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ABSTRACT

Reversible inactivation of brain areas is a
useful method for inferring brain-behavior
relationships. Infusion of GABA or of the
GABA receptor agonist muscimol is considered
one interesting reversible inactivation method
because it may not affect fibers of passage and
may therefore be compared to axon-sparing
types of lesions. This article reviews the data
obtained with this method in learning and
memory experiments. A critical analysis of
data, collected in collaboration with Simon
Brailowsky, with chronic GABA infusion is
presented, together with an illustration of data
obtained with muscimol-induced inactivation.
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INTRODUCTION

Considerable insight into the molecular
mechanisms that are involved in learning and
memory has been gained in recent years (for
example, Lynch, 1998). Nevertheless, as stated
by Bures and Buresova (1990):

In spite of its importance, research
specifying plastic phenomena at the
microscale cannot lead to understanding of
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the mechanisms of learning and memory
without a commensurate progress of system
studies showing where and when the cellular
changes take place.

In this regard, neuropsychological analysis of
brain-injured patients has profoundly influenced
the present conception of memory systems (for
example, Tulving, 1991). In animal studies, new
paradigms have been introduced to explore the
multiplicity of the processes underlying these
memory systems, and new techniques (for
example, expression of immediate early genes)
have been adapted to identify the brain networks
supporting these processes. Lesion techniques in
animals have also improved in neuroanatomical
selectivity, using excitotoxic compounds (for
example, ibotenate, AMPA [a-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid], quisqualate)
that destroy cell bodies without affecting the
fibers of passage. For instance, in the ongoing
debate on the role of the hippocampus in learning
and memory, it has been found that part of the
deficits (in particular, some nonspatial learning
deficits), induced by mechanical or electrolytic
lesions, may to be due to damage to neighboring
structures rather than to the hippocampus itself
(for example, Jarrard, 1993). Despite this
progress, the various shortcomings of lesions
studies for inferring brain-behavior relationships
must be recognized. One drawback is that
inference about a relation between brain damage
and a behavioral deficit implicitly supposes that
the undamaged components of the system
continue to function normally (see Jaffard &
Meunier, 1993; Farah, 1994), which is unlikely
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to be the case. Somewhat related to the
preceding, lesion effects are usually tested after a
necessary recovery period from surgery; during
that time, various restorative and/or adaptive
processes occur that may obscure the primary
effect of the lesion. For example, several studies
have reported partial or complete recovery of
cholinergic markers within the cortex after
unilateral excitotoxic lesions of the nucleus
basalis magno-cellularis (NBM), provided that a
sufficient recovery period (3 mo) was respected
(for example, Wenk & Olton, 1984; Gardiner et
al., 1987; Casamenti et al., 1988). Returning to
Bures and Buresova’s statement, brain lesions
certainly contribute to our knowledge of where in
the brain plastic changes may occur during
learning. Because they are irreversible, however,
brain lesions rarely indicate when plastic changes
occur. In this regard, reversible inactivation of
brain areas has proved to be an efficient tool to
complement lesion studies in various fields of
research, including the study of learning and
memory. This article aims to briefly present data
obtained with GABA or GABA agonists as
reversible inactivation tools, with a special
emphasis on data obtained in collaboration with
Simon Brailowsky.

GABA AND REVERSIBLE INACTIVATION

GABA-induced inactivation has a rapid onset
and a short duration; its principal use has been in
anesthetized animals. For example, acute
injection of GABA into the anterodorsal
tegmentum of anesthetized rats (0.25 to 1.0 mg/pL
saline, injection volume of 0.1 or 0.2 pL) was
found to block the locomotion that is elicited by
hypo-thalamic stimulation within 5 min of the
injection, with recovery occurring within 10 to
20 min (Sinnamon & Benaur, 1997). A similar onset
and recovery time of the reaction time to a stimulus-
triggered movement was recently reported by
Martin and Ghez (1999) after GABA injection
into the magnocellular red nucleus of cats.

Spatial and temporal characteristics of the
inactivation induced by GABA, administered
into cortical sites, has been recently reviewed by
Hupé et al. (1999). Repeated injections of small
doses of GABA have been reported (a) to induce
a more homogeneous inactivation than a single
injection of larger amounts does, and (b) to
increase the duration of inactivation (Hupé et al.,
1999).

