
Laboratory and epidemiologic evidence suggests that 
pathogen-specifi c factors may affect multidrug-resistant 
(MDR) tuberculosis (TB) transmission and pathogenesis. 
To identify demographic and clinical characteristics of MDR 
TB case clustering and to estimate the effect of specifi c iso-
niazid resistance–conferring mutations and strain lineage 
on genotypic clustering, we conducted a population-based 
cohort study of all MDR TB cases reported in California from 
January 1, 2004, through December 31, 2007. Of 8,899 in-
cident culture-positive cases for which drug susceptibility in-
formation was available, 141 (2%) were MDR. Of 123 (87%) 
strains with genotype data, 25 (20%) were aggregated in 
8 clusters; 113 (92%) of all MDR TB cases and 21 (84%) 
of clustered MDR TB cases occurred among foreign-born 
patients. In multivariate analysis, the katG S315T mutation 
(odds ratio 11.2, 95% confi dence interval 2.2–∞; p = 0.004), 
but not strain lineage, was independently associated with 
case clustering.  

In 2007, >500,000 cases of multidrug-resistant (MDR) 
tuberculosis (TB), defi ned as resistance to at least iso-

niazid and rifampin, occurred worldwide (1). Although 
demographic and clinical risk factors for transmission and 
pathogenesis of both drug-susceptible and drug-resistant 
Mycobacterium tuberculosis have been well described 
(2,3), little is known about the microbial factors that infl u-
ence the generation of secondary MDR TB cases (4,5).

Community- and population-based molecular epide-
miologic studies of isoniazid-monoresistant M. tubercu-
losis (6–8) have shown that specifi c resistance-conferring 

mutations are associated with variable degrees of genotypic 
clustering, a measure of strain pathogenicity that incorpo-
rates host factors, transmissibility of the organism, and ca-
pacity of the organism to cause active disease. For example, 
isoniazid-monoresistant strains with a serine-to-threonine 
substitution at position 315 (S315T) are more often asso-
ciated with secondary cases than are strains without the 
S315T mutation (6,7), likely because of reduced or absent 
catalase–peroxidase production (9). However, the effects 
of specifi c isoniazid resistance–conferring mutations on 
genotypic clustering in multidrug resistance are less well 
characterized. The studies reported to date have been lim-
ited by inadequate genotypic discrimination (10,11) and/or 
nonrepresentative sampling of cases (10,12–14).

California reports the highest annual number of TB 
cases (15), more than one fourth of all MDR TB cases (16), 
and the highest immigration rates in the United States (17). 
We conducted a population-based cohort study of all inci-
dent MDR TB cases in California during a 4-year period 
(January 2004–December 2007) to 1) describe demograph-
ic and clinical characteristics of clustering and 2) estimate 
the effect of specifi c isoniazid resistance–conferring muta-
tions and strain lineage on genotypic clustering of MDR M. 
tuberculosis.

Methods
We analyzed culture-positive cases of MDR TB re-

ported to the California TB registry from January 1, 2004, 
through December 31, 2007. California state law (Health 
and Safety Code Title 17 §2505) requires reporting of all 
verifi ed cases of TB, submission of all M. tuberculosis iso-
lates to local public health laboratories, and submission 
of all MDR M. tuberculosis isolates to the California De-
partment of Public Health Microbial Diseases Laboratory. 
Testing for fi rst- and second-line drug susceptibilities was 
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performed at local laboratories or at the Microbial Diseas-
es Laboratory by using BACTEC 460 (Becton Dickinson 
Diagnostic Instruments, Sparks, MD, USA), MGIT 960 
(Becton Dickinson), or the agar proportion method. Some 
isolates were forwarded to the Centers for Disease Control 
and Prevention (CDC; Atlanta, GA, USA) for additional 
second-line drug testing or for confi rmation of drug re-
sistance. Patients were included in the study if MDR M. 
tuberculosis was identifi ed on >1 isolate. Demographic 
and clinical information for all patients with MDR TB was 
abstracted from state TB surveillance forms (Report of 
Verifi ed Case of Tuberculosis), which have high validity 
(18). All protocols were approved by the California Com-
mittee for the Protection of Human Subjects and University 
of California, San Francisco, Committee for the Protection 
of Human Subjects.

