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Abstract: Investigations reporting positive effects of extracorporeal shockwave therapy (ESWT) on
nerve regeneration are limited to the rat sciatic nerve model. The effects of ESWT on muscle-in-vein
conduits (MVCs) have also not been investigated yet. This study aimed to evaluate the effects of
ESWT after repair of the rat median nerve with either autografts (ANGs) or MVCs. In male Lewis
rats, a 7 mm segment of the right median nerve was reconstructed either with an ANG or an MVC.
For each reconstructive technique, one group of animals received one application of ESWT while
the other rats served as controls. The animals were observed for 12 weeks, and nerve regeneration
was assessed using computerized gait analysis, the grasping test, electrophysiological evaluations
and histological quantification of axons, blood vessels and lymphatic vasculature. Here, we provide
for the first time a comprehensive analysis of ESWT effects on nerve regeneration in a rat model
of median nerve injury. Furthermore, this study is among the first reporting the quantification of
lymphatic vessels following peripheral nerve injury and reconstruction in vivo. While we found no
significant direct positive effects of ESWT on peripheral nerve regeneration, results following nerve
repair with MVCs were significantly inferior to those after ANG repair.

Keywords: nerve repair; median nerve; rat; autologous nerve graft; muscle-in-vein conduit; extracor-
poreal shockwave therapy; grasping test; gait analysis; CatWalk; nerve regeneration

1. Introduction

Peripheral nerve injuries implicate severe physical [1–4] and psychosocial impair-
ments [5,6] for the affected patients. Depending on the degree of nerve injury, surgical
treatment may be necessary to restore the affected nerve’s function, but if nerve continuity
has been lost entirely, e.g., through neurotmesis, a surgical intervention is obligatory [7,8].
Reconstruction of segmental nerve injuries poses another clinical problem, given the influ-
ence of graft length and scarring at the coaptation sites on nerve regeneration [9–11]. While
nerve autografts (ANGs) are considered the gold-standard treatment option for segmental
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nerve injuries, their use is restricted by their limited availability throughout the body, donor
site morbidity resulting from harvesting them and specific requirements in regard to graft
diameter and vascularization [12,13]. Therefore, noninvasive treatment options to enhance
axonal regeneration, target organ reinnervation and functional recovery [14] are sought for
by the scientific community [15,16]. Among these approaches, extracorporeal shockwave
therapy (ESWT) was reported by several authors to exert significant pro-regenerative ef-
fects on lesioned peripheral nerves [17–20]. Shockwaves, sonic pulses with high energy
impact, exert their effects on target tissues by biochemical changes induced by mechan-
otransduction. Among these effects, improved vascularization via activation of nitric oxide
synthase (NOS), increased expression of growth factors like activating transcription factor 3
(ATF-3) and growth-associated phosphoprotein 43 (GAP-43), local anti-inflammatory ef-
fects and influencing of target cells, too, are thought to be the main drivers for improved
tissue and nerve regeneration following ESWT [21–23]. Schwann cells proliferation and
phenotype is also directly influenced by ESWT, enhancing peripheral nerve regeneration
through activation of these glial cells [18,24–26]. Application of ESWT to improve nerve
regeneration was first described by Hausner et al. in a rat model of sciatic nerve auto-
graft repair [27]. The sciatic nerve injury model, especially in case of neurotmesis injuries,
has several drawbacks mostly related to compromised animal welfare due to the onset
of neuropathic pain, joint contractures and automutilation [28,29]. As the sciatic nerve
supplies innervation both to flexor and extensor muscles of the hind paw, misdirection of
axons can easily occur following neurotmesis injuries in which by definition the fascicular
structure is lost. Misdirected axons in turn will either innervate the wrong target organ,
e.g., an efferent axon regrowing into the skin or a muscle acting antagonistic to the axon’s
original target organ. In consequence, the subtle balance of agonistic and antagonistic
muscles will be lost, severely impairing functional recovery following nerve injury [30,31].
In conclusion the overall potential of functional recovery is limited in rats with sciatic nerve
injury in addition to difficulties evaluating it due to the aforementioned reasons [32,33].
The median nerve model of the rat which was first described by Bertelli [34,35] about
30 years ago offers a valid alternative given that the occurrence of limb contractures, severe
neuropathic pain and automutilation is far less frequently observed in comparison to sciatic
nerve injuries [36]. Furthermore, functional recovery can be evaluated by means of the
grasping test [37], staircase test [38] and computerized gait analysis [39] in addition to
electrophysiological testing and histological analysis of the regenerating nerve [40,41].
Besides these considerations regarding the choice of an appropriate animal model, the use
of ESWT in preclinical studies of segmental nerve injuries remains limited to ANGs, and
the effects of ESWT on non-nervous grafts have not been reported yet. Muscle-in-vein
conduits (MVCs) which were first described by Bertelli in the 1990s are an alternative to
reconstruct segmental nerve injuries and promising results have been published following
their clinical application [42–44]. We have recently reviewed the results of nerve repair by
means of MVCs both in preclinical and clinical research [45]. This review’s main findings
were significant differences in regard to functional recovery between animal studies and
human studies utilizing MVCs to reconstruct segmental lesions of peripheral nerves. We
hypothesized different experimental settings and profound inter-species differences in
neurobiology to be the main reasons for this observation. In conclusion, we advised for
further studies to investigate the results of nerve reconstruction by means of MVCs and
potential approaches to tackle the likely biological hurdles impeding nerve regeneration
through them. Given this lack of studies investigating potential pro-regenerative effects
of ESWT in a murine model of forelimb nerve injury on the one hand and the interplay of
ESWT and nerve reconstruction by means of MVCs on the other, we designed an in vivo
study addressing both these research questions at hand. It was the aim of our study to test
the hypothesis that a single postoperative application of ESWT can immediately enhance
peripheral nerve regeneration following reconstruction of the rat median nerve with either
ANGs or MVCs.
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2. Materials and Methods
2.1. Animals and Surgery

The experimental protocol was approved beforehand, on 23 July 2019, by the Animal
Protocol Review Board of the City Government of Vienna (Magistrate’s office No. 58, project
identification code MA58-421715-2019-16). All the procedures were carried out in full ac-
cord with the Helsinki Declaration on Animal Rights and the Guide for the Care and Use
of Laboratory Animals of the National Institutes of Health.

Fifty-six male Lewis rats (Janvier Labs, Le Genest-Saint-Isle, France) weighing 280–350 g
were kept in groups of two or three in appropriate cages according to the internal standard
operating procedures. The animals had access to food and water ad libitum. After the
rats were allowed to get accustomed to their new surroundings for 7 days prior to any
experimental handling and after completing a 7-day training period on the CW device,
they were randomly assigned to the following groups: median nerve reconstruction with
autologous nerve grafts (ANGs) (total n = 29) and median nerve reconstruction with MVCs
(total n = 27). Both groups were further subdivided into a group of animals which received
ESWT, ANG + ESWT (n = 15) and MVC + ESWT (n = 11), a group of animals which received
no additional treatment and control groups that received an ANG (n = 14) or an MVC
(n = 16). Therefore, a total of four groups of animals were investigated in this study.