Although the short duration of GABA-
induced inactivation is not compatible with
learning and memory tests, this inconsistency can be
compensated for by infusing the GABA
constantly over a period of time, using sub-
cutaneous osmotic minipumps (Alzet®). Through
the appropriate choice of the minipump model,
duration and rate of infusion (for example,
1 pL/h for 7 d using the 2001 model) can be
chosen to fit the experimental design. In a series
of studies, Brailowsky and collaborators (1989)
showed that chronic GABA infusion is an
efficient method to inactivate brain regions involved
in memory processes. Delayed responses depend
on the prefrontal cortex (for example, Kolb,
1984). Infusion of GABA (50 pg/pl) over 7 days
after acquisition of the task was found to impair
the delayed response in monkeys (Brailowsky et
al, 1989) and rats (Di Scala et al, 1990;
Meneses et al., 1993). This deficit was found to
be relatively stable over the treatment period (for
example, Meneses et al, 1993), and rapid
recovery of performance occurred upon cessation
of the treatment. In this cortical area, histological
examination of the sites of infusion did not
reveal clear signs of lesions (at least, not larger
than those after vehicle infusion, Di Scala et al.,
1990; Meneses et al., 1993).

The NBM, the main source of cortical
acetylcholine afferents, has been implicated in
attentional and working memory processes
(Dunnett et al., 1991; Muir et al., 1993,
McDonald & Overmier, 1998). As cholinergic
NBM neurons receive a massive GABAergic
innervation (for example, Wood & Richard,
1982; Zaborsky et al., 1986; Ingham et al., 1988),
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acting on NBM GABA receptors constitutes a
means to modify the activity of these neurons.
Infusion of small doses of GABA (10 pg/puL/h)
induces a delay-dependent deficit in a previously
learned win-shift task in a radial maze
(Majchrzak et al., 1990). This effect is consistent
with the reported deficit after excitotoxic
(ibotenate) lesion of the NBM (for example,
Bartus et al., 1985). Infusions of higher doses (50
or 100 pg/pL/h) of GABA induces a delay-
independent deficit in the win-shift task
(Majchrzak et al., 1990), together with profound
sensorimotor impairments (Will et al, 1988;
Majchrzak et al., 1990; 1992a). With both doses,
the deficits appeared to be reversible because
performance recovered shortly after interruption
of the infusion.

In a series of experiments, possible long-
lasting (or irreversible) effects of GABA infusion
into the NBM were evaluated. To characterize
the spatial extent of the inactivation induced by
GABA infusion, Majchrzak et al, (1992b)
measured local cerebral metabolic rates for
glucose (CMRglc) after 24-h infusions of
GABA. The results showed that despite its
efficacy on the memory task, infusion of a small
dose (10 pg/pL/h) did not modify (in comparison
with saline-treated animals) CMRglc within the
NBM, in neighboring structures, or in NBM
cortical projection areas (frontal and parietal
cortex). In contrast, infusion of high doses of
GABA (100 pg/uL/h) induced a strong reduction of
CMRglc within the NBM, as well as in
neighboring structures (for example, globus
pallidus) and NBM projection areas (frontal and
parietal cortex, amygdala, reticular thalamic
nucleus). Such distant hypometabolic effects of
GABA infusion may reflect an NBM reduction
of synaptic activity, but also may be due to
degenerative processes. Indeed, Browne et al.
(1998) have shown that intra-NBM injections of
excitotoxic compounds (NMDA and AMPA)
rapidly induce a reduction of glucose utilization
in interconnected cortical areas.

Further evidence of irreversible lesion with a

high dose (50 or 100 pg/uL/h) of GABA, but not
with a smaller dose (10 pg/pL/h), was obtained
using a variety of techniques. Infusion of a high
dose of GABA (100 pg/pL/h) into the NBM
induced neuronal damage within this nucleus,
which could be observed on Cresyl violet-stained
sections (see Fig. 1).

The loss of magnocellular cholinergic
neurons was confirmed by reduced acetyl-
cholinesterase (AChE) and choline acetyltrans-
ferase (ChAT) activities in the frontal and
parietal cortices (see Fig. 2; Will et al, 1988;
Majchrzak et al., 1990; 1992; Majchrzak, 1992). In
another study (Ballough et al, 1992), two well-
established bioindicators of neurotoxicity, azure
B-RNA and Feulgen-DNA expression, were used
to examine the putative cytopathic effects of
GABA infusion into the basal forebrain. This
method revealed a reduced neuronal RNA
metabolism shortly (24 h) after infusion, even
when using the small dose. In the latter case,
however, this effect disappeared within an 8-d
postinfusion delay.

Taken together, the data indicate that GABA
injection is an efficient method to inactivate a
brain area; the data also indicate that the effects
of chronic GABA infusion may not be reversible,
mainly when high doses are used. A series of
biological parameters (see above), as well as the
mere existence of the GABA-withdrawal syndrome
(see Brailowsky et al., 1987; Fukuda et al., 1987;
Brailowsky et al., 1988; 1989) are indicative of
plastic and/or degenerative effects.

