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Developing a biomedical-explainable and validatable text mining pipeline can help in
cancer gene panel discovery. We create a pipeline that can contextualize genes by
using text-mined co-occurrence features. We apply Biomedical Natural Language
Processing (BioNLP) techniques for literature mining in the cancer gene panel. A
literature-derived 4,679 × 4,630 gene term-feature matrix was built. The EGFR L858R
and T790M, and BRAF V600E genetic variants are important mutation term features in text
mining and are frequently mutated in cancer. We validate the cancer gene panel by the
mutational landscape of different cancer types. The cosine similarity of gene frequency
between text mining and a statistical result from clinical sequencing data is 80.8%. In
different machine learning models, the best accuracy for the prediction of two different
gene panels, including MSK-IMPACT (Memorial Sloan Kettering-Integrated Mutation
Profiling of Actionable Cancer Targets), and Oncomine cancer gene panel, is 0.959,
and 0.989, respectively. The receiver operating characteristic (ROC) curve analysis
confirmed that the neural net model has a better prediction performance (Area under
the ROC curve (AUC) � 0.992). The use of text-mined co-occurrence features can
contextualize each gene. We believe the approach is to evaluate several existing gene
panels, and show that we can use part of the gene panel set to predict the remaining genes
for cancer discovery.

Keywords: biomedical natural language processing, machine learning, topic modeling, cancer gene panel, text
mining

INTRODUCTION

Scientific articles provide text mining (TM) applications in cancer biology (Zhu et al., 2013; Azam
et al., 2019; Wang et al., 2020). Several solutions are currently available to meet the growing need for
different cancer gene panels. Several commercial gene panels constitute a “one-size-fits-all” solution.
In a clinical investigation, we need to design gene panels specifically tailored for particular questions
or individual cancers (Hyman et al., 2015). The precision of the designed panel for different tumors
plays an important role. They rely on literature reviews and cancer genomics databases. The reason
for selecting somatic and germline mutation profiling is also complicated. Emerging TM techniques
such as Gene2Vec offer some answers to information interpreting problems. Gene2Vec is a study
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that explored the idea of gene embedding, distributed
representation of genes, in the spirit of word embedding
(Demeester et al., 2016; Du et al., 2019). However, we cannot
explain the biomedical meaning of the vector in the neural
embedding model. The goal of explainability is very important
and would be very useful. The ability to provide additional gene
suggestions for a gene panel with an explanation would be hugely
valuable but also really challenging. Therefore, we developed a
biomedical-explainable and validatable text mining pipeline for
cancer gene panel discovery.

Firstly, we find a system for predicting genes and interesting
applications for a gene panel discovery. The use of text-mined co-
occurrences features for each gene can contextualize each gene,
and as input for a machine learning system. We extract NER
names mentioned in the literature, such as gene NER (Leaman
et al., 2013) and disease NER (Wei et al., 2013). The use of
PubTator (Wang et al., 2016) along with MeSH (Ikonomakis
et al., 2005) is a good way of getting as good enrichment for
biomedical relevant terms. The frequency-inverse document
frequency (TF-IDF) was used to construct the document-term
matrix (Ikonomakis et al., 2005). Machine learning-based and
biomedical-explainable approaches have recently become the
most popular approaches in the study of the document-term
matrix. For example, M. Ikonomakis et al. introduced several
machine learning (ML) algorithms applied to text classification
such as naïve-Bayes, decision trees, neural networks, nearest
neighbors, and support vector machines (Devarajan et al.,
2015). Wei Xu et al. proposed a novel document-clustering
method based on non-negative matrix factorization (Choo
et al., 2013). Choo et al. presented a user-driven topic
modeling based on interactive non-negative matrix
factorization capable of tuning the topic model result by
integrating user interactions (Pedregosa et al., 2011).
Summarizing the abovementioned studies, we established a
fully integrated text mining pipeline to find the gene term-
feature, mutational landscape heatmap, and cancer
information topic.

