active in order to

occur, but the first and third flux modes (respectively second and

third flux modes) show that their fluxes are not proportional to that

of R2 or to each other; and the reactions R3þi and R2kþ2þi for

1 � i � k� 1, both of which need Rkþ3þi to be active in order to

occur, but not in a fixed ratio, as evidenced by taking linear combina-

tions of the last two sets of flux vectors.

• The stoichiometric matrix has full row rank, i.e. no metabolite gener-

ates a redundant constraint, because every metabolite except MF has

a pure import reaction, while MF has a pure export reaction.

• There is a unique MCS for target reaction R1, namely, R2. This is be-

cause R2 is the only reaction consuming MI (recall that all reactions

are irreversible). The first row of S, u :¼ e1 � e2 þ e3 produces this

MCS via its negative support.

• Lastly, there are 2k�1 additional vectors in the row space of S that

produce supersets of this MCS via their negative support. The first

one is obtained by adding the second row of S to u, replacing it by

v/ :¼ e1 � e2 þ e4 þ e5 þ � � � þ ekþ2 þ ekþ3 � e2kþ3; and then

picking any subset P of the set of k� 1 entries E :¼ f4; 5; . . . ; kþ 2g
to form a new vector vP, as follows.

Let 3þ j 2 P be an element of the chosen subset, where

1 � j � k� 1. We will replace e3þj with ekþ3þj � e2kþ3þj via the

addition of the ðjþ 2Þ-nd row of S (corresponding to the intermediate

metabolite Mjþ1) to the starting vector. Indeed, this row contains

three non-zero entries: a –1 from reaction R3þj (which cancels out the

1 in position e3þj), as well as another 1 from reaction Rkþ3þj and an-

other –1 from reaction R2kþ3þj. We do this addition independently

for each element of P to get vP (if P ¼ / we get v/). It is easy to check

that vP has support:

f1;2;2kþ 3g [ f3þ j j 3þ j 62 Pg[

f3þ kþ j j 3þ j 2 Pg [ f3þ 2kþ j j 3þ j 2 Pg:

No proper subset of this support can produce a non-trivial vector in

the row space of S, as it is impossible by construction to add a linear

combination (possibly with negative coefficients) of the rows of S to

vP without adding any new elements to its support, so each vP is

elementary. Furthermore, the negative support of vP is:

f2; 2kþ 3g [ f3þ 2kþ j j 3þ j 2 Pg;

which is a strict superset of the negative support {2} of u.

h

2.1.2 Advantages

An advantage of the MCS2 approach is that we find the MCSs dir-

ectly, without first computing the EFMs of the original network.

Also, we do not need to reconfigure or alter the stochiometric ma-

trix; every step is performed directly on the original stoichiometric

matrix or its null space matrix. Network compression or reduction

may be done as a preprocessing step before going through the main

procedure, but these are only used to reduce the running time and

Algorithm 1. MCS enumeration via the MCS2 method

Input: A metabolic network M¼ ðS; IÞ, and a target set

T ¼ ft1; t2; . . . ; tkg
Output: MCS of target reactions T.

1: function MCS_Enumeration(S; I ;T)

2: Reduce S to its canonical form.

3: Compute the null space matrix N of S.

4: Compute all EFMs F of N.

5: for all 1 � i � k do Compute F i, the set of all elements

of F involving target ti.

6: for all 1 � i � k do Let Ci be the set of minimal

I -coordinated supports of the elements of F i.

7: Let C ¼ fx ¼ x1 [ x2 [ . . . [ xkjxi 2 Ci 8 ig.
8: Let C0 be the result of pruning C to remove any

supersets.

9: Return C0.
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space and are optional. These advantages are shared with the target-

specific dual network approach.

However, there are additional advantages that MCS2 has over

this method. First, the null space matrix is typically smaller than the

original matrix, especially if the original matrix is nearly full rank,

while the target-specific dual network has a matrix that is always

larger. This difference in input size can lead to substantial resource

savings during EFM computation. Second, and perhaps most im-

portantly, the dual network is independent of the target reaction in

our method, while it is not with the target-specific approach. This

means that we can calculate these EFMs once and use them for any

given target reaction to be blocked.