MUSCIMOL-INDUCED REVERSIBLE
INACTIVATION

Muscimol rapidly induces a hyperpolarization
lasting several hours, with the overall duration
depending on the dose (see Martin & Ghez,
1993; 1999). In a series of articles, Martin and
colleagues (for example, Martin, 1991; Martin &
Ghez, 1999) provided a thorough analysis of
muscimol-induced inactivation, together with



22 M. MAJCHRZAK AND G. DI SCALA

.
L

Fig. 1: Photomicrographs of coronal sections of (A) the NBM of a rat after 24-h GABA (100 pg/uL/h) infusion, and
(B) the contralateral noninfused NBM. The brain was processed for Cresyl violet staining 8 days after the
infusion. The arrows in B indicate the magnocellular neurons that are lacking in A; note the strong gliotic

reaction in A. Scale bars: 100 um.
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comparisons with other reversible inactivating
agents (GABA, lidocaine). These experiments
showed that autoradiographic measurement of
[“C] glucose uptake, following injection of
muscimol (1pg/pL) into the cerebral cortex of rats,
revealed a small area (1 mm) of strong hypo-
metabolism, surrounded by an area of milder
hypometabolism. This hypometabolic area
exceeded the spread of the drug that was
evaluated with [’H] muscimol injection,
indicating that the area of hypometabolism may
be due to reduced synaptic activity in inter-
connected neurons. In this regard, muscimol and

Choline acetyltransferase

lidocaine induced the same type of inactivation.
Muscimol-induced inactivation has been used
in diverse species in a variety of behavioral
experiments (for example, Di Scala et al., 1983;
Martin & Ghez, 1993; Gallese et al., 1994,
Mason et al., 1998), including learning and
memory experiments (for example, Matsumara et
al., 1991; Hardiman et al., 1996; Krupa et al.,
1996, Ramnani & Yeo, 1996; Milak et al., 1997;
Baunez & Robbins, 1999). The following section
does not attempt to provide an exhaustive review
of these experiments, but rather illustrates some
questions that can be addressed with this type of
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Fig. 2: The effect of GABA infusion into the NBM on cholinergic markers in frontal and parietal cortices. Saline or
GABA (10 or 100 pg/uL/h) were infused over 24 h. Fourteen days later, the rats were sacrificed, and the
frontal and parietal cortices were rapidly dissected. Choline acetyltransferase and acetylcholinesterase
activities were assayed using enzymatic methods (Fonnum, 1975; Ellman et al., 1961). The highest
concentration of GABA induced a significant reduction of both cholinergic markers as compared with saline
(* p<0.05; ** p<0.01; Newman-Keuls post-hoc comparisons).
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reversible inactivation.

As mentioned earlier, GABA receptors,
located on NBM cholinergic neurons, may
constitute a target to modify the activity of these
neurons. Muscimol injection into the NBM was
found to impair the performance of rats in
attentional tasks, such as two- and five-choice
reaction time (Muir et al.,, 1992; Pang et al,
1993) or conditioned discrimination (Dudchenko
& Sarter, 1991). The effects were similar to those
obtained with excitotoxic lesions of the NBM,
including AMPA lesion, which is thought to have
a preferential effect on cholinergic neurons
(Muir et al., 1995; Everitt et al., 1987; Robbins et
al., 1989). Working memory deficits in a double
Y-maze were reported after intra-NBM injections
of small doses of muscimol (0.1 pg; Beninger et
al.,, 1992; DeSousa et al.,, 1994), whereas both
working and reference memory deficits were
obtained after injecting higher doses (1 pg
Beninger et al., 1992).

Similar effects, confined to working memory,
were obtained after quisqualate lesion (Biggan et
al., 1991; Beninger et al., 1994), which induces
restricted NBM lesions (Dunnett et al., 1987)
when compared with the working and reference
memory deficits that are obtained after ibotenate
lesions (see Dunnett et al, 1991). The data
support the idea that muscimol injection induces
a reversible inactivation, the effects of which are
similar to those of excitotoxic lesions. Moreover,
in the NBM, such effects may be related to an
action on cholinergic neurons, as excitotoxic
compounds having some selectivity for these
neurons have similar effects. Nonetheless, the
deficits induced by intra-NBM injection of the
selective cholinergic neurons toxin, '“IgG-
saporin, are smaller than those induced by
muscimol in a variety of tests (Torres et al,
1994; Wenk et al., 1994; Baxter et al, 1995),
suggesting that the behavioral deficits induced by
muscimol may depend also on its effects on
noncholinergic NBM neurons.