Characterization of Mutations Associated 
with Isoniazid and Rifampin Resistance

For each isolate, genomic DNA was extracted from 
solid media (Lowenstein-Jensen slants, Middlebrook 7H10 
or 7H11 agar), liquid media (BACTEC 12 B or MGIT 
[Becton Dickinson]), or smear-positive sputum sediments. 
A real-time PCR assay with 6 molecular beacon probes was 
performed by using an iQ5 iCycler instrument (Bio-Rad, 
Hercules, CA, USA) to screen for mutations associated 
with isoniazid and rifampin resistance (19). Two molecular 
beacons that targeted katG (codon 311–317) and the inhA 
promoter were used to detect isoniazid resistance–confer-
ring mutations, and 4 molecular beacons that targeted the 
core region of rpoB were used to detect rifampin resis-
tance–conferring mutations. Isolates with mutations in katG 
detected by the wild-type probe were further tested with 
another molecular beacon that specifi cally targeted katG 
S315T (AGC–ACC). When molecular beacon analysis did 
not show katG S315T or -c15t inhA promoter mutations, 
the entire furA-katG locus (H37Rv: 2153626–2156657, 
3,031 bp) was sequenced as described (6). Sequence data 
were generated by using ABI BigDye v3.1 dye terminator 
sequencing chemistry and the ABI PRISM 3730xl capil-
lary DNA analyzer (Applied Biosystems, Foster City, CA, 
USA) at the Genomic Core Facility, University of Califor-
nia, San Francisco (www.genomics.ucsf.edu/Sequencing/
index.aspx), and were analyzed with ClustalW (www.ebi.
ac.uk/Tools/clustalw/index.html).

Genotyping and Lineage Determination
Spacer oligonucleotide typing (spoligotyping) and 

mycobacterial interspersed repetitive unit (MIRU) typing 
were performed in accordance with the Centers for Dis-
ease Control and Prevention Universal Genotyping Pro-
gram procedures (20). Spoligotyping was performed by 
using Luminex-based methods to detect 43 known spacer 

sequences in the direct repeat locus (21). MIRU typing 
was performed by using the protocol described by Cowan 
et al. (22). A capillary sequencer, CEQ 8000 (Beckman, 
Fullerton, CA, USA), was used to analyze the number of 
repeated sequences at each of the 12 loci. IS6110-based re-
striction fragment length polymorphism (RFLP) genotyp-
ing was performed following standardized methods (23). 
RFLP patterns were compared by using Bioimage Whole 
Band Analyzer software version 4.2.1 (Bioimage Corp., 
Ann Arbor, MI, USA) (24). RFLP patterns with <20 identi-
cal bands, or >20 bands and differing by no more than a 
single band, were considered matched. IS6110 RFLP band 
assignment was edited by 2 independent readers, and the 
cluster assignment was confi rmed visually.

The phylogeographic lineage of strains was determined 
from spoligotyping results. Spoligotype families H, LAM, 
and T, X, S were considered to be of Euro-American lin-
eage; Beijing of East-Asian lineage; EAI of Indo-Oceanic 
lineage; and CAS of East African-Indian lineage (5).

Defi nitions
Cases were defi ned as clustered if >2 isolates from 

cases reported during the study period shared the same 
MIRU and spoligotype, matched IS6110 RFLP, and had 
specifi c drug resistance–conferring mutations for isoniazid 
and rifampin. Clustering was assumed to represent both 
transmission of M. tuberculosis and progression to active 
disease, leading to secondary case generation within the 
period of the study. Cases not in a cluster were considered 
to be the result of reactivation of latent infection. Patients 
with the earliest case report date within a cluster were re-
garded as index cases.