2.2 Generating a partial set of MCSs via MILP
An alternative strategy for computing EFMs is via MILP, particu-

larly when only a few small MCSs are required instead of a full

enumeration (Rezola et al., 2013, 2015). Recall that EFMs are

minimal-support vectors in the null space. Our method for finding

small MCSs, which we call MCS2-MILP, similarly looks for vec-

tors with MCS2 in the row space, which is to say, EFMs with

minimal coordinated support in the dual network.

Lemma 4 (MCSs of a target set of reactions in a fully irreversible meta-

bolic network). Let S be the stoichiometric matrix of a fully irreversible

metabolic networkM. Let T be a set of target reactions. Then C is a cut

set for all the reactions in T if and only if there exist a vector u 2 RowðSÞ
such that T � RþðuÞ and R�ðuÞ ¼ C.

Proof. We need to show that every cut set for the target reactions arises

from a vector in the row space with the described constraints, and every

vector in the row space satisfying those constraints maps to a cut set.

Let C be a cut set for all reactions in T. Therefore, C is a cut set for each

reaction in T ¼ ft1; t2; . . . ; tkg individually. Based on Lemma 1, there

exist vectors u1; u2; . . . ; uk 2 RowðSÞ such that ti 2 RþðuiÞ andR�ðuiÞ ¼
C for 1 � i � k. In other words, for all vectors ui ð1 � i � kÞ the only

negative elements are the ones with indices belonging to C, and all other

elements are non-negative, with a strictly positive value in the one with

index ti in the vector ui, for 1 � i � k. If we define the vector

u :¼ u1 þ u2 þ � � � þ uk, then R�ðuÞ ¼ C and T � RþðuÞ, and u is clear-

ly in Row(S).

Now, let u be a vector in Row(S) such that T � RþðuÞ and

R�ðuÞ ¼ C. Then ti 2 RþðuÞ for all 1 � i � k. Based on Lemma 1, C ¼
R�ðuÞ is a cut set for the reaction ti, for each 1 � i � k. Therefore, C is

a cut set for all the reactions in T, completing the proof. h

Based on this Lemma we are able to find MCS for every set of target

reactions without the restriction of only blocking one direction of a reac-

tion. Since reversible reactions can be split into two reactions after re-

configuration, we can block a reversible reaction in one direction or in

both directions.

Let S0 be the m� n0 reconfigured matrix of the m� n stoichiometric

matrix S with irreversible reactions I . Since all the values in the stoichio-

metric matrix are proportions of consumed and produced metabolites,

we can scale each row of S to have only integer entries without changing

its structural properties.

We now describe how to encode the problem of finding the smallest

MCS for a target set T as a MILP. Let v 2 Zn0 be a vector in the row

space of the reconfigured matrix S0 corresponding to the smallest MCS

for target reaction set T ¼ ft1; t2; . . . ; tkg. Then there exists a vector y 2
Zm s.t yTS ¼ v. If we define rþ; r� 2 f0; 1gn0 as the indicator vectors of

the positive and negative supports of v, respectively, we may force vi to

be non-positive if rþi is 0, and force it to be non-negative if r�i is 0, by

adding the following constraints using r�i and rþi as indicator variables:

rþi ¼ 0) vi � 0r�i ¼ 0) vi � 0 (5)

There must also be positive values in the target positions:

rþi ¼ 1 8 i 2 T (6)

These constraints also ensure that v¼ 0 is not in our feasible space. To

make v a vector in the row space of S0 we need to add the yj variables,

namely, the entries of a vector y with size m. The constraint yTS0 ¼ v

then ensures that v is an element of the row space of S0.

The objective function for finding the smallest MCS is:

minimize
Xn0

i¼1

r�i ; (7)

since the cut set is precisely the negative support of v, i.e. r–.