After random group allocation, the rats underwent bilateral surgery of the median
nerve under an operation microscope (Leica M651, Leica Microsystems, Vienna, Austria).
A 7 mm segment of the left and right nerves each was removed by performing a transection
about 1.5 mm proximal to the position where it is crossed over by the brachial artery and
vein and another transection 7 mm proximal to the first one. On the right side, the gap was
bridged with either the original nerve segment in reverse fashion as a homotopic ANG
or an MVC. MVCs were prepared by introducing several muscle fibers of the left gracilis
muscle into a segment of the epigastric vein as described elsewhere [38]. ANGs and MVCs
were coaptated with the proximal and distal stump of the median nerve with two sutures
per coaptation site (Ethilon, 10-0, Ethicon-Johnson & Johnson, Brussels, Belgium). On the
left side, the nerve defect remained unreconstructed to serve as an internal control group.
To prevent spontaneous regeneration, the distal nerve stump was sutured into the short
head of the biceps muscle. The postoperative observation period lasted 12 weeks. At the
end of the postoperative observation periods, the rats were sacrificed in deep anesthesia
induced as described above via intracardial puncture and administration of an overdose of
sodium thiopental.

2.2. Application of ESWT

Following median nerve reconstruction with an ANG or an MVC, the rats in both the
ANG + ESWT group (n = 15) and the MVC + ESWT group (n = 11) received 300 impulses
(3 Hz, 0.1 mJ/mm2) of ESWT (OP 155 connected to Orthogold 100, MTS Medical, Konstanz,
Germany) while still in deep anesthesia to prevent movement-induced artifacts. Focused
application of ESWT was facilitated by the use of a 3D-printed customized device in
which the right forelimb was introduced and fixed using a noose made from an elastomer
(Supplementary Figure S1). The area between the applicator and the rat’s right forelimb
was filled with an ultrasonic transmission gel to guarantee adequate and reproducible
transmission of impulses.

2.3. Functional Analysis
2.3.1. Reflex-Based Grasping

Motor function of the superficialis finger flexor muscle (FDS) and the deep finger flexor
muscle (FDP) was evaluated weekly by means of the grasping test as originally described
by Bertelli [46] and modified by us [39] and other authors [38]. As the FDS and the FDP in
rats are predominantly innervated by the median nerve, the ability to flex the toes of the
forelimbs is mediated by this nerve [39,41,46]. We recorded three trials per week, and only
those trials were deemed valid in which no flexion of the elbow (biceps muscle) or wrist
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(flexor carpi ulnaris muscle and flexor carpi radialis muscle) were evident. Return of the
grasping ability in general was graded as described by Stößel et al.: 1/3: no observable toe
flexion, 2/3: toe flexion without measurable strength when forced to pull the bar, 3/3: toe
flexion with measurable strength when forced to pull the bar [38].

2.3.2. CatWalk XT Gait Analysis

To evaluate changes in gait behavior, computerized gait analysis was performed
biweekly using the CatWalk XT gait analysis system as described elsewhere [39,47,48]. The
device consists of a walkway with a glass floor which is illuminated by green and red
ceiling light sources. While the green light source illuminates a crossing rat’s or mice’s
paws, the red ceiling light’s provides contrast for the animal’s body contour. The acquired
images are then recorded by a fully automated camera mounted underneath the glass plate
and processed by the system’s software. During the course of the seven-day training period,
the animals were habituated to cross the walkway at a speed between 50 and 100 cm/s [39].
Following completion of each data acquisition session, the animals were rewarded with
1–2 pellets of cereals. We assessed the following parameters: print area ratio of the right
front paw (RF) and the right hind paw (RH) (%), print length ratio RF/RH (%), print width
ratio RF/RH (%), swing speed ratio (RF/RH) (%), swing time ratio RF/RH (%), duty cycle
ratio RF/RH (%), stand index ratio RF/RH (%), front paw base of support (FP BoS) (%) and
ulnar abduction of the RF [39].

2.3.3. Electrophysiological Analysis

At the end of the twelve-week observation period, the rats underwent electrophysio-
logical evaluations with a Neuromax EMG device (Natus, Middleton, WI, US) as described
elsewhere [39]. Briefly, the right median nerve was gently freed from its surrounding tissue.
The recording electrode was placed inside the flexor digitorum superficialis muscle while
the reference electrode was placed in the ipsilateral paw. The grounding electrode was
subcutaneously inserted in the right hind limb. Using a micromanipulator, a bipolar stimu-
lation electrode was positioned 2–3 mm proximal to the proximal coaptation site. Latency
and compound muscle action potential (CMAP) of the flexor digitorum superficialis muscle
were measured using supramaximal stimulation. The measurements were normalized with
the animal’s core temperature which was assessed rectally.

2.4. Wet Muscle Weight

Following sacrifice of the animals, both right and left flexor digitorum superficialis
muscles were harvested and weighted. The weight of the right FDS muscle was normalized
both to the weight of the contralateral, chronically denervated muscle as well as to the
animal’s body weight.

2.5. Histological Analysis

To obtain the correct position as well as distal and proximal orientation of the nerves,
they were pinned with minutius needles on small Styropor stubs. For histochemical and
immunohistochemical staining, the nerves were fixed in 4% buffered formalin for 24 h
at room temperature and afterwards rinsed in tap water for 1 h. Dehydration with an
uprising ethanol series was performed, beginning with 50% EtOH for 1 h, followed by
70% EtOH. Then, the samples were transferred to a vacuum infiltration processor (Sakura,
TissueTek ® VIP) and, after further dehydration of the samples, infiltrated with paraffin
via the intermedium of xylene. The nerve samples were cut in 4 µm thin cross-sections
with an Microm HM355S (Thermo Scientific, Waltham, MA, US). After drying the sections
overnight in a 37 ◦C oven, the slides were deparaffinized and rehydrated for staining with
different methods. The nuclei were stained in grey using Weigert’s iron hematoxylin. After
staining, the sections were dehydrated and permanently embedded with Shandon Consul-
Mount (Thermo Scientific). Starting immunohistochemical staining, the sections were first
pretreated with different antigen retrieval protocols. For S100 (Agilent, Santa Clara, CA,
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US, Z0311), the sections were incubated with Pepsin (Sigma-Aldrich, St. Louis, MO, US)
for 10 min at 37 ◦C in a humidified chamber. The sections for podoplanin (Relia Tech,
Wolfenbüttel, NI, Germany, 104-M40) staining were steamed in a pH 6 sodium citrate buffer
(0.1 M) for 20 min, for CD31 (Thermo Scientific, Waltham, MA, US, PA5-16301)—in EDTA
buffer (0.1 M) at pH 9. After antigen retrieval, the sections were blocked using Bloxall®

(Vector Labs, Newark, CA, US) for 10 min. Then, the primary antibodies were applied
for 1 h at room temperature (S100, 1:1600; podoplanin, 1:2000; CD31 1:50), which was
followed by incubation of the secondary antibodies for 30 min at room temperature using
an HRP-conjugated anti-mouse system (Immuno Logic, VWRKDPVM110HRP) for S100
and podoplanin. For CD31, an anti-rabbit HRP-conjugated antibody was used (Immuno
Logic, VWRKDPVR110HRP). Detection of the staining was performed with ImmPACTTM
NovaREDTM (Vector Labs, Newark, CA, US). Then, the sections were counterstained with
hematoxylin and, after dehydration, permanently embedded with Shandon Consul-Mount
(Thermo Scientific, Waltham, MA, US).

Automated Quantification of Axons, Lymphatic and Blood Vessels

We employed automated deep learning-based image analysis to quantify the axon
and lymphatic vessel counts in whole-slide scans of histological cross-sections. The IKOSA
platform (KML Vision) was adopted to train two state-of-the-art deep neural network mod-
els in a supervised fashion. To quantify the lymphatic vessels, we applied our previously
trained model to our image data as described elsewhere [49].