Statistical Analysis
The proportion of clustered MDR TB cases was ana-

lyzed as the number of clustered cases divided by the total 
number of culture-positive cases that occurred during the 
study period. Because of limited sample size, the indepen-
dent effects of katG S315T and phylogeographic lineage 
on clustering were estimated by using exact logistic regres-
sion methods. Refugee status and sputum smear positivity 
were included in the model as relevant host risk factors. 
Refugee resettlement during the study period could bias 
our results in that overrepresentation of ethnic groups or 
geographic locations with a high prevalence of particular 
strain-specifi c factors (phylogeographic lineage or drug-
resistance mutations) could confound the association under 
study. To examine this infl uence and potential clustering 
of TB cases within households or communities related to 
refugee resettlement, sensitivity analysis was conducted by 
reestimation of study results after excluding 1) patients im-
migrating from refugee settings within the past 3 years and 
2) the single largest patient cluster, which accounted for 
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40% of all clustered cases. In a separate analysis, standard 
logistic regression was used to estimate the effect of katG 
S315T and phylogeographic lineage on sputum smear posi-
tivity, again controlling for refugee status.

Odds ratios (ORs) and 95% confi dence intervals (CIs) 
were calculated to measure associations of interest. Cat-
egorical data (e.g., sex, foreign vs. US birth, homelessness) 
were compared by using Fisher exact tests. The Wilcoxon 
rank-sum test was used to determine differences in the dis-
tribution of continuous variables (e.g., age, time from entry 
into the United States to TB diagnosis). Interaction between 
the independent variables was assessed separately for each 
factor by stratifi cation and statistical testing (Breslow-Day 
with the Tarone correction [25] and Zelen test [26]), with 
p<0.2 assumed to indicate the presence of interaction. All p 
values were 2-sided with α = 0.05 as the signifi cance level. 
Analyses were performed by using Stata 10 (StataCorp., 
College Station, TX, USA) and StatExact 8 (CYTEL Soft-
ware Corp., Cambridge, MA, USA).

Results
During the study period, 11,395 cases of TB were re-

ported in California, of which 9,037 (79%) had positive 
cultures. Of these, 8,899 (98%) had isoniazid and rifampin 
susceptibility results available. Of the 141 (2%) incident 
MDR TB cases, 123 (87%) had isolates available for 
MIRU, spoligotyping, and IS6110 RFLP analysis. Isolates 
unavailable for genotyping (n = 18) were more often from 
Los Angeles County; other demographic and clinical char-
acteristics were similar to those of analyzed cases.

Twenty-fi ve MDR M. tuberculosis isolates were ag-
gregated in 8 clusters (1 cluster of 10 cases, 1 cluster of 
3 cases, and 6 clusters of 2 cases) for an overall cluster 
proportion of 20% (25/123). Excluding the 8 index cases, 
14% (17/123) of all cases were considered to have resulted 
from recent transmission and rapid progression to disease 
(secondary cases). Within clusters, a median of 3 months 
elapsed between successive secondary cases (range 0–20 
months). Of the 123 total cases, 113 (92%) occurred among 
foreign-born patients, with more than half (56%) occurring 
among immigrants from Mexico, Philippines, the People’s 
Republic of China, or Vietnam (Table 1). Seven of 8 index 
cases occurred either in Mexican immigrants (3/8) or re-
cent refugees from Thailand, Lao People’s Democratic Re-
public, or India (4/8). Median time from patient arrival in 
the United States to TB diagnosis was approximately twice 
as long for clustered as for nonclustered cases (4.3 years vs. 
2.4 years) and 3 times as long for cases in Mexican-born 
persons as for cases in persons from other countries (7.3 
years vs. 2.3 years).

Younger persons were more likely than older persons 
to harbor strains involved in MDR TB clusters (Table 1). 
HIV infection was unusual in this patient population; only 

3 (4%) of 75 patients with known HIV status were HIV-in-
fected. Twenty-eight percent (35/123) of patients reported 
a history of active TB; this proportion did not vary between 
clustered and nonclustered cases (p = 0.75). Eight patients 
had documented previous treatment in California. Time to 
culture negativity (2.4 vs. 2.8 months, p = 0.95), treatment 
failure, or death did not differ between clustered and non-
clustered cases (p = 0.57) among 105 (85%) of 123 cases 
for which data were available.

Seventy-fi ve percent of MDR M. tuberculosis strains 
harbored the isoniazid resistance–conferring mutation katG 
S315T, including all (100%) clustered strains (Table 2). 
When we controlled for strain lineage and refugee status, 
katG S315T was inversely associated (OR 0.28, 95% CI 
0.09–0.89, p = 0.03) with sputum smear positivity (Table 
3). Most rifampin resistance–conferring mutations were 
found between positions 529 and 534 of the rpoB gene, 
likely indicative of the serine to leucine substitution at po-
sition 531 (S531L) of the rpoB gene (27). The association 
between this mutation and clustering did not reach statisti-
cal signifi cance (OR 2.2, 95% CI 0.8–7.4; p = 0.16).