Suppose that we have found the smallest MCS Cˆf1; 2; . . . ; n0g. To find

the next smallest MCS, we need to exclude C and all its supersets from

our feasible space. This is achieved by the following constraint:

X
i2C

r�i � jCj � 1 (8)

We can keep excluding newly found MCSs and thus enumerate them in

order of increasing size. As we stated above, in most scenarios we only

wish to block an irreversible reaction or one direction of a reversible re-

action. In those cases, we can avoid re-configuring the network to have a

smaller stoichiometric matrix. Let t be the only target reaction. Instead

of the constraints (6), we only need one constraint rþt ¼ 1 if we want to

block it in forward direction, and we need the constraint r�t ¼ 1 if we

need to block it in the reverse direction. The objective function (7) and

constraints (8) can be updated as follows to reflect the coordinated sup-

port instead of the negative support:

minimize
Xn

i ¼ 1
i 6¼ t

r�i þ
X
i 2 I
i 6¼ t

rþi

0
B@

1
CA

X
i2C

r�i þ
X

i2C\I
rþi � jCj � 1

Unlike von Kamp and Klamt (2014), our problem formulation does not

require any additional constraints, because they only reduce a part of the

feasible space of our problem without affecting the optimum objective

value. This concerns constraints such as rþi þ r�i � 1 and rþi ) vi > �.

3 Implementation details

Except where noted, the implementations we discuss are in

MATLAB. Each method that we consider requires an extreme ray

computation, with the underlying cone varying. We used

FluxModeCalculator’s EFM generator (van Klinken and Willems

van Dijk, 2016) for this purpose. Note that the optimized Berge al-

gorithm implemented by CellNetAnalyzer (Klamt et al., 2007) uses

the older EFM finder of CellNetAnalyzer by default. However, we

observed that it is a slower implementation of an identical calcula-

tion, so we rewrote this part to use FluxModeCalculator in order to

make a fair comparison. The MCS2 method and the target-specific

dual network method both need to remove redundant supersets

from the obtained extreme rays, since the desired minimality is not
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with respect to the full support of the vector, but only a specific part

of it (the I -coordinated support for the former, and support in the

v-coordinates for the latter). We use an implementation in Java

whose time complexity is OðN2Þ for a collection of N sets. All stoi-

chiometric matrices are compressed by the Mongoose (Leonid et al.,

2014) before processing, which converts them to a canonical form.

Since the null space is needed for the row space method, we cal-

culate the null space basis matrix using Mongoose (Leonid et al.,

2014). Since finding the MCSs in every method takes several seconds

to several minutes, and the computation time of the null space basis

matrix is less than a second in every case, we ignore this component

of it. The reduced matrix given by Mongoose (for Berge and MFK),

the target-specific dual matrix (for the target-specific dual method)

and the null space basis matrix (for MCS2) get further compressed

by FluxModeCalculator before processing. For the Berge algorithm,

we used CellNetAnalyzer (Klamt et al., 2007). We also used an

existing implementation of the improved modified Fredman–

Khachiyan (MFK) algorithm (Sedaghat et al., 2018). However, we

implemented the target-specific dual method from scratch using

MATLAB and the source code of FluxModeCalculator. All the

enhancements mentioned in the Supplementary Material of the ori-

ginal paper (Ballerstein et al., 2012) were implemented as well.

We used CPLEX (IBM) to solve the MILPs. The implementation

was done via the Java API and has been implemented for single tar-

get reactions without network reconfiguration, and for multiple tar-

get reactions with network reconfiguration. Since the stoichiometric

matrices needed to contain only integers, we used the integralize

function of MONGOOSE (Leonid et al., 2014) to multiply each

row by the smallest possible integer that makes all the values integer

(which is the least common multiple of the denominators of its

entries). We also tested the results of our MILP in small networks

against other implementations to make sure that the results are con-

sistent. The implementation of all the methods and the MILP version

of our method are publicly available at https://github.com/

RezaMash/MCS under the GNU 3.0 license. Some of them require

the use of non-public modules available for academic use, such as

CellNetAnalyzer (Klamt et al., 2007) and CPLEX (IBM).

4 Results

In this section, we summarize the performance of MCS2 and MCS2-

MILP in comparison to the other methods.

We ran the implementations on the first 5 models in our data-

base in the GitHub repository. We compared the set of MCSs in

these five small examples to confirm that all the implementations

produced same results. For the other results presented in Tables 1–3,

we again checked the number of MCSs reported by implementations

if they finished, and the numbers matched in all cases. We then ran

the methods on several models from the BioModels database (Li

et al., 2010). There were a few models on which our method either

was not able to finish in the given time (5 h) or took much longer to

report the MCSs, while the optimized Berge was able to finish in

time and beat our method (see Table 3 for an example). This is due

to the large number of supersets generated in that example by

MCS2. However, MCS2 always performed better than the target-

specific dual network approach, despite all its suggested enhance-

ments being implemented. In addition, as can be seen for the hepatic

polyamine and sulfur amino acid combined model (Reyes-Palomares

et al., 2012), the Berge and MFK methods could not finish in 5 h,

but MCS2 generated results in 4 min, and the dual method in

30 min.