A second model was trained to segment axons in digital images. To improve the
ground truth data annotation quality, regions of interest (ROIs) were defined to restrict
the area where axons were marked using the annotation tools provided by IKOSA. A set
of 54 whole-slide scans containing 149 ROIs was randomly split into training (48 images,
116 ROIs) and validation (six images, 33 ROIs) data. The model training converged after
4 h 43 min on GPU infrastructure. The validation performance at the axon instance count
was 95.4% recall and 94.2% precision. See Supplementary Table S1 and Supplementary
Figure S2 for more details on the dataset and validation statistics.

Blood vessel counts in the cross-sections were reported as manual counts.

2.6. Statistical Analysis

All the statistical analyses were performed using IBM SPSS Version 26 (International
Business Machines Corporation, Armonk, NY, USA). For each parameter, normal distri-
bution was tested by means of the Kolmogorov–Smirnov test. Homogeneity of variances
was tested with Levene’s test. In case both criteria were met, the data were compared
with parametric tests, e.g., one-way analysis of variance (ANOVA). This was followed by
Tukey’s post hoc test. Otherwise, nonparametric comparisons, e.g., the Kruskal–Wallis test,
followed by the Dunn–Bonferroni post hoc test were used for comparison for more than
two groups. Sub-analysis of the groups (ANG vs. MVI; ANG vs. ANG + ESWT, MVI vs.
MVI + ESWT) was performed with the Mann–Whitney U test in case of nonnormally dis-
tributed data; otherwise, Student’s t-test was used. Repeated measures of the same sample
were compared with the nonparametric Friedman test. P-values < 0.05 were considered
statistically significant. All the values were expressed as the means ± one standard error of
the mean (SEM).

3. Results
3.1. Reflex-Based Grasping

By using the grasping test, we aimed to evaluate the return of the general grasping
ability in general and of grasping strength in particular as both depend on reinnervation of
the flexor digitorum superficialis muscle (FDS), one of the median nerve’s target organs.

One animal had to be excluded from statistical analysis because the preoperatively
recorded data were lost due to a technical error. Animal motivation to participate in the
procedure showed some substantial fluctuations over time in our study. Of all the rats
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(n = 55), 34 animals showed no motivation to participate in the grasping test at least once
over the entire observation period. In the ANG and MCV groups, 11 animals in each case
were reluctant to grasp the bar at least once. The same applied to eight animals in the ANT+
group and four animals in the MVC+ group, respectively. Therefore, these animals had to
be excluded from statistical analysis.

Comparison of the remaining 21 animals (Figure 1) of the ANT (n = 3), MVC (n = 5),
ANT+ (n = 6) and MVC+ (n = 7) groups revealed significant differences regarding the
overall grasping ability during the course of the observational period (Table 1). While
no animal had displayed toe flexion until WPO2 in any group, functional recovery was
observed to occur fastest in the two groups of animals which underwent median nerve
reconstruction with an ANG. Starting from WPO6, all the animals in the ANG group
regained the ability to grasp the bar with measurable force.

Figure 1. Recovery of the grasping ability following reconstruction of the right median nerve
during the postoperative 12-week observation period. Autologous nerve graft (n = 3); muscle-in-
vein conduit (n = 5); autologous nerve graft + ESWT: autologous nerve graft with postoperative
extracorporeal shockwave therapy (n = 6); muscle-in-vein conduit + ESWT: muscle-in-vein conduit
with postoperative extracorporeal shockwave therapy (n = 7). WPO: postoperative week.

Table 1. Summary of functional recovery as assessed by the grasping ability (1/3: no toe flexion;
2/3: toe flexion without measurable strength; 3/3: toe flexion with measurable strength) during the
12-week postoperative observation period. Statistical differences were tested with the nonparametric
Kruskal–Wallis test and the Dunn–Bonferroni post hoc test. ANG: autologous nerve graft (n = 3);
MVC: muscle-in-vein conduit (n = 5), ANG + ESWT: autologous nerve graft with postoperative
extracorporeal shockwave therapy (n = 6), MVC + ESWT: muscle-in-vein conduit with postoperative
extracorporeal shockwave therapy (n = 7), n. s.: not significant, WPO: postoperative week.

WPO1

Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT
ANG 3/3 (100%) 0/3 (0%) 0/3 (0%) n. s. n. s. n. s.
MVC 5/5 (100%) 0/5 (0%) 0/5 (0%) n. s. n. s. n. s.
ANG + ESWT 6/6 (100%) 0/6 (0%) 0/6 (0%) n. s. n. s. n. s.
MVC + ESWT 7/7 (100%) 0/7 (0%) 0/7 (0%) n. s. n. s. n. s.

WPO2
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 3/3 (100%) 0/3 (0%) 0/3 (0%) n. s. n. s. n. s.
MVC 5/5 (100%) 0/5 (0%) 0/5 (0%) n. s. n. s. n. s.
ANG + ESWT 6/6 (100%) 0/6 (0%) 0/6 (0%) n. s. n. s. n. s.
MVC + ESWT 7/7 (100%) 0/7 (0%) 0/7 (0%) n. s. n. s. n. s.
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Table 1. Cont.

WPO3
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 3/3 (100%) 0/3 (0%) 0/3 (0%) n. s. n. s. n. s.
MVC 5/5 (100%) 0/5 (0%) 0/5 (0%) n. s. n. s. n. s.
ANG + ESWT 5/6 (83.3%) 1/6 (16.7%) 0/6 (0%) n. s. n. s. n. s.
MVC + ESWT 7/7 (100%) 0/7 (0%) 0/7 (0%) n. s. n. s. n. s.

WPO4
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 0/3 (0%) 2/3 (66%) 1/3 (33%) p < 0.05 n. s. p < 0.05
MVC 5/5 (100%) 0/5 (0%) 0/5 (0%) p < 0.05 n. s. n. s.
ANG + ESWT 3/6 (50%) 2/6 (33.3%) 1/6 (16.7%) n. s. n. s. n. s.
MVC + ESWT 7/7 (100%) 0/7 (0%) 0/7 (0%) p < 0.05 n. s. n. s.

WPO5
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 0/3 (0%) 1/3 (33.3%) 2/3 (66.7%) p < 0.05 n. s. p < 0.05
MVC 5/5 (100%) 0/5 (0%) 0/5 (0%) p < 0.05 n. s. n. s.
ANG + ESWT 2/6 (33.3%) 2/6 (33.3%) 2/6 (33.3%) n. s. n. s. n. s.
MVC + ESWT 6/7 (85.7%) 1/7 (14.3%) 0/7 (0%) n. s. n. s. p < 0.05

WPO6
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 0/3 (0%) 0/3 (0%) 3/3 (100%) p < 0.05 n. s. p < 0.05
MVC 5/5 (100%) 0/5 (0%) 0/5 (0%) p < 0.05 p < 0.05 n. s.
ANG + ESWT 0/6 (0%) 2/6 (33.3%) 4/6 (66.7%) n. s. p < 0.05 p < 0.05
MVC + ESWT 6/7 (85.7%) 1/7 (14.3%) 0/7 (0%) p < 0.05 n. s. p < 0.05

WPO7
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 0/3 (0%) 0/3 (0%) 3/3 (100%) p < 0.05 n. s. n. s.
MVC 5/5 (100%) 0/5 (0%) 0/5 (0%) p < 0.05 p < 0.05 n. s.
ANG + ESWT 0/6 (0%) 2/6 (33.3%) 4/6 (66.7%) n. s. p < 0.05 n. s.
MVC + ESWT 5/7 (71.4%) 1/7 (14.3%) 1/7 (14.3%) n. s. n. s. n. s.