With next-generation sequencing (NGS) technologies
(Shabani Azim et al., 2018), many targeted panels have been
developed to detect hereditary cancer and monitor somatic
mutation changes in progressive cancer (McCabe et al., 2019).
The Memorial Sloan Kettering Cancer Center has developed
MSK-IMPACT (Memorial Sloan Kettering-Integrated
Mutation Profiling of Actionable Cancer Targets), a
hybridization capture-based next-generation sequencing assay
for deep target sequencing of all exons and selected introns of
410 essential cancer genes in tumors (Hyman et al., 2015; Cheng
et al., 2015). TheMSK-IMPACT panel performed well not only in
the above study but also in a large-scale clinical sequencing
project with more than 10,000 patients (Zehir et al., 2017).
They provided a comprehensive gene panel database including
actionable drug targets, cancer susceptibility genes in
hematological malignancies, and solid tumors. For solid
tumors, the Oncomine Cancer Panel (OCP) is only used for
the clinical screening of actionable genetic mutations in solid
tumors (Luthra et al., 2017). They significantly provide druggable
target databases. We validate the biomedical literature mining

through the MSK-IMPACT or OCP cancer gene panel NGS
database.

We create a pipeline that can suggest additional genes for a
gene panel given an existing set of genes. And we believe the
approach is to evaluate several existing gene panels, and show that
we can use part of the gene panel set to predict the
remaining genes.

MATERIALS AND METHODS

PUBMED
PubMed, a free database of more than 30 million literature citations
for biomedical literature, includes the fields of biomedicine and health.
We extracted the abstracts that mentioned genes related to human
cancer from PubMed and took the gene’s context by gene window.

Machine Learning Model and Analysis
K nearest neighbors, linear support vector machine (SVM),
Gaussian process, decision tree, random forest, neural net, and
naive Bayes were used to conduct supervised machine learning.
All the models were built by python with the scikit-learn package
and used five-fold cross-validation (Wei et al., 2015). The receiver
operating characteristic (ROC) curve and the area under the ROC
curve (AUC) were used to evaluate the model’s performance.

Biomedical Term Tagging
PubTator
PubTator (Wei et al., 2013) is a web-based PubMed abstract
biomedical named entity recognition (NER) system. PubTator can
tag the gene, disease, chemical, species, and mutation in PubMed
abstracts, and the tagging result could be accessed via the RESTful
API. We used PubTator as a part of the biomedical term tagger.

Medical Subject Heading
MeSH is a hierarchically organizedmedical vocabulary thesaurus used
for indexing articles for PubMed. PubMed Articles curated by NLM
are indexed with several related MeSH terms; every MeSH term has
unique id and hierarchical categories. With these characteristics of
MeSH term and our tagging algorithm, we could tag biomedical terms
that are not tagged by PubTator. Our algorithm started from the
MeSH terms of each PubMed article. For each MeSH term in an
article, we first created a MeSH term-mapping set that mapped a
MeSH term to another set that contained itself and its lower hierarchy
MeSH term. Second, for each MeSH term in the MeSH term-
mapping set, we tried matching all of the entry terms, synonyms
of a specific MeSH term, to every word in the article. If a word in the
articlematched any entry names of aMeSH term,we tagged thatword
as a biomedical term. This way, those terms having the same concepts
could be merged and analyzed.

Gene Term-Feature Term
Frequency–Inverse Document Frequency
Matrix Construction
For a particular gene, considering all of its gene windows in the
whole corpus, we calculated the frequency of the co-occurrence of
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the gene and features (terms) tagged by our algorithm in the
window as the term frequency of the feature. The higher the term
frequency is, the stronger the association of the gene and feature.
In our study, term frequency (TF) was calculated using the
following formula:

TFgene, feature � log(1 + tfgene,feature)
To calculate the inverse document frequency of each term

feature, we simply count the occurrences of the term feature in all
genes as document frequency. The inverse document frequency
(IDF) was calculated using the following formula:

IDFfeature � log(1 + ngene/dffeature)
The higher the IDF, the more specific the term feature is to a

particular gene. Finally, by multiplying TF and IDF, the gene term
-feature matrix was constructed.