MDR M. tuberculosis isolates were distributed among 
East-Asian (47%), Euro-American (30%), Indo-Oceanic 
(20%), and East African–Indian (3%) phylogeographic lin-
eages. Lineage could not be established for 11 cases. On 
univariate analysis, East-Asian strain lineage was associat-
ed with clustering (Table 4), but not with adverse outcome 
(death or treatment failure). Indo-Oceanic strains produced 
no secondary cases.

Clustering was independently associated with katG 
S315T (OR 11.2, 95% CI 2.2-∞; p = 0.004) and refugee 
status (OR 6.0, 95% CI 1.2–36.2; p = 0.03) in exact multi-
variate analyses in which strain lineage and sputum smear 
positivity were controlled for (Table 5). The estimated as-
sociation between katG S315T and case clustering did not 
appreciably change in sensitivity analyses that excluded 
either all recently arrived refugees or the single largest pa-
tient cluster.

Discussion
In this 4-year population-based molecular epidemio-

logic study, transmission followed by secondary case gen-
eration contributed to ≈14%, or 1 of every 7, MDR TB 
cases in California. Clustered cases occurred more often 
among younger persons and persons who had emigrated 
from Mexico and refugee settings in Southeast Asia. In ad-
dition, pathogen-specifi c factors were associated with clus-
tering of MDR TB cases, independent of traditional clinical 
and demographic risk factors.

The proportion of MDR TB cases attributed to trans-
mission in California was higher than that reported by other 
investigators in most low incidence settings (28–32). The 
largest clusters in our study resulted from MDR TB out-
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breaks in California after resettlement of Hmong refugees 
in 2005–2006 (33) and resettlement of Tibetan refugees in 
2001–2006. The associations between pathogen-specifi c 
factors and case clustering could be due to regional dif-
ferences in strain prevalence and preferential migration of 
persons with specifi c strains to California. We attempted to 
control for these factors by using highly stringent criteria to 
defi ne clustered cases and by adjusting for refugee status in 
our multivariate model. However, without detailed contact 
information and contact tracing, we cannot be certain of 
the extent to which transmission or progression to active 
disease occurred within or outside California. Given that 

most clustered cases occurred among persons residing in 
the United States for >3 years and that US-born persons 
were involved in 3 of 8 clusters, at least some proportion 
of MDR TB transmission is likely to have occurred in Cali-
fornia. This observation suggests that although most MDR 
TB cases in the United States are related to the migration of 
persons already infected with drug-resistant M. tuberculo-
sis, a small but notable proportion may be due to ongoing 
transmission.