WPO8
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 0/3 (0%) 0/3 (0%) 3/3 (100%) n. s. n. s. n. s.
MVC 4/5 (80%) 1/5 (20%) 0/5 (0%) n. s. p < 0.05 n. s.
ANG + ESWT 0/6 (0%) 1/6 (16.7%) 5/6 (83.3%) n. s. p < 0.05 n. s.
MVC + ESWT 4/7 (57.1%) 1/7 (14.3%) 2/7 (28.6%) n. s. n. s. n. s.

WPO9
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 0/3 (0%) 0/3 (0%) 3/3 (100%) n. s. n. s. n. s.
MVC 4/5 (80%) 1/5 (20%) 0/5 (0%) n. s. p < 0.05 n. s.
ANG + ESWT 0/6 (0%) 0/6 (0%) 6/6 (100%) n. s. p < 0.05 n. s.
MVC + ESWT 4/7 (57.1%) 0/7 (0%) 33/7 (42.9%) n. s. n. s. n. s.

WPO10
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 0/3 (0%) 0/3 (0%) 3/3 (100%) n. s. n. s. n. s.
MVC 3/5 (60%) 1/5 (20%) 1/5 (20%) n. s. n. s. n. s.
ANG + ESWT 0/6 (0%) 0/6 (0%) 6/6 (100%) n. s. n. s. n. s.
MVC + ESWT 4/7 (57.1%) 0/7 (0%) 33/7 (42.9%) n. s. n. s. n. s.

WPO11
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 0/3 (0%) 0/3 (0%) 3/3 (100%) n. s. n. s. n. s.
MVC 3/5 (60%) 0/5 (20%) 2/5 (40%) n. s. n. s. n. s.
ANG + ESWT 0/6 (0%) 0/6 (0%) 6/6 (100%) n. s. n. s. n. s.
MVC + ESWT 3/7 (42.9%) 1/7 (14.3%) 3/7 (42.9%) n. s. n. s. n. s.

WPO12
Ability 1/3 2/3 3/3 vs. ANG vs. MVC vs. ANG + ESWT vs. MVC + ESWT

ANG 0/3 (0%) 0/3 (0%) 3/3 (100%) n. s. n. s. n. s.
MVC 3/5 (60%) 0/5 (20%) 2/5 (40%) n. s. n. s. n. s.
ANG + ESWT 0/6 (0%) 0/6 (0%) 6/6 (100%) n. s. n. s. n. s.
MVC + ESWT 1/7 (14.3%) 3/7 (42.9%) 3/7 (42.9%) n. s. n. s. n. s.

In the ANG + ESWT group, five out of the six animals regained full motor function,
i.e., a grasping rating of 3/3, in WPO8, with the remaining animal displaying this ability
starting from WPO9.
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The animals which had undergone nerve reconstruction with an MVC without ad-
ditional ESWT showed no sign of functional recovery until WPO8. By the end of the
observation period, two out of the five animals had regained grasping ability. While both
these animals were able to flex their toes with measurable force, the remaining three animals
did not show any sign of functional recovery regarding voluntary grasping ability.

In the MVC + ESWT group, the first signs of motor recovery became apparent in
WPO5, with one animal regaining the ability to grasp the bar without measurable strength.
In WPO12, six of the seven animals displayed signs of functional recovery, i.e., a grasping
rating of 2/3 or 3/3.

Regarding the evaluation of the mean grasping strength as compared to baseline
recordings (Figure 2), no grasping strength was recordable until WPO4 in any group. In
WPO4 and WPO5, the grasping strengths measured in the ANG group and the ANG + ESWT
group were not statistically significantly different from each other, while there was still
no grasping strength measurable in both the MVC and MVC + ESWT group. Six weeks
postoperatively, the animals of the ANG group recovered significantly (p < 0.05) more
grasping strength than those of the MVC + ESWT group. This difference was not statistically
significant (p = 0.075) when comparing the ANG group to the MVC group. The difference
between the mean grasping strength ratios of the ANG + ESWT group and the MVC + ESWT
group was also not statistically significant (p = 0.058). In WPO7, the rats in the ANG group
recovered a significantly (p < 0.05) greater grasping strength than the rats in both the MVC
group and the MVC + ESWT group, respectively. Eight weeks postoperatively, the mean
grasping strength in the ANG + ESWT group was significantly (p < 0.05) higher compared
to the MVC group. In WPO9, the animals in the MVC group had still not recovered any
grasping strength which was statistically significant (p < 0.05) compared to the two groups
which underwent median nerve repair with an ANG or an ANG + ESWT, respectively. Ten
weeks after median nerve reconstruction, the rats in all the groups recovered measurable
grasping strength, but there were no statistically significant differences observable between
the groups until the end of the observation period.

Figure 2. Recovery of grasping strength following reconstruction of the right median nerve. Statistical
analysis was performed with the nonparametric Kruskal–Wallis test and the Dunn–Bonferroni post
hoc test. Autologous nerve graft (n = 3); muscle-in-vein conduit (n = 5); autologous nerve graft with
postoperative extracorporeal shockwave therapy (n = 6); muscle-in-vein conduit with postoperative
extracorporeal shockwave therapy (n = 7). WPO: postoperative week; * p < 0.05.

3.2. CatWalk XT Gait Analysis

Computerized gait analysis was used in this study in order to evaluate recovery of the
sensory and motor function following median nerve resection and immediate reconstruction.

3.2.1. Print Area

There were no significant differences between the four groups regarding the print
area ratio RF/RH (Figure 3a) during the entire course of the 12-week observation period.
There was, however, a trend towards better functional recovery in two groups in which the
median nerve was reconstructed with an ANG. The animals which received an MVC and
additional ESWT showed a trend towards a lower print area ratio RF/RH.
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Figure 3. Results of computerized gait analysis via CatWalk XT version 10.6 following resection of a
7 mm segment of the right median nerve and immediate reconstruction with an autologous nerve
graft (n = 13), a muscle-in-vein conduit (n = 16), an autologous nerve graft + ESWT (autologous nerve
graft with postoperative extracorporeal shockwave therapy) (n = 15) or a muscle-in-vein conduit +
ESWT (muscle-in-vein conduit with postoperative extracorporeal shockwave therapy) (n = 11). The
assessed parameters included the paw print area of the right front paw (a), the print length ratio of
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the right front paw (b), the print width ratio of the right front paw (c), the swing time ratio of the
right front paw (d), the stand index ratio of the right front paw (e), the front paw base of support
ratio (f) and ulnar abduction of the right front paw (g) with a schematic of how to assess this latter
parameter (h): Evaluation of the degree of external paw rotation by measuring the Paw Angle Body
Axis. This is the angle between the orientation of the front paw (A) and the animal’s body axis (B).
The white line in panel A defines the orientation of the paw. The white line in panel B defines the
animal’s body axis. The red line defines the animal’s body movement vector, which is calculated
by linear regression of the animal’s center of gravity in the recorded frame and in the three frames
preceding it. The white cross indicates the orientation of the respective paw in relation to the rat’s
body axis; P, proximal; D, distal; M, medial; L, lateral. [39]). Statistical analysis was performed
with the nonparametric Kruskal–Wallis test and the Dunn–Bonferroni post hoc test. For subgroup
analysis of identical reconstructive approaches, the Mann–Whitney U test was used. FPs: front paws,
* p < 0.05, # p < 0.05 in subgroup analysis only.