Term Feature Selection by the
Hypergeometric Test
We filtered out genes that had less than ten term features. We
identified the critical term feature according to the gene panel
using the p-values of hypergeometric tests as follows. We
input the MSK-IMPACT (Hyman et al., 2015) panel. Ns is the
size of the MSK-IMPACT panel set S, N is the size of the set
S’, which contains 500 non-MSK genes (randomly selected
from the gene term-feature matrix) and all of the MSK genes,
Nt is the number of genes in the set S’ that contain term
feature t, and Nst is the number of genes in the set S
containing t. The random variable y representing several
genes containing the term feature in the set S is a
hypergeometric random variable with parameters
Ns, Nt, and N (Westlake and Larson, 1970). The
probability distribution of y is shown as follows:

P(y) �
(Nt

y
)(N −Nt

Ns − y
)

(N
Ns

)
From Nst, we compute the p-value, the probability of the

observed (Nst), as follows:

Pvalue � ∑min(Ns,Nt)

y�Nst

P(y)
The p-value reflects significant phrases in S compared with all

of the genes in the gene term -feature matrix. A low p-value
indicates that we observe a rare event and that the observed term
feature represents a statistical discovery, suggesting that it is
essential in the MSK-IMPACT panel.

Topic Modeling
Our topic modeling was based on the algorithms of non-negative
matrix factorization (NMF) (Yeganova et al., 2014). Given a
nonnegative matrix X ∈ Rm×n, when the desired lower

dimension is k, the goal of NMF is to find the two matrixes,
W ∈ Rm×k and H ∈ Rk×n, having only non-negative entries such
that X ≈ WH.

The objective function is shown as the following formula:

min
W≥0,H≥0

f(W,H) � ||X −WH||2F
The function is the most commonly used formulation based

on the Frobenius norm. K represents the number of topics we
expected, X represents the gene term-feature matrix, W
represents the gene-topic matrix, and H represents the topic
text-feature matrix. Since the weights in W and H have been
calculated, we used the top 20 genes and the top 20 text features
with the highest importance for each topic to interpret the
biomedical meaning.

Gene Window
We take the gene’s context as its gene window. Each gene
window contains three sentences. The sentence contains the
gene, the previous sentence, and the next sentence. We want to
eliminate the redundant part. Using the gene window
algorithm, we could iterate through the full abstracts
containing specific genes in the text and grip the most
critical section for further analysis. We pick three sentences
based on the concept that the sentence that is closer to the gene
is more relevant to it. Since the closest ones are previous and the
next one, so we picked three.

RESULTS

Study Design and Workflow
This study develops a gene panel analysis framework that can
discover the characteristics of a gene panel based on
biomedical literature mining. The method overview is
shown in Figure 1. First, we extracted the PubMed
abstracts, which mentioned genes related to humans. The
method is shown as Figure 2. In this step, approximately
430,000 PubMed abstracts regarding genes were filtered out
from all of the current PubMed corpus (approximately 30
million articles). Second, we performed biomedical named
entity recognition (NER) on the extracted PubMed abstracts
using PubTator (Wang et al., 2016) and MeSH (Medical
Subject Headings). Third, we used the biomedical term to
construct the gene term-feature matrix, which has a concept
similar to that of the document-term matrix. Fourth, we
performed term feature selection according to individual
gene panels to make the term feature generated by the
previous step stronger and correspond to the target
gene panel.

Here, we explored the idea of the hypergeometric
distribution. For each term feature, by comparing the
distribution of occurrences in the target gene set and the
whole gene set, the term features that correlated more with
the target gene panel would be enriched. This approach is
flexible in regard to different target gene sets, such as the
Oncomine Cancer Panel or cardiovascular gene panels.
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Finally, we filtered out 4,630 term features from 20,015 term
features. The filtered gene term-feature matrix, whose size is
4,679 (genes) x 4,630 (term features), will be used in the

following analysis. Thus, we can discover the top 20 gene
term features, the mutational landscape of the cancer
genome, and topic modeling of cancer information. In

FIGURE 1 | Study design and workflow The flowchart shows the overall analysis framework of this study. We first extracted 430,000 abstracts that mentioned
genes related to humans in the PubMed corpus. Second, biomedical named entity recognition (NER) was performed to obtain biomedical terms, such as gene name,
disease name, and drug name, using PubTator and MeSH. Third, we used the biomedical term tagged by the previous step to construct the gene term-feature matrix
whose concept was similar to the document-term matrix. Fourth, we performed term feature selection according to a particular gene panel. We took the MSK-
IMPACT panel as an example and made the term features generated by the previous step correspond more to the target gene panel using the hypergeometric
distribution. Finally, several analyses, including identifying the top gene term features, creating the mutational landscape of cancers, and topic modeling based on
nonnegative matrix factorization, were conducted to determine and interpret the biomedical characteristics of the target gene panel.