Heterogeneity in the reproductive success of drug-
resistant M. tuberculosis is now well established (34,35). 
In this study, the katG S315T mutation was the only isoni-
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Table 1. Demographic and clinical characteristics of 123 patients with clustered and nonclustered MDR TB infections, California, USA, 
2004–2007* 
Characteristic  Nonclustered, n = 98† Clustered, n = 25† OR‡ (95% CI) p value 
Median age, y (IQR) 39 (30–50) 27 (18–53) – 0.05
Female gender 47 (48) 11 (44) 0.9 (0.3–2.3) 0.72
Foreign birth 92 (94) 21 (84) 0.3 (0.1–1.8) 0.11
Nation or region of origin 
 Philippines 20 (20) 1 (4) – <0.001 
 Mexico 16 (16) 5 (20) 
 Vietnam 14 (14) 1 (4) 
 China  12 (12) 0
 Central America 6 (6) 0
 India 3 (3) 3 (12) 
 Laos 2 (2) 6 (24) 
 Thailand 1 (1) 4 (16) 
 United States 6 (6) 4 (16) 
 All other nations§ 18 (18) 1 (4) 
Recent immigration from refugee setting 4 (4) 7 (28) 9.1 (2–45) <0.001 
Median time from US entry to diagnosis, y (IQR) 2.4 (0.2–8.7) 4.2 (0.2–11) – 0.77
Time from US entry to MDR diagnosis¶ 
 <3 mo 25 (27) 6 (29) – 0.42
 3 mo–3 y 25 (27) 4 (19) 
 >3 y 40 (44) 11 (52) 
Known HIV/TB co-infection 3 (6) 0 – –
Private healthcare provider 11 (11) 4 (16) 1.3 (0.3–5.4) 0.74
Homelessness 6 (6) 1 (4) 0.7 (0.01–5.9) 1.0
Previous active TB 28 (29) 7 (28) 1.0 (0.3–2.9) 1.0
Sputum-positive AFB smear 60 (66) 16 (70) 1.2 (0.4–3.8) 0.81
Extrapulmonary disease# 7 (7) 1 (4) 0.6 (0.1–3.9) 1.0
Cavitary disease 25 (26) 10 (42) 1.9 (0.7–5.8) 0.22
Median time to culture conversion, mo (IQR) 2.2 (1.3–4.6) 3 (1.4–4.4) 0.57
Median total treatment time, mo (IQR) 25.8 (21.4–28.9) 24.4 (22.6–27.3) 0.56
Treatment failure** 4 (7) 1 (6) 0.9 (0.02–9.7) 0.56
Treatment outcome†† 0.70
 Completed treatment 70 (83) 17 (81) 
 Moved 7 (8) 1 (5) 
 Defaulted 2 (2) 0
 Died 5 (6) 3 (14) 
*MDR TB, multidrug-resistant tuberculosis; OR, odds ratios; CI, confidence interval; IQR, interquartile range; AFB, acid-fast bacilli. – indicates OR had no 
meaning for those specific comparisons. 
†Values are no. (%) except as indicated. 
‡ORs describe the association between the characteristic of interest and MDR TB case-clustered status. The denominator for each characteristic 
excludes missing or unknown values.
§Afghanistan (1), Burma (1), Cambodia (5), Ethiopia (1), Indonesia (1), Mongolia (1), Nepal (1), Peru (2), South Korea (5), and Ukraine (1). 
¶Date of US entry was missing for 2 persons. 
#Nonclustered cases: cervical lymph node (5), bone (1), other (1); clustered cases: pleural (1). 
**Culture positive after >8 months of treatment; limited to pulmonary TB patients who were alive at diagnosis and had an initial positive sputum culture.
††Treatment outcome available for 105 (85%) cases. 
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azid resistance–conferring mutation found among clustered 
MDR TB cases. The high prevalence of katG S315T among 
MDR strains (12,14,36–38) and the association of this mu-
tation with increased secondary case generation among iso-
niazid-monoresistant strains (6,7) have been documented. 
We report that the katG S315T isoniazid resistance–confer-
ring mutation retains an independent effect on clustering of 
MDR TB cases despite the presence of mutations that con-
fer resistance to additional drugs. In particular, secondary 
case generation did not signifi cantly vary according to site 
of rpoB mutations that confer rifampin resistance, which 
supports the hypothesis that these are no-cost mutations or 
that compensatory mutations commonly exist (39).

The katG S315T mutation is thought to preserve fi tness 
through the relative preservation of catalase-peroxidase 
production (9), although whether this mutation is associ-
ated with different clinical phenotypes is unknown. In this 

study, we noted an inverse association between presence 
of the katG S315T mutation and sputum smear positivity. 
In addition, the katG S315T mutation was associated with 
case clustering, independent of sputum smear status. These 
fi ndings suggest that the katG S315T mutation may pre-
serve the ability of M. tuberculosis to transmit and cause 
secondary cases through mechanisms unrelated to conven-
tional indices of disease severity, such as the presence of 
abundant acid-fast bacilli in sputum.

Our fi ndings are clinically useful for at least 2 reasons. 
First, MDR TB in California is occurring predominantly 
among patients who were not born in the United States, 
with some cases from recent transmission and rapid pro-
gression to disease. Our study suggests that in California, 
younger persons and persons who have emigrated from 
Mexico and from refugee settings may be at higher risk 
for transmitting MDR M. tuberculosis. Likewise, our fi nd-
ings reinforce the need for giving priority to screening and 
prevention activities in immigrant communities and US in-
vestment in international TB control (40). Second, if our 
results are verifi ed in other settings, TB-control programs 
should consider pathogen-specifi c factors such as isoniazid 
resistance–conferring mutations when planning the inten-
sity of contact investigation and secondary case-fi nding 
activities.