3.2.2. Print Length

Print length ratio RF/RH (Figure 3b) was not significantly different between the
groups over the entire course of the observational period. In accordance with the course of
the print area ratio, a trend towards better functional recovery was apparent in the ANG
and ANG + ESWT groups, especially at WPO4 and WPO6, respectively.

3.2.3. Print Width

Print width ratio RF/RH (Figure 3c) was markedly decreased in all the groups fol-
lowing segmental median nerve injury. Starting from WPO4, there was a trend towards
a higher print width ratio RF/RH in the two groups which underwent median nerve
reconstruction with an ANG compared to the groups in which an MVC was used. At
WPO8, the rats which underwent median nerve reconstruction with an ANG and received
additional ESWT had a significantly (p < 0.05) higher print width ratio than those which
underwent median nerve reconstruction with an MVC but without additional ESWT.

3.2.4. Swing Speed (Data Not Shown)

Analysis of the swing speed ratio RF/RH did not reveal any marked alterations
of this parameter (statistical differences) between the groups compared to preoperative
measurement in any group.

3.2.5. Swing Time

In regard to the swing time ratio RF/RH (Figure 3d), no statistically significant dif-
ferences were observable between the four groups at any timepoint. The parameter was
increased in all the groups following right median nerve injury and reconstruction.

3.2.6. Duty Cycle (Data Not Shown)

There were no significant differences detectable between the groups in regard to the
duty cycle ratio RF/RH (data not shown) over the entire course of the observation period.

3.2.7. Stand Index

Stand index ratio RF/RH (Figure 3e) was markedly increased following median nerve
resection and immediate reconstruction in all the groups. Statistical analysis revealed no
significant differences between groups.

3.2.8. FP BoS

Differences in the FP BoS (Figure 3f) at WPO2 nearly reached statistical significance
(p = 0.061) between the ANG-treated animals and the animals of the ANG + ESWT group
when comparing all the groups. In the subgroup analysis of identical reconstructive
techniques, this difference was highly statistically significant (p < 0.05).
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3.2.9. Ulnar Abduction of the Right Front Paw

Ulnar abduction of the right front paw (Figure 3g), measured as published previously
by our group (Figure 3h) [39], was not statistically significantly different between the
groups at any pre- or postoperative timepoint.

3.3. Appearance of the Reconstructed Median Nerve at WPO12

During the initial surgery, we took images of the ANG or MVC we used to reconstruct
the right median nerve (Figure 4a,c). When the rats were sacrificed in deep anesthesia
twelve weeks postoperatively, the reconstructed right median nerve was inspected micro-
scopically to assess the appearance of the regenerated tissue (Figure 4b,d). These differences
were also compared to the images taken during the initial surgery. While there were no
gross differences observable between identical reconstructive techniques, e.g., ANG vs.
ANG + ESWT and MVC vs. MVC + ESWT, respectively, we identified some major distinc-
tive features between the animals which underwent median nerve reconstruction with an
ANG (Figure 4a,b) or an MVC (Figure 4c,d). While the ANGs at WPO12 were comparable
in diameter and length to the grafts initially sutured between the nerve stumps, the MVCs
appeared significantly stretched, in some cases reaching lengths of more than 10 mm.
Additionally, we noticed prominent neuroma formation at the proximal coaptation site
in almost all the cases. The MVCs were also markedly narrower in their distal segments
when compared to the proximal nerve segment. This trend was also observable as the more
distal parts of the MVC were inspected, reaching the smallest diameters at the site of distal
nerve coaptation.

Figure 4. Microscopic appearance of autologous nerve grafts (a,b) and muscle-in-vein conduits (c,d)
immediately after nerve reconstruction (a,c) and at the timepoint of sacrifice twelve weeks after the
initial surgery (b,d). Note that while the autologous neve grafts at WPO12 were comparable both
in length and diameter to the originals grafts sutured to the stumps of the median nerve during the
initial surgery, the muscle-in-vein-conduits appeared markedly thinner and stretched at the timepoint
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of sacrifice as compared to the initial surgery. Additionally, a prominent coaptation neuroma was
observable at the proximal coaptation site in almost all the cases a muscle-in-vein conduit was used
for nerve reconstruction. The proximal part of the reconstructed nerve is marked with an asterisk.
Scale bar = 1 mm.

3.4. Electrophysiological Evaluations

Statistical comparison of distal motor latencies (Figure 5a) and CMAP areas (Figure 5b)
at WPO12 revealed no statistically significant differences between the groups in regard to
distal motor latency. Regarding the CMAP area, there was a trend towards higher values
observable in the two groups which underwent median nerve reconstruction with an ANG.
The values were significantly (p < 0.05) higher in the ANG + ESWT group when compared
to the MVC + ESWT group. The CMAP values in the ANG group and the MVC group
ranged between those two, but there were no observable statistically significant differences.

Figure 5. Distal motor latency (a) and compound muscle action potential area (b) of the reconstructed
right median nerve 12 weeks following resection of a 7 mm segment of the right median nerve and
immediate reconstruction with an autologous nerve graft (n = 14), a muscle-in-vein conduit (n = 11), an
autologous nerve graft + ESWT (autologous nerve graft with postoperative extracorporeal shockwave
therapy) (n = 15) or a muscle-in-vein conduit + ESWT (muscle-in-vein conduit with postoperative
extracorporeal shockwave therapy) (n = 8). Results of the electrophysiological evaluations were
compared between the groups with the nonparametric Kruskal–Wallis test and the Dunn–Bonferroni
post hoc test. CMAP: compound muscle action potential; * p < 0.05.

3.5. Wet Muscle Weight

Despite a trend of higher FDS muscle weight ratios (Figure 6) in both the ANG group
and ANG + ESWT group, respectively, there were no statistically significant differences
(p = 0.05) observable between the four groups. The FDS muscle weight ratios in the MVC
and MVC + ESWT group were lower than in the ANT group and the ANT + ESWT group
with a trend for the lowest values in the groups of rats which received an MVC + ESWT.
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Figure 6. Comparison of the wet muscle weight ratio of the right and left flexor digitorum superficialis
muscles at postoperative week 12 following bilateral resection and unilateral reconstruction of the
right median nerve. Autologous nerve graft: n = 14; muscle-in-vein-conduit: n = 15, autologous
nerve graft + ESWT: autologous nerve graft with postoperative extracorporeal shockwave therapy
(n = 15); muscle-in-vein-conduit + ESWT: muscle-in-vein conduit with postoperative extracorporeal
shockwave therapy (n = 11). Statistical analysis was performed with the nonparametric Kruskal–
Wallis test and the Dunn–Bonferroni post hoc test. For subgroup analysis of identical reconstructive
approaches, the Mann–Whitney U test was used. FDS: flexor digitorum superficialis muscle.

