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ABSTRACT

Chemotherapy drugs have been used for a long time in the treatment of cancer, but serious side
effects are caused by the inability of the drug to be solely delivered to the tumor when treating
cancer with chemotherapy. Natural products have attracted more and more attention due to the
antitumor effect in multiple ways, abundant resources and less side effects. Therefore, the
combination of natural active ingredients and chemotherapy drugs may be an effective antitumor
strategy, which can inhibit the growth of tumor and multidrug resistance, reduce side effects of
chemotherapy drugs. Nano-drug co-delivery system (NDCDS) can play an important role in the
combination of natural active ingredients and chemotherapy drugs. This review provides a
comprehensive summary of the research status and application prospect of nano-delivery strategies
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for the combination of natural active ingredients and chemotherapy drugs, aiming to provide a

basis for the development of anti-tumor drugs.

1. Introduction

Cancer is a major public health problem worldwide (Siegel
et al, 2021). In nearly 100 countries around the world, regard-
less of the level of development, cancer is one of the highly
prevalent malignant diseases which is a major cause of mor-
bidity and mortality. Cancer will become the leading cause
of death in every country in the 21st century and the most
important obstacle to extending life expectancy (Sarisozen
et al., 2016; Bray et al., 2018). The traditional methods of
cancer treatment include surgical resection, chemotherapy
and radiation therapy. Immunotherapy (Fu et al., 2022) and
photothermal therapy (Dai et al., 2022) have also emerged
in recent years.

Chemotherapeutics, also known as cytotoxic drugs, have
been used in antitumor therapy since the 1940s. They played
an important role in tumor treatment. The mechanism of
chemotherapeutics is complex, including affecting the chem-
ical structure of DNA, inhibiting nucleic acid synthesis, acting
on nucleic acid transcription and DNA replication and inter-
fering with mitotic tubulin synthesis (Xu et al., 2019a).
However, the target of chemotherapy drugs is also very
important for normal cells, which can cause inevitable dam-
age to the body during chemotherapy, such as hair loss and
gastrointestinal toxicity. Therefore, combination, synergistic
chemotherapy is a common strategy, and has been recom-
mended for tumor treatment due to its promoted therapeutic
effect and reduced systemic toxicity (Wan et al., 2019; Maleki
et al, 2021; Liu et al.,, 2021b). Nevertheless, co-administration

therapy may also have additive or synergistic effects resulted
from interaction with several distinct targets at reduced
administrated doses (Eftekhari et al., 2019). At present, there
have been studies on nano-drug delivery system (NDDS) for
the co-delivery of chemotherapy drugs with photosensitizers
(Xiao et al., 2021; Zhang et al, 2021b), and natural active
ingredients.

In recent years, natural products have become the top
priority of antitumor drug research and development due to
their clear antitumor effectiveness and richness of candidate
resources (Yin et al., 2019). Natural drugs are safe and have
little side effects (Liu et al., 2020b), which can enhance immu-
nity and improve chemotherapy sensitivity. More attractively,
the synergistic combination therapy with natural chemother-
apy sensitizers is becoming a promising strategy for con-
quering multidrug resistance and reducing the side effects
of chemotherapy drugs (Wang et al., 2015a). Therefore, the
combination of natural active ingredients and chemotherapy
drugs may be an effective antitumor strategy. Co-delivery of
mutiple drugs via the same vehicle may improve the che-
motherapy of tumors by synchronizing their exposure to the
drugs and achieving synergistic pharmacological action in
the tumor cells (Wan et al., 2019). Additionally, NDDS usually
have good biocompatibility (Sun et al., 2021b), low side
effects (Zhu et al., 2019), targeting (Lan et al., 2021b), con-
trolled release characteristics (Chen et al., 2020a), which have
brought promising prospect in cancer therapies due to their
uniquely appealing properties (Maleki et al., 2021; Liu et al,,
2021b). To date, advancements in nanotechnology provide
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more significant improvements and valuable information for
drug co-delivery systems (Zhang et al., 2021a), including
nanoparticles, liposomes, polymer micelles, polymer drug
conjugates (Majidinia et al., 2020). More importantly, the
antitumor drug delivery system based on nanocarriers clearly
shows the potential to overcome the problems related to
traditional chemotherapy (Sohail et al., 2021). In recent years,
with the continuous development of nano drug carriers, some
of them have been tested in clinical trials or used for disease
diagnosis and treatment (Zang et al., 2021). Nano drug
co-delivery system (NDCDS), which loads at least two anti-
cancer drugs with different physicochemical and pharmaco-
logical properties into a delivery system, is designed for the
purpose of clinical combination chemotherapy (Qi et al.,
2017). In this paper, the research status and application char-
acteristics of NDCDS of natural active ingredients combined
with chemotherapy drugs are reviewed and analyzed, which
aim to provide a basis for the research and development of
natural active ingredients and chemotherapy drugs for cancer
treatment.

2. The effect of natural active ingredients
combined with chemotherapy drugs

Studies have confirmed that the combination of natural active
ingredients and chemotherapy drugs exert a synergistic anti-
tumor effect through a variety of mechanism. Besides direct
antitumor effect, natural active ingredients also can inhibit
tumor multidrug resistance (MDR), decrease side effects of
chemotherapy drugs, and modulate immune function.

2.1. Induce tumor cell apoptosis and inhibit tumor cell
proliferation

Some natural active ingredients, such