This study has several limitations. First, our estimates 
of case clustering are imprecise because of the limited num-
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Table 2. Isoniazid and rifampin resistance–conferring mutations among 121 clustered and nonclustered MDR TB infections, California, 
USA, 2004–2007*
Molecular basis for drug resistance  Nonclustered, n = 96, no. (%) Clustered, n = 25, no. (%) 
Isoniazid resistance 

katG S315T mutation 66 (69) 25 (100) 
 Other katG mutation† 8 (8) 0

inhA promoter‡ 23 (26) 0
 No katG S315T or inhA promoter mutation detected§ 5 (5) 0
Rifampin resistance¶ 

rpoB codons 511–518 8 (9) 2 (8) 
rpoB codons 523–529 25 (27) 4 (16) 
rpoB codons 529–534 57 (62) 19 (76) 
rpoB codons 515–521 2 (2) 0

*Two isolates with otherwise complete genotyping data were unavailable for molecular beacon analysis. MDR TB, multidrug-resistant tuberculosis; 
S315T, serine-to-threonine substitution at position 315.  
†Novel mutations detected: Y413STOP, T314T (silent), W161G, D61E (Fur A), R145P, P325L, and V633F.
‡inhA promoter mutation was concomitant with 4/91 (4%) isolates harboring the katG S315T and 2/8 (25%) isolates with katG mutations other than 
S315T.
§No mutations detected by molecular beacons; sequencing was not possible for these isolates because of degraded DNA. 
¶Rifampin resistance–conferring mutations were not detected by the molecular beacon assay for 4 isolates.

Table 3. Multivariate associations with sputum smear positivity in 
102 MDR TB infections, California, USA, 2004–2007*
Strain OR (95% CI) p value 
katG S315T 0.28 (0.09–0.89) 0.03
Euro-American lineage† 1.0 –
East-Asian lineage 0.31 (0.11–0.88) 0.03
Indo-Oceanic lineage 0.22 (0.06–0.86) 0.03
Refugee status 2.02 (0.43–9.45) 0.37
*MDR TB, multidrug-resistant tuberculosis; S315T, serine-to-threonine 
substitution at position 315; OR, odds ratio; CI, confidence interval.
†Reference. 

Table 4. Univariate associations of phylogeographic lineage with 112 clustered and nonclustered MDR TB infections, California, USA, 
2004–2007*
Strain lineage Nonclustered, n = 87, no. (%) Clustered, n = 25, no. (%) OR (95% CI) p value 
East-Asian 37 (43) 17 (68) 2.87 (1.03–8.48) 0.04
Euro-American 26 (30) 8 (32) 1.10 (0.36–3.12) 0.81
Indo-Oceanic 21 (24) 0 – 0.003 
East African–Indian 3 (4) 0 – 1.0
*N = 112. Lineage could not be established by spoligotyping for 11 (8.9%) cases. MDR, multidrug-resistant tuberculosis; OR, odds ratio; CI, confidence 
interval.
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ber of MDR TB cases observed during the study period. 
However, these estimates are the best currently available, 
given that the data make up the largest population-based 
TB registry in the United States. Second, although our defi -
nition of genotypic clustering was highly rigorous, the lack 
of detailed epidemiologic information precluded confi rma-
tion of transmission within California. Third, because our 
study did not include pan-susceptible or isoniazid-monore-
sistant strains, we cannot comment directly on MDR M. 
tuberculosis pathogenicity relative to these groups. Lastly, 
our analyses implicitly assume independence of outcome 
events, and household or community-level factors poten-
tially associated with clustering were not available. Future 
studies should be designed so that statistical methods can 
be used that are able to accommodate the possible effects 
of within-household clustering.

We found a substantial proportion of MDR TB cas-
es and case clustering in California among non–US-born 
persons, and the katG S315T mutation was independently 
associated with clustering. Validation of these fi ndings in 
larger cohorts and in different population settings may have 
crucial public health consequences.
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