3.6. Histological Evaluations

The schematic indicating the histological sections of the reconstructed median nerve
taken at WPO12 is depicted in Figure 7.
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3.6.1. Number of Axons

Representative photomicrographs of anti-neurofilament-stained cross-sections are
shown in Figure 8. Statistical comparison of proximal nerve segments (Figure 9) revealed
statistically significantly (p < 0.05) lower axon numbers in the proximal nerve segments of
the MVCs which were treated with ESWT postoperatively (1184 ± 321) when compared
to the MVCs which received no additional treatment (4683 ± 624). In accordance with
this observation, more axons were found in the proximal nerve segments of untreated
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ANGs (3436 ± 963) than in the ANG + ESWT group (2710 ± 278), but this trend was not
statistically significant.

Figure 8. Representative photomicrographs of anti-neurofilament-stained consecutive cross-sections
through the regenerated tissue in the proximal nerve segment (a,d,g,j), the middle of the nerve
graft (b,e,h,k) and the distal nerve graft (c,f,i,l) at 12 weeks post-surgery. Autologous nerve graft
(a–c); muscle-in-vein-conduit (d–f); autologous nerve graft + extracorporeal shockwave therapy (g–i);
muscle-in-vein-conduit + extracorporeal shockwave therapy (j–l). Scale bar = 200 µm.
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Figure 9. Number of axons in different segments of the reconstructed right median nerve 12 weeks
following resection of a 7 mm segment of the right median nerve and immediate reconstruction with
an autologous nerve graft (n = 5), a muscle-in-vein conduit (n = 6), an autologous nerve graft + ESWT
(autologous nerve graft with postoperative extracorporeal shockwave therapy) (n = 4) or a muscle-
in-vein conduit + ESWT (muscle-in-vein conduit with postoperative extracorporeal shockwave
therapy) (n = 4). The dashed line indicates the number of axons in the uninjured median nerve at
the mid-humerus level (2442 ± 19). Statistical evaluation was performed with the nonparametric
Kruskal–Wallis test and the Dunn–Bonferroni post hoc test. For subgroup analysis of identical
reconstructive approaches, the Mann–Whitney U test was used. Repeated measurements of the same
group were compared by means of the nonparametric Friedman test. Note: * p < 0.05, # p < 0.05 in
subgroup analysis only.

Axon numbers in the mid-graft segments of the ANG group (2251 ± 764), MVC group
(1106 ± 255), ANG + ESWT group (1502 ± 595) and MVC + ESWT group (456 ± 233) were
not statistically significantly different from each other.

The same applied to the axon numbers in the distal nerve segments. Axon numbers
were highest in the ANG group (1354 ± 535) followed by the MCV group (1248 ± 277) and
lowest in the MVC + ESWT (239 ± 230) group, with the ANG + ESWT group (1060 ± 615)
in between.

Subgroup analysis of identical reconstructive approaches revealed a significantly
(p < 0.05) lower number of axons in both the proximal as well as the distal nerve segments
of the animals which underwent median nerve reconstruction with an MVC and additional
ESWT. When we compared the number of axons within the same reconstructed nerve
for each group, significantly (p < 0.05) lower numbers were found in the distal nerve
segments of the MVC- and MVC + ESWT-treated animals when compared to the counts in
the proximal nerve segment. No significant differences were found in the case of the other
two groups.

3.6.2. Number of Blood Vessels

Representative photomicrographs of anti-CD31-stained cross-sections of the recon-
structed median nerve are shown in Supplementary Figure S3.
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Blood vessel numbers (Figure 10) in the proximal segments of the reconstructed median
nerves were not statistically significantly different between the animals of the ANG (109 ± 47),
MVC (66 ± 23), ANG + ESWT (30 ± 3) or MVC + ESWT groups (27 ± 3), respectively.

Figure 10. Number of blood vessels in different segments of the reconstructed right median nerve
12 weeks following resection of a 7 mm segment of the right median nerve and immediate recon-
struction with an autologous nerve graft (n = 4), a muscle-in-vein conduit (n = 5), an autologous
nerve graft + ESWT (autologous nerve graft with postoperative extracorporeal shockwave therapy)
(n = 3) or a muscle-in-vein conduit + ESWT (muscle-in-vein conduit with postoperative extracorporeal
shockwave therapy) (n = 5). Statistical evaluation was performed with the nonparametric Kruskal–
Wallis test and the Dunn–Bonferroni post hoc test. For subgroup analysis of identical reconstructive
approaches, the Mann–Whitney U test was used. Repeated measurements of the same group were
compared by means of the nonparametric Friedman test. Note: * p < 0.05, # p < 0.05 in subgroup
analysis only.

The same applied to the number of blood vessels in the distal segment of the recon-
structed nerve. While numbers were lowest in the MVC + ESWT group (17 ± 4), counts
in the ANG (35 ± 10) group and the ANG + ESWT (33 ± 20) group were almost the same.
Most blood vessels could be found in the MVC group (43 ± 5) at this level.

Regarding the number of blood vessels at the mid-graft level, significant differences
were found between the animals of the ANG group (101 ± 21) and the MVC + ESWT
group (17 ± 5). There were no observable statistically significant differences regarding the
ANG + ESWT group (27 ± 14) or the MVC group (72 ± 30).

Subgroup analysis of identical reconstructive approaches by means of the Mann–
Whitney U test revealed a statistically significantly (p < 0.05) lower number of blood vessels
in the distal nerve segments of the MVC + ESWT-treated animals as compared to the group
of animals which received an MVC without additional ESWT.

Comparison of blood vessel numbers within different nerve segments of each group
revealed no statistically significant differences.

3.6.3. Number of Lymphatic Vessels

Figure 11 displays representative photomicrographs of anti-podoplanin-stained con-
secutive cross-sections of the reconstructed median nerve.
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Figure 11. Representative photomicrographs of anti-podoplanin-stained consecutive cross-sections
through the regenerated tissue in the proximal nerve segment (a,d,g,j), the middle of the nerve
graft (b,e,h,k) and the distal nerve graft (c,f,i,l) at 12 weeks post-surgery. Autologous nerve graft
(a–c); muscle-in-vein-conduit (d–f); autologous nerve graft + extracorporeal shockwave therapy (g–i);
muscle-in-vein-conduit + extracorporeal shockwave therapy (j–l). Scale bar = 200 µm. Podoplanin-
positive stained lymphatic vessels are indicated by arrowheads.

Statistical comparison of the number of lymphatic vessels in different segments of the
reconstructed median nerve between the groups (Figure 12) revealed no statistically signifi-
cant differences between the groups in regard to the proximal and mid-graft segments.
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Figure 12. Number of lymphatic vessels in different segments of the reconstructed right median
nerve 12 weeks following resection of a 7 mm segment of the right median nerve and immediate
reconstruction with an autologous nerve graft (n = 8), a muscle-in-vein conduit (n = 8), an autologous
nerve graft + ESWT (autologous nerve graft with postoperative extracorporeal shockwave therapy)
(n = 5) or a muscle-in-vein conduit + ESWT (muscle-in-vein conduit with postoperative extracorporeal
shockwave therapy) (n = 4). Statistical evaluation was performed with the nonparametric Kruskal–
Wallis test and the Dunn–Bonferroni post hoc test. For subgroup analysis of identical reconstructive
approaches, the Mann–Whitney U test was used. Repeated measurements of the same group were
compared by means of the nonparametric Friedman test. Note: * p < 0.05.

In the proximal nerve segment, lymphatic vessel numbers in the ANG group (1.14 ± 0.70),
the MVC group (0.88 ± 0.35) and the ANG + ESWT group (1.00 ± 1.00) were almost identi-
cal, whereas no lymphatic vessels could be identified within the proximal nerve segment of
the MVC + ESWT-treated animals.