The amygdala is involved at various stages of
learning and memory, and reversible inactivation

studies. Using tetrodotoxine (TTX), lidocaine (or
novocaine), and muscimol have largely contributed
to the identification of these processes (for
example, Gallo et al., 1992; Willner et al., 1993;
Jerusalinsky et al., 1994; Muller et al., 1997,
Ambrogi-Lorenzini et al., 1999). In this regard,
conditioned food-aversion procedures have been
considered particularly appropriate to realize a
“chronometric analysis” of the various processes
that are involved in learning and memory, with
the aid of reversible inactivation (see Bures, 1990;
Bures & Buresova, 1990). In these procedures,
intake of a food by the rat (a drinking solution,
which may be identified by its taste or its odor) is
followed by intoxication, induced by injection of
lithium chloride, resulting in avoidance of the
food upon subsequent encounter. Using TTX to
inactivate a variety of brain structures at specific
phases of a conditioned taste aversion, Bures and
collaborators (Bures, 1990; Gallo et al., 1992)
have exquisitely documented the involvement of
the connections between the parabrachial
nucleus, the amygdala, and the gustatory cortex
in this learning. In a recent series of experiments,
we used muscimol to study the neuroanatomical
substrate that is involved in a particular instance
of conditioned food aversion, which s
conditioned odor aversion (COA). Conditioned
odor aversion is the avoidance of a tasteless,
odorized solution, the ingestion of which has
preceded toxicosis; COA differs from the classic
conditioned taste aversion (CTA) in that it does
not tolerate long interstimulus intervals (ISI)
between the solution intake and the induction of
toxicosis (Hankins et al, 1973). Nonetheless,
evidence exists of COA that is acquired despite
long ISIs when the odor is presented together
with a taste during acquisition; this procedure is
called Taste-Potentiated Odor Aversion (TPOA).
TPOA depends on the baso-lateral nucleus of the
amygdala (BLA), as electrolytic or excitotoxic
lesions of this nucleus were found to disrupt it
(Bermudez-Rattoni et al, 1986; Hatfield et al., 1992;
Ferry et al.,, 1995). Muscimol-induced inactivation
of the BLA during the acquisition phase, but not
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during the retrieval phase, of the procedure was
found to be effective, suggesting that this nucleus
is involved in the former process. Furthermore,
to be effective, muscimol could be injected either
before or after presentation of the odor-taste
stimulus, suggesting that neuronal activity in the
BLA is necessary after the sensory processing of
the composite stimulus, that is for a memory
process (Ferry et al, 1995). In this regard,
muscimol injection differs from other reversible
inactivation compounds in that injection of
novocaine into the amygdala impairs TPOA if it
is administered before, but not after, presentation
of the odor-taste stimulus (Bermudez-Rattoni et
al., 1983). Conversely, it is noticeable that
whether injected before or after presentation of
the odor-taste stimulus, muscimol selectively
affects COA without affecting CTA (tested
separately), which develop in parallel. This result
is consistent with those of Gallo et al. (1992)
showing that inactivating the amygdala by TTX
before taste presentation does not impair CTA,
whereas inactivating the amygdala after taste
presentation only attenuates CTA. The data, if
suggestive of subtle differences between different
methods of reversible inactivation, do not support
a clear-cut distinction between these methods.

DISCUSSION

The data briefly reviewed above clearly
indicate that GABA or GABA-receptor agonists
constitute valuable reversible inactivation tools
for studying learning and memory. Our critical
analysis of the data obtained with chronic
infusions of GABA, one of Simon Brailowsky’s
favorite tools, suggests that depending on the
dose used and the targeted area, some effects
may not be reversible. To our knowledge, little
attention has been given to possible long-lasting
effects of other compounds that are used for
reversible inactivation (see however, Hernandez
& Schallert, 1990) and hence, comparison of the
advantages and drawbacks of the various

methods is not possible. The issue of reversibility
is particularly important when animals are tested
anew after the reversible inactivation, as it is
then considered that the system is fully
functional again. In this regard, little empirical
evidence demonstrating complete reversibility of
any pharmacological treatment is available.

Another concern with reversible inactivation
in learning tasks is state-dependent retrieval
(SDR). State-dependent retrieval means that
information learned in a given state may not be
(or may be poorly) retrieved when the subject is
in a different state. Evidence for SDR has been
obtained with systemic pharmacological treatments
given at various stages (acquisition, extinction) of
learning tasks (for example, Colpaert, 1990; Bouton
et al., 1990; Oberling et al., 1996) and has been taken
into account when discussing reversible inactivation
data (for example, Muller et al., 1997). It is unknown
to what extent drug injections into brain areas can
produce SDR, and studies addressing this problem
would certainly be welcome.

As a final comment, reversible inactivation
techniques significantly contribute to the
knowledge of “where and when” (Bures &
Buresova, 1990) neuronal events for learning and
memory take place in the brain. As first stated in
this article, knowledge about the nature of such
neuronal events has considerably progressed in
recent years. Using research strategies similar to
reversible inactivation, antisense oligonucleotide
techniques offer the opportunity to interfere with
neuronal events in precise locations in the brain
and at chosen phases of a task (for example,
Lamprecht et al,, 1997; Guzowski & McGaugh,
1997; Ma et al., 1998). There is little doubt that
such techniques will shortly complement the
pharmacological analysis of brain systems of
learning and memory.
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