FIGURE 2 | An example displays how the term “lung cancer”, being tagged in MeSH hierarchical structure. The way “lung cancer” being tagged is as follows. First,
we iterate through the MeSH terms of the index of PMID: 27823967 and found “Lung Neoplasms” was one of the MeSH terms, which its synonyms contain “Lung
Cancer.” Second, if the term “Lung Cancer” also appeared in the article, the MeSH tagging algorithm would tag this word and take its MeSH ID for further analysis.
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this way, we can find the potential characteristics of the
gene panel.

Biomedical Term Extraction by
Hypergeometric Test
In the field of biomedical literature mining, tagging the biomedical
term is an important issue. For an abstract of the biomedical literature,
only biomedical words are what we are interested in, such as drug
name, disease name, or gene name. PubTator was capable of tagging
the gene, disease, chemical, species, and mutation in PubMed
abstracts. Figure 3A shows the term feature extraction result of an
EGFR-related abstract compared to the term features extracted by raw

text TF-IDF scoring without biomedical term tagging. The biomedical
term features were filled with redundant words, such as “with”, “for”,
and “after”.

On the other hand, the term feature extraction approach with
MeSH terms and PubTator resulted in term features that contained
lots of biologically meaningful terms, such as gefitinib (chemical),
non-small cell lung cancer (disease), L858R (mutation), the woman
(species), and recurrence (MeSH). This phenomenon shows that the
tagging approach is essential for gene term feature extraction.

To discover the characteristics of a gene panel, we used the
hypergeometric distribution test. According to MeSH terms and
PubTator categories, all the term features can be divided into five
groups: cancer, drug, genetic phenomena, mutation, and phenotype

FIGURE 3 | Biomedical term extraction (A) The term feature of an EGFR-related abstract. The former was filled with many redundant words, such as with, for, and
after. The latter contains lots of biologically meaningful terms, such as gefitinib (chemical), non-small cell lung cancer (disease), L858R (mutation), the woman (species),
and recurrence (MeSH). This phenomenon shows that the tagging approach with MeSH and PubTator terms is essential to gene term-feature extraction. (B) The
proportion distribution bar chart of the MSK-IMPACT panel in each term feature group before and after the hypergeometric distribution test. It shows that after term
feature selection, the proportion of the term feature groups of interest increases, such as cancer, drug, genetic phenomena, and phenotype.
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(Supplementary Table S1). Take theMSK-IMPACT panel as a target
gene panel, for example. The distribution of theMSK-IMPACT panel
shows that the percentage increases in some term feature groups after
using the hypergeometric distribution test (Figure 3B). We filtered
out the unimportant genes and found the critical term features
according to the gene panel using a hypergeometric distribution
test. The proportion of term feature groups in our interest
increases, such as cancer, drug, genetic phenomena, and
phenotype. The percentage after using the hypergeometric
distribution test showed a noticeable improvement from 8.01 to
25.03% in the cancer group. The proportion increased from 9.02
to 11.38% in the drug group and grew from 7.4 to 16.85% in the
genetic phenomenon group. There was a slight increase from 32.85 to
35.79% in the phenotype group. After the term feature selection, the
proportion decreased from 42.71 to 10.95% in the mutation group.
The MSK-IMPACT panel stands for integrated mutation profiling of
actionable cancer targets, so the percentage in these groups increases
after the hypergeometric distribution test.