The numbers in the mid-graft segment were highest in the MVC group (7.50 ± 2.87),
followed by the MVC + ESWT group (6.25 ± 3.70), the ANG group (5.00 ± 1.91) and the
ANG + ESWT group (1.00 ± 0.77).

Statistically significant (p < 0.05) differences in lymphatic vessel counts could be iden-
tified in the distal nerve segments of the ANG + ESWT (0) and MVC-treated (5.00 ± 1.60)
animals. There were no statistically significant differences regarding the number in the
ANG group (2.00 ± 1.11) and the MVC + ESWT group (0.75 ± 0.47).

A subgroup analysis of identical reconstructive approaches revealed no statistically
significant differences.

When the number of lymphatic vessels within different nerve segments of each group
were compared, no statistically significant differences were found either.

4. Discussion

This study’s main hypothesis was that regeneration of the murine median nerve follow-
ing reconstruction with ANGs, i.e., the gold-standard method, or with MVCs, i.e., nonneural
tissue, can be enhanced by a single postoperative application of low-energy defocused
ESWT. The pro-regenerative effects of ESWT have been shown in the context of various mus-
culoskeletal and neurological diseases, including carpal tunnel syndrome [50–53], spinal
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cord injury [54–58] and PNI in vivo [17,19,20,27,58–60]. Of note, to the best of our knowl-
edge, all the PNI studies were performed in the sciatic nerve model of the rat, and four of
the seven studies we retrieved featured a sciatic crush injury [19,58–60], e.g., axonotmesis.
In regard to the sciatic nerve injury model, it must be noted that this model has some
significant disadvantages, the most noteworthy being the development of neuropathic pain
and automutilations in case of neurotmesis injuries and difficulties assessing functional
recovery by means of walking track or gait analysis [28]. Considering the severity of the
nerve injury, it must be noted that while crush-type nerve injuries in humans are likely to
recover ad integrum even in the absence of any surgical or pharmacological treatment, this
occurs even faster in rodents given the profound differences in neurobiology and speed of
axonal regeneration between the species [61]. Neurotmesis injuries, however, are likely to
show incomplete or even insufficient functional recovery even in case of optimal surgical
treatment [47]. We, therefore, reasoned it to be essential to investigate the effects of ESWT
to enhance functional recovery following neurotmesis of the rat median nerve. Given that
the use of nerve autografts to reconstruct peripheral nerves is limited by their restricted
availability and the resulting donor site morbidity, we also deemed it indispensable to
evaluate whether positive effects of ESWT can also be observed following median nerve
reconstruction with nonneuronal tissue, e.g., with MVCs.

First of all, the promising reports of studies evaluating functional recovery following
nerve reconstruction with MVCs in humans [43,44,62] could not be reproduced in our
study. This is in line with the findings of others who showed that functional recovery
following nerve reconstruction by means of MVCs was markedly inferior in comparison
to autologous nerve grafting in rodent models [38,63]. In one of our previous works, we
suggested that this might be related to a higher number of proteases in the murine genome,
resulting in increased protein turnover and, therefore, accelerated degeneration of muscle
fibers within the MVC, which, in turn, might hamper axonal regeneration due to a decrease
in the MVC’s intraluminal diameter [45]. This was also supported by the intraoperative
findings we observed at WPO12 in regard to the diameter of the distal segments of MVCs.

More importantly, despite some trends for a favorable functional outcome in the
group of animals receiving ESWT in addition to nerve reconstruction with an ANG, our
study’s results do not support the positive reports of other preclinical works regarding
the neuroregenerative effects of ESWT both on peripheral nerves [17,19,27,59,64] and the
spinal cord [55,56,58]. The results of the grasping test did not verify a significant positive
effect of ESWT on functional recovery following reconstruction of the median nerve with
either ANGs or MVCs. Interpretation of this test’s results was further hampered by the
high number of animals which had to be excluded from statistical analysis due to limited
motivation to participate in the assessment, a problematic observation which has also
been reported by other authors and might relate to unpleasant sensations experienced by
animals when held by the tail [38,46].

The electrophysiological evaluations at the end of our observation period were not
indicative of any significant direct pro-regenerative effect of a single ESWT application
following median nerve reconstruction. Interestingly, these measurements revealed a
significantly lower FDS CMAP amplitude area in the rats which underwent nerve repair
with an MVC + ESWT as compared to the ANG-treated animals which also received
postoperative ESWT. As no other significant differences were observable between the
groups, this indicates either a slightly pro-regenerative effect of ESWT following autologous
nerve grafting, a disadvantageous effect of ESWT in case of nerve repair with MVCs or
both. The wet muscle weight of the FDS revealed a similar trend and also emphasized the
superiority of nerve repair with ANGs as compared to MVCs as reported by us and other
authors [38,45,63,65].

Computerized gait analysis with the CatWalk device showed a trend for better func-
tional recovery in the rats which underwent nerve repair with ANGs in comparison to
MVCs, too. Interestingly, analysis of paw print dimensions, i.e., print area, print length
and print width hinted towards improved recovery in the rats of the ANG + ESWT group,
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especially in regard to the print area ratio. Additionally, the ANG + ESWT-treated animals
had a significantly higher paw width ratio than those which received an MVC, supporting
our theory that ESWT exerts positive effects on nerve regeneration and functional recovery
after autograft repair. The observed increase in the swing time and the stand index ratio
following segmental median nerve injury and reconstruction is in line with what we de-
scribed previously and emphasizes the value of these two parameters, especially of the
stand index ratio, to assess functional deficits following median nerve neurotmesis [39].
Interestingly, our subgroup analysis of identical reconstructive approaches showed a sig-
nificant difference in the front paw (FP) base of support between the ANG group and
the ANG + ESWT group in WPO2. As most parameters of gait, changes in the BoS can
be induced by several different factors, e.g., an increase in the BoS can account for an
unstable gait following central nervous lesions [66–68], and a decreased BoS was reported
after sciatic nerve neurotmesis in rats [69], whereas it remained not significantly changed
following neurotmesis of the rat femoral nerve [33] and the median nerve [39]. This might,
on the one hand, be related to the relatively high functional deficit following sciatic nerve
neurotmesis in contrast to median and femoral nerve neurotmesis [33,39]. In this context,
an early work involving use of the CatWalk device in a rat model of sciatic nerve injury
postulated that the observed in the BoS is mainly related to a separate motor dysfunction
rather that an adaptive response to other functional losses [70]. However, one could also
assume that a significant loss of innervated, i.e., sensate plantar paw surface following
peripheral nerve injury (PNI) is likely counterbalanced by placing the affected paw and its
contralateral counterpart closer together to account for this functional loss. Additionally,
the experience of mechanical allodynia during ambulation might also influence the BoS,
whereas in our study, one would expect that the symptoms at WPO2 were most likely
caused by collateral sprouting of intact adjacent peripheral nerves in the paw, e.g., the ulnar
nerve into the original territory of the median nerve [71]. In our opinion, one should also
consider the experience of local pain at the operation site as a likely mechanism, and a
study published in 2018 reported an increase in the FP BoS following nerve reconstruction
with a conventional nerve flap as opposed to a decrease in the FP BoS following median
nerve excision, autograft repair and noteworthy sham surgery [72]. As the exact reasons
for the significant difference in the FP BoS in WPO2 remain to be elucidated in detail, we
postulate that this could be related to the direct positive effects of ESWT on wound healing
on the site of operation [73]. Additionally, it was reported that ESWT induces selective
loss of unmyelinated, i.e., nociceptive nerve fibers with potential analgesic effects due to
selective denervation of target organs. [74–76].