The first task of every method is an extreme ray computation,

which for Berge and MFK is the well-known EFM computation.

Berge and MFK then proceed to generate the MCSs through dualiza-

tion, while the secondary process of the target-specific dual network

and MCS2 approaches is removing the redundant cut sets. In the

first two provided examples, the target is the forward direction of

the first reaction. Table 2 shows the computation time for calculat-

ing the MCSs for all possible target reactions. In the kinetic model

of yeast metabolic network, described in Stanford et al. (2013), our

method’s advantage is clear—it was able to finish computing the

MCSs for all the reactions in under 14 s. Note that the dimensions

stated in the tables are the ones before compression is applied. The

conclusion is there are models for which it was not feasible to enu-

merate the full set of MCSs for a given target reaction before our

work, but it is feasible now with MCS2.

We ran the MILP versions on larger networks alongside the

MILP version of the target-specific dual approach, as described in

von Kamp and Klamt (2014). This version is also a part of

CellNetAnalyzer and is believed to be the state of the art for

Table 1. Result of running the methods on the hepatic polyamine

and sulfur amino acid network (Reyes-Palomares et al., 2012)

All times are

in seconds

Optimized

Berge

Improved

MFK

Target-specific

dual network

MCS2 dual

network

Extreme ray

computation

270.2 270.2 1191.9 79.8

Secondary pro-

cess time

>18 000 >18 000 591.3 157.4

Total time >18 000 >18 000 1783.2 237.2

Note: m ¼ 53; n ¼ 73; target reaction 1.

Table 2. Result of running the methods on the kinetic model of

yeast network (Stanford et al., 2013) with m ¼ 295;n ¼ 285; all the

reactions were used as targets

All times are in

seconds

Optimized

Berge

Improved

MFK

Target-specific

Dual network

MCS2 Dual

network

Extreme ray

computation

86.0 86.0 >18 000 53.0

Secondary pro-

cess time

>18 000a >18 000 — 13.6

Total time >18 000a >18 000 >18 000 66.6

aBerge computed the MCSs for the first 5 reactions before running out of

time. The MFK and target-specific dual methods were not able to finish the

computation of the MCSs even for the first reaction.

Table 3. Result of running the methods on Fernandez2006 ModelB

(Fernandez et al., 2006) with m ¼ 75;n ¼ 152; target reaction 1

All times are in

seconds

Optimized

Berge

Improved

MFK

Target-specificdual

network

MCS2 dual

network

Extreme ray

computation

99.5 99.5 >18 000 >18 000

Secondary

process

2.1 1445.1 — —

Total time 101.6 1544.6 >18 000 >18 000

Note: This is an example where MCS2 and the target-specific dual methods

could not finish in time, while the Berge and MFK methods reported all 194

689 MCSs for the compressed network’s reaction 1 fairly quickly.
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extracting some of the smallest MCSs in increasing order of size. We

were able to compute 100 MCSs for reaction 10 (the first reaction

with at least 100 MCSs) in Li et al. (2012) model, which has 578

reactions after compression. The time required by both approaches

on the first 40 MCSs is shown in Figure 4.

MILP was used to find a subset of the MCSs (Song et al., 2017).

The target-specific dual method has previously been used for this

task, in a method called MCSEnumerator (von Kamp and Klamt,

2014; Vieira et al., 2016). As its authors state, not all the EFMs in

the dual space result in valid MCSs, but by adding the appropriate

constraints, one can remove the redundant results from the ILP’s

feasible space. To get a sense of how our approach, MCS2-MILP,

performs compared to MCSEnumerator, we implemented the MILP

described in von Kamp and Klamt (2014), currently part of

CellNetAnalyzer. We ran our implementation of MCSEnumerator

(von Kamp and Klamt, 2014) and MCS2-MILP on E.coli iAF1260

for the sake of comparison, which showed a similar performance, as

shown in Table 4. This table contains the result of running MILPs

for each reaction as a target reaction once per iteration. In each iter-

ation, we restricted the MILPs to not spend more than 1 min on

finding MCSs. Table 5 shows the result of the same experiment

repeated with models chosen from the BiGG database (King et al.,

2016).