3.3 Literature-derived Gene Term Features
The biomedical term features extracted from the literature were
directly or indirectly related to each gene. Here, we took some
cancer-related genes as examples for further demonstration.
Figures 4A,B show the top twenty biomedical term features with
the highest TF-IDF scores for EGFR (the score range from 8.02 to
13.49) and BRAF (the score range from 5.35 to 18.66). For EGFR,
which has been recognized for its importance in lung cancer (Paez
et al., 2004; Shepherd et al., 2005), most of the term features directly

represent lung cancer or its subtypes, such as “Adenocarcinoma of the
lung,” “Carcinoma, small cell,” and “Carcinoma, Non-Small Cell
Lung.” “T790M” is a drug resistance mutation frequently observed
in patients with lung cancer (Zhou et al., 2009). “Erlotinib” is an
effective tyrosine kinase inhibitor (TKI) targeting EGFR for non-small
cell lung carcinoma (NSCLC). “Lapatinib” is a dual EGFR/ERBB2TKI
for metastatic breast cancer (Burris, 2004). Some term features were
indirectly relevant to EGFR, such as “Platinum” and “cisplatin,”which
are both standard chemotherapy in NSCLC (Arriagada et al., 2004).
EGFR TKIs are commonly compared with conventional platinum-
based therapies. Another example is BRAF, whose mutations are
widely detected in melanoma, thyroid cancer, and colorectal cancer
(Chapman et al., 2011). “V600E” is a crucial mutation that causes the
constitutive activation of the cellular signaling pathway (Chapman
et al., 2011). “Vemurafenib” and “dabrafenib” are competitive
inhibitors designed for BRAF with the V600E mutation (Hauschild
et al., 2012). The other examples, such as BRCA1, BRCA2,MLH1, and
ERBB2, are shown in Supplementary Figure S1. Nearly all of the
biomedical term features relevant to these genes were consistent with
current knowledge.

Mutational Landscape of the Actionable
Cancer Genome From Biomedical
Literature Mining Validated by NGS
Database
We constructed the gene-cancer association matrix from the
filtered gene term -feature matrix to understand the

FIGURE 4 | Top term features in EGFR and BRAF genes (A) The bar chart shows the TF-IDF scores of term features related to EGFR. Most of the identified term
features for EGFRwere associated with syndromes (e.g., lung adenocarcinoma and non-small cell lung carcinoma), mutations (e.g., T790M), and therapies (e.g., erlotinib
and lapatinib) for lung cancer. (B) The bar chart shows the TF-IDF scores of term features related to BRAF. Biomedical term features, including cancer types (e.g.,
melanoma and thyroid cancer), mutations (e.g., V600E), and inhibitors (e.g., vemurafenib and dabrafenib) for BRAF, were consistent with known findings.
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associations between cancer types and gene mutations. The
recurrent common cancer-associated genes are shown in
Figure 5A. The most common cancer-associated genes were
TP53, EGFR, CTNNB1, NOTCH1, and PTEN, as shown in

Figure 5B. Using two genes, EGFR and BRAF, as examples,
we found that EGFR L858R and T790M and BRAF V600E were
important mutation term features in text mining and were
frequently mutated in MSK samples (Figure 5C). The cosine

FIGURE 5 | The spectrum and frequency of actionable genetic mutation by literature mining (A) Heatmap of cancer genomics by the TF-IDF matrix. The X-axis
represents the 31 common cancer types, and the y-axis represents the recurrent somatic genes. The darker color indicates a higher association between genes and
cancer. (B) The bar plot shows the gene frequency within all of the cancer types. The data is validated by theMSK-IMPACT Clinical Sequencing Cohort, which is targeted
sequencing of 10,000 clinical cases using the MSK-IMPACT assay. The cosine similarity of gene frequency between text mining and a statistical result from clinical
sequencing data is 80.8%. (C) Lollipop plot of EGFR andBRAF in the MSK-IMPACT pan-cancer cohort. The critical genemutation term features found by text mining are
shown and labeled in red. Other gene mutations are labeled in green.
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similarity of gene frequency between text mining and a statistical
result from clinical sequencing data (Demeester et al., 2016) is
80.8% (Figure 5B). To understand the time series of the
association between gene mutations and cancer types in the

last decade, we constructed the gene-cancer TF-IDF matrixes
of the years from 2011 to 2015 and the years from 2016 to 2019.
As shown in Supplementary Figure S2A and S2B, we found that
cancer immunotherapy was a major issue in the past 5 years. The

FIGURE 6 | Performance of the machine learning models with the gene panel (A) Evaluation of the overall accuracy, precision (positive predictive value, PPV), recall
(sensitivity), and F1-score of every prediction model. Each gene could be labeled a target or non-target, indicating whether the gene is in the given target panel. The
following seven prediction models were used: nearest neighbors, linear support vector machine (SVM), Gaussian process, decision tree, random forest, neural net, and
Naive Bayes. The target gene panels were MSK-IMPACT, Oncomine Comprehensive Assay, and cardiovascular gene panels. (B) Receiver operating characteristic
(ROC) curves of the models with the MSK-IMPACT 410-cancer gene panel. The neural net model had the highest area under the ROC curve (AUC), which was 0.992.
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rank of CD274 was increased, and CTLA4 first appeared (Seidel
et al., 2018). In addition, the TF-IDF value of BRAF mutation in
colorectal cancers increased because of the better outcomes of the
BRAF-mutant CRC tumors with microsatellite instability (MSI)
in immunotherapy (Rosenbaum et al., 2016). The results indicate
that we can design a series of cancer gene panels by updating the
literature mining time frame.

Gene Panel Prediction by Machine Learning
Models
Seven machine learning prediction models, including nearest
neighbors, linear support vector machine (SVM), Gaussian
process, decision tree, random forest, neural net, and Naive
Bayes (Wei et al., 2015), were used to verify the specific gene
panel (Figure 6A). The MSK-IMPACT, Oncomine
Comprehensive Assay (Rhodes et al., 2007), and
cardiovascular gene panels (Paige et al., 2018) represent
different gene characteristics. There are 410 essential cancer
genes in the MSK-IMPACT panel. The Oncomine
Comprehensive Assay includes 161 cancer-related genes. We
used the congenital heart defect focus panel of 115 genes
associated with congenital heart defects (CHDs) as the
cardiovascular gene panels.

Each gene can be labeled as a target or non-target, which
indicates whether the gene is in the given target panel. We
performed five-fold cross-validation on our dataset to evaluate
the models’ efficiency and evaluate the overall accuracy of each
prediction model. We measured the target and non-target genes
in each prediction model separately with precision (positive
predictive value, PPV), recall (sensitivity), and F1-score. The
accuracies for nearest neighbors, linear SVM, Gaussian
process, decision tree, random forest, neural net, and naive
Bayes in the MSK-IMPACT panel were 0.786, 0.913, 0.868,
0.799, 0.663, 0.959, and 0.831, respectively; the accuracies for
all models in the OCP gene panel were 0.814, 0.989, 0.938, 0.907,
0.773, 1 and 0.958; and the accuracies for all the models in the
cardiovascular gene panel were 0.777, 0.814, 0.925, 0.87, 0.648, 1,
and 0.87. The receiver operating characteristic (ROC) curve
analysis confirmed that the neural net model had a better
prediction performance; the area under the ROC curve (AUC)
was 0.992 (Figure 6B). The AUCs of nearest neighbors, linear
SVM, Gaussian process, decision tree, random forest, and naive
Bayes were 0.909, 0.972, 0.953, 0.869, 0.692, and 0.842,
respectively. The results of the biomedical term feature set
prediction models are good, and the performance can reach
up to 0.9. This means that the term feature sets can contain
most of the information in the gene panel.

Design of Cancer-Related Gene Panels
Based on Topic Modeling
To understand the MSK-IMPACT panel characteristics, we
generated thirty topics that potentially represented different
biomedical meanings. The following are some examples of
issues relevant to genes in the MSK-IMPACT panel. Figure 7
shows the text features, genes, and related pathways derived from

the Reactome of topics 2, 7, and 14, including hematologic, and
malignancies. In topic two, leukemia subtypes and targeted
inhibitors (e.g., imatinib, dasatinib, and decitabine) were
mined. Heart arrest, a common side effect of inhibitors for
leukemia, was also been reported (Hochhaus et al., 2009). The
related MSK-IMPACT panel in topic two was involved in the
signaling of interleukin-4 and interleukin-13 (p � 5.27e-5), which
was associated with the apoptosis of leukemia cells (Chaouchi
et al., 1996; Peña-Martínez et al., 2018) (Figure 7A). These results
indicated that topic two was associated with leukemia, a
hematological malignancy. In topic seven, key text features
such as kidney neoplasms, carcinoma, renal cell, and Wilms
tumor implied the relationship between topic seven and
kidney cancer. Inhibitors for kidney cancer, such as sorafenib
and everolimus, were also identified (Martín-Aguilar et al., 2021;
Ren et al., 2021). The hypoxia pathway enriched byVHL,VEGFA,
and PBRM1 (p � 5.41e-11) played a crucial role in the governance
of cancer stem cells of renal cancer (Myszczyszyn et al., 2015)
(Figure 7B). In topic 14, colorectal neoplasms, hereditary
nonpolyposis, adenomatous polyposis coli, oxaliplatin, and
cetuximab were associated with colon cancer. Related genes
(e.g., MLH1, MSH2, and MSH6) in topic 14 were involved in
mismatch repair (p � 5.72e-8), which has clinical importance in
Lynch syndrome (Truninger et al., 2005) (Figure 7C). Other
examples of different cancers, including brain cancer, gynecologic
cancer, and breast cancer, are shown in Supplementary Figure
S3. These results indicated that most of the genes in the MSK-
IMPACT panel were collected for either therapeutic usage or
biological relevance to various cancer types. In the future, we
could design a small subset of multiple-gene groups by
cancer topic.

DISSCUSSION

It is helpful to gain insight into the field that bridges the knowledge
gap between valuable biomedical information and free text by text
mining (Sachin Kumar Deshmukh, 2020). With biomedical text
mining advances and its applications in cancer research, we can
design cancer gene panels by the semantic interpretation of
comprehensive cancer narratives. Here, we used a biomedical
literature mining model to discover the characteristics of a gene
panel. Importantly, we demonstrated and validated the
performance of the machine learning approach in text mining of
cancer information. Our results highlight the following important
points. 1) We developed a gene panel analysis framework based on a
biomedical text mining pipeline. 2) Our pipeline can enrich the term
features of cancer gene panels. 3) We demonstrated and validated the
patterns of the cancer mutational landscape by NGS database. 4) The
non-negativematrix factorization (NMF)method and topicmodeling
are useful for generating cancer information. Biomedical literature
mining is valuable for discovering the inherent characteristics of gene
panels. These results could be applied to the classification of cancer-
related information and strategies for novel cancer gene panel designs.

The hypergeometric distribution test is one of the practical
machine learning tools in TM. It can be used to select and extract
term features from various genomic characterizations (Pal, 2017).
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FIGURE 7 | Examples of cancer topics containing relevant text features, genes, and pathways (A) Figure showing the text features, genes, and pathways of topic 2.
Cancer types (e.g., leukemia) and inhibitors (e.g., imatinib) were reported in this topic. Reactome pathway analysis revealed that the related genes of the MSK-IMPACT
panel in topic 2 (e.g., FLT3) were involved in interleukin-4 and interleukin-13 signaling (p � 5.27e-5). (B) Figure showing the text features, genes, and pathways of topic 7.
Text features including cancer types (e.g., kidney neoplasms) and inhibitors (e.g., sorafenib) implied the relationship between topic seven and kidney cancer. The
hypoxia pathway enriched by related genes (e.g., VHL) of the MSK-IMPACT panel in topic 7 (p � 5.41e-11) played a crucial role in the governance of cancer stem cells of
renal cancer. (C) Figure showing the text features, genes, and pathways of topic 14. Many text features containing cancer types (e.g., colorectal neoplasms) and
inhibitors (e.g., oxaliplatin) indicated the association between topic 14 and colon cancer. Related genes of the MSK-IMPACT panel in topic 14 (e.g., MLH1) were involved
in the mismatch repair pathway (p � 5.72e-8).

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 77143510

Chen et al. Text Mining for Cancer Gene Panel

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


We identified the critical term features according to the gene
panel using p-values based on a hypergeometric test. Our term
feature selection methods can distinguish in different gene panels.
This implicates a high-performance prediction model for
different datasets, including the MSK-IMPACT panel,
Oncomine Cancer Panel, and cardiovascular gene panels.
Although many gene recommendation algorithms have been
developed, little is known about gene panel design.

Our biomedical term tagging algorithm provides a
compressive cancer gene panel and related information. With
our tagging algorithm, most of the essential biomedical terms in
the text have been tagged. The construction of a gene term-feature
matrix in different categories provides useful profiling for the
characteristics of the genes. In this study, we constructed a
biologically meaningful platform to analyze gene panels in
terms of the diseases, chemicals, mutations, and MeSH terms
related to genes. We can implement more biomedical term
feature matrixes, such as a drug-feature matrix and disease-
feature matrix. These different types of forms can provide
strategies to analyze biology. With NMF topic modeling, we
can capture cancer gene-drug information compatible with our
knowledge. It will be useful to design a small subset of cancer gene
panels by interpreting the topic model.

For the discovery of cancer gene panels, Figure 5A and
Figure 7C illustrate an example of a cancer gene panel design
for colorectal cancer. The most frequent genes are KRAS,
EGFR, BRAF, PTEN, TP53, MLH1, PIK3CA, CTNNB1 in
colorectal cancer by the heatmap. Hereditary nonpolyposis
colon cancer (HNPCC) is caused by inherited mismatch
repair genetic mutations, including MLH1, MSH2, and
MSH6. The lifetime ovarian cancer risk increased in
HNPCC. We can find ovarian cancer and a gene panel
including MLH1, MSH2, MSH6, BRAF, KRAS, SMAD4,
NRAS, CTNNB1 by topic model. In our study, we can
design the two different cancer panels by phenotype. These
results indicated the platform could provide an opportunity
to construct a cancer gene panel recommendation by
different cancer subtypes. There are some text mining
limitations in our study. The entity-term based features are
based only on co-occurrence in three sentences. However,
related entities may have distinct relationships, which are not
necessarily co-occurred. The features were obtained from
only one resource, PubMed abstracts. Many curated
databases have many useful biological features of genes or
diseases or drugs; for example, Gene Ontology (GO)
(Ashburner et al., 2000; The Gene Ontology Consortium.,
2017) contains GO terms that describe genes by the functions
of genes or cellular components. It may provide a benefit to
the cancer researcher. Unfortunately, the TF-IDF table is
going to weight toward common diseases and omit those
that are critical in identifying rare diseases. The gene panels
are not useful for the identification of unknown or rare gene
mutations that are important for treatment. Simultaneously,
the manuscripts and supplementary materials may also
provide more critical results, but the lack of
standardization in accessing this information is a
significant problem. The text mining method often focuses

on a few sentences due to the challenges of creating a
complicated relationship between several critical keywords.

As we know, the random forest algorithm performed well
than the decision tree in most of pattern classification cases.
However, we found that the random forest approach
presented a worse ability for cancer gene panel prediction
in the experiments. Several reasons may cause this situation
in the model training and evaluation, such as whether or not
we specify the maximum number of features to be included at
each node split. One of the reasons is that the random forest
builds subtrees by randomly choosing features from amounts
of features in our study. Unlike the other methods, they
calculated the weights for each feature by determining the
importance of all features. Thus, the performance might be
increased when we increase the number of trees in the
random forest. Because the subtrees increased, the model
will be seen more features to build more diverse trees.
Therefore, the model will become robust and make an
excellent performance. Nevertheless, in this paper, we are
focusing on a pipeline that can contextualize genes. We used
the default parameter in most of the methods in our study.
Although we are not emphasizing the methods and
parameters optimization, it is also an important issue that
we will study in our future works.

Several text mining systems have been developed for
mutation-disease association (Erdogmus and Sezermen.,
2007; Yeniterzi and Sezerman., 2009; Singhal et al., 2016).
An automated pipeline using the full-length biomedical
literature was recently established and validated by
evidence-based gene panels (Saberian et al., 2020). All
these methods focus on mutation-disease associations. In
contrast, we contextualized the genes for clinical precision
medicine. We provide information about druggable targets,
mutations in hereditary cancer syndrome, and disease
subtypes.

Although many text mining-based gene panel algorithms were
developed, there is still little known to validate the gene panel
characteristics. This study provides a biomedical literature
mining pipeline in gene panel discovery and interpretation.
The platform validated by NGS database could provide an
opportunity to construct a gene recommendation and
annotation system for precision medicine.

CONCLUSIONS

In conclusion, this study highlights the importance of biomedical
literature mining in gene panel discovery and interpretation. The
platform could provide an opportunity to construct a gene
recommendation and annotation system for precision medicine.
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