Regarding quantification of axons within the reconstructed median nerve at WPO12,
two main findings require discussion. First of all, we observed a significant decrease in
axon numbers in MVCs when comparing the proximal nerve sections with the distal ones.
This finding is in total accordance with our and others’ observation that axonal regeneration
through MVCs is inferior in comparison to that through ANGs, most likely because axonal
regrowth is hindered in case the muscle fibers within the MVC are degraded before the
regrowing axons reach the distal segment of the MVC [38,45,63] as observable by the
narrowing of the distal MVC segments in our study. In addition, extensive formation
of coaptation neuroma at the proximal repair site was reported by the beforementioned
authors and was also observable at WPO12 in our study. It has been emphasized that in
order to achieve the best possible result when performing nerve reconstruction with an
MVC, it is essential to pull the nerve stumps into the MVC rather than just coaptate them
to the proximal and distal stumps [43,44]. However, this is more difficult and technically
challenging in a rat model due to the small diameter of the harvested veins used to fabricate
the MVC [45]. Secondly, we observed a significantly smaller number of axons in the
proximal and distal nerve segments of the MVC + ESWT-treated animals in comparison
to the MVC group. This finding also points towards disadvantageous, i.e., regeneration-
hindering effects of ESWT, in the context of nerve repairs with MVCs.
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The role of vascularization and neoangiogenesis and their respective assessment has
gained increasing attention recently [72,77–88]. In our study, significantly lower numbers
of blood vessels were found in the distal nerve segments of the MVCs which were treated
with ESWT when compared to the rats of the MVC group. In accordance with the previous
paragraph, these findings provide evidence that the observed effects of ESWT on peripheral
nerve regeneration in our study, especially in case of the MVCs, were at least partially
related to hindered neovascularization of the regenerating nerve. As ESWT was shown
to exert proangiogenic effects in several other studies [21,22,57,64,89–91], the underlying
reasons for the observations in our study remain to be elucidated.

Our study was also among the first [49,77,92,93] to shine light on the involvement
of lymphatic vasculature and lymphangiogenesis, respectively, in peripheral nerve repair
and regeneration. Interestingly, we found that the number of lymphatics was drastically
increased in both ANGs and MCVs following median nerve reconstruction. These vessels
were especially prominent in the middle portions of the reconstructed nerve segments.
Saffari et al. have recently shown that hemangiogenesis in peripheral nerve regeneration
occurs from both stumps of the original nerve but primarily from the proximal one [86].
In our study, we observed a relatively higher number of lymphatic vessels in the middle
graft segments of both MVCs and ANGs. We hypothesize that this observation can be
explained by a study recently published by our group. In this work, we showed for the first
time that Schwann cells induce apoptosis of lymphatic endothelial cells when cocultured
in vitro via extended filopodia-like protrusions [49]. While this, on the one hand, explains
the absence of lymphatic vessels inside uninjured murine peripheral nerves, these findings
can be further extrapolated to the findings in the study at hand. As Schwann cells were
shown to induce apoptosis of lymphatic endothelial cells in vitro, we hypothesized that
the reduced numbers of lymphatic vessels in the proximal and distal segments of ANGs
are related to the presence of Schwann cells which migrate into the reconstructed nerve
from both the proximal stump and the distal nerve stump [94], inducing apoptosis of
lymphatic vessels in these areas. The higher number of lymphatic vessels in MVCs can be
explained by the fact that they contain fewer Schwann cells in addition to pro-angiogenetic
effects exerted by the vein component of MVCs [95,96]. Although it has been recently
hypothesized [92] and later shown [93] that lymphangiogenesis plays an important role in
peripheral nerve regeneration following axonotmesis, our results also indicate that higher
numbers of lymphatic vasculature do not necessarily lead to better functional recovery,
as illustrated by the MVC + ESWT group in our study. Given the complexity of the
peripheral nervous system and the intricate interplay of its components, it is reasonable
to assume that “the more the better” does not necessarily apply in this context. Although
not statistically significant, we observed a trend towards lower numbers of lymphatic
vessels in the distal nerve segments of the ESWT-treated ANGs as compared to the ANG
group, which is in accordance with what we observed regarding the number of blood
vessels in the reconstructed median nerves. As aforementioned, ESWT was shown to exert
major pro-angiogenetic effects in vivo [22,91], making interpretation of these results more
difficult. However, Hausner et al. showed that ESWT did not increase the number of blood
vessels in a sciatic nerve autografting model [27]. Circling back to the potential interplay of
Schwann cells and lymphatic vasculature in vivo, we hypothesize that the lower number
of lymphatic vessels might be explained by direct effects of ESWT on Schwann cells which,
in turn, indirectly affect lymphatic endothelial cells. As it was shown that the ex vivo
ESWT-treated Schwann cells showed increased proliferative activity and—upon respective
inductive cues—expression of myelin-associated phenotypic markers [25], they might exert
negative effects on lymphatic endothelial vasculature cells in vivo. Given the few published
reports [17,24,25,97] addressing the effects of ESWT on Schwann cells, we advise for further
studies to elucidate the underlying reasons for this phenomenon.

Our study bears several limitations. First of all, the majority of the animals had to be
excluded from statistical analysis of the grasping test. This was mainly because the animals
showed fluctuating and reduced motivation to participate in repeated measurements over
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the course of the postoperative observation period. This problem was reported by other
authors in the past [38] and is especially concerning when Lewis rats are used in this test,
which is still considered the gold-standard method for the evaluation of functional recovery
in rat models of median nerve injury [36]. Given the reduced number of animals eligible
for further statistical comparison of grasping strength and grasping ability, results of this
comparison should be interpreted with utmost caution. Secondly, while our study pioneers
a standardized application of ESWT to promote peripheral nerve repair via a 3D-printed
holder, the ideal application intensity and frequency of ESWT remain to be elucidated in
further studies. This might have resulted in significantly higher energies on the target
tissue than during a conventional, free-hand application of ESWT and subsequent negative
effects on axonal regeneration. As higher-energy ESWT is more effective in regard to the
achieved treatment effects, so are the side effects, e.g., the aforementioned destruction of
unmyelinated nerve fibers [98] and very high intensities are almost certainly more harmful
than regeneration-promoting [22].

5. Conclusions

Our study investigated a novel application method for ESWT in axonal regeneration
as well as the effects of ESWT on the formation of blood and lymphatic vessels in the
regenerating nerve after autologous nerve grafting or muscle-in-vein conduit repair. A
single postoperative application of defocused low-intensity extracorporeal shockwave
therapy did not significantly enhance neuroregeneration in a rat model of segmental
median nerve injury but decreased the number of blood and lymphatic vessels within the
regenerated nerves. The rats treated with MVCs showed a worse functional recovery than
those treated with an ANG.
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www.mdpi.com/article/10.3390/biomedicines10081777/s1, Figure S1: Representative schematics and
finished design of the device for ESWT application; Figure S2: Example qualitative output of the
deep neural network model on the validation dataset, Figure S3: Representative photomicrographs
of anti-CD31 stained consecutive cross-sections through the regenerated tissue in the proximal nerve
segment, middle of the nerve graft and distal nerve graft. Table S1: Raw data of the deep neural
network model on the validation dataset on axon quantification.
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