The results in Figure 4 and Table 5 suggest that while MCS2-

MILP does not perform faster than the MCSEnumerator, it is not

slower either. On the other hand, MCS2-MILP is in the first version

of itself. It has very simple structure compare to the

MCSEnumerator and there is a possibility that it would improve.

Even if not, MCS2-MILP is an alternative method which is easier to

implement and understand and can help to have a better insight

about what is exactly happening during the procedure of these

methods.

5 Conclusions and future work

One key advantage of our method is that it does not depend on the

target reaction to construct the dual network. The computations for

one target reaction can therefore be reused for a different target re-

action. Furthermore, it tends to operate on a smaller network than

the original.

One limitation to our method is that it is primarily designed for

single target reactions (rather than a target containing a set of reac-

tions), while both are just as easily handled by the competitor meth-

ods. Although MCS2 does not find the MCSs for a set of reactions

directly, it can easily find the MCSs for each reaction individually,

then prune any supersets from the union of these MCSs.

An alternate strategy for computing MCSs is via MILP, particu-

larly when only a few short sets are required, rather than a complete

enumeration (Rezola et al., 2013, 2015). We showed that MCS2 can

be easily adapted to this task via the MCS2-MILP method, which

has shown performance not inferior to that of the state of the art.

Another topic for further investigation can be the problem of finding

a partial set of irreversible minimal cut sets (iMCSs) (Annika et al.,

2018) with MILP. With proper additional constraints, we can find a

partial set of iMCSs. There has been some work in enumerating

iMCSs; the MILP version of this method is a suitable contender.

Another strategy is to alter the double description method to

directly find rays with MCS2 instead of minimal support, e.g. by ignor-

ing some of dimensions of the reconfigured network. Here it is import-

ant to be careful about zero-cycle flux modes, which are flux modes

that have fluxes in both direction of a split reversible reaction. These

are not valid flux modes, but they do appear in the output of the dou-

ble description method (Gagneur and Klamt, 2004) and they may

cause the omission of some rays which contain them in their support.

As we mentioned, there are many models for which our method

outperforms all other existing methods, while for some models, the

best performance is obtained by the Berge algorithm. The challenge

is to find out what features of these models are different, and then to

decide ahead of time what method to choose for a given model.

Our method is based on novel insights, and may be refined fur-

ther. Possible additional sources of improvement include identifying

and removing unwanted supersets during the execution of the dou-

ble description method and optimizing the process of superset re-

moval during post-processing. We believe that our method opens

the door to further ideas exploring this different kind of duality be-

tween EFMs and MCSs, and deeper insights into the structure of

metabolic network models.
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Fig. 4. Time (in seconds) for computing each of the 40 smallest MCSs for re-

action 10 (the first reaction which has at least 100 MCSs) of the Li2012 cal-

cium-mediated synaptic plasticity model (Li et al., 2012)

Table 4. Result of running MCS2-MILP and MCSEnumerator on the

E.coli iAF1260 network with 2382 reactions (981 reactions after

compression)

Method used Average number

of MCSs

Average time for

shortest MCS

Number of targets

MILP failed on

MCS2-MILP 12.74 MCSs 4.45 s 17

MCSEnumerator 12.07 MCSs 5.22 s 13

Table 5. Result of running MCS2-MILP and MCSEnumerator on the

models from the BiGG database which initially have 2000–2600

reactions

Model ID Average time for

shortest MCS for

MCSE numerator (s)

Average time for

shortest MCS

for MCS2-MILP (s)

Reactions

before (after)

compression

iJO1366 4.66 3.98 2583 (1106)

iRC1080 7.12 7.19 2191 (1080)

STM_v1_0 1.82 1.83 2545 (1031)

iSbBS512_1146 14.10 19.03 2591 (1018)

iAF1260 5.22 4.45 2382 (981)

iSDY_1059 8.00 9.63 2539 (942)

iYL1228 1.88 2.11 2262 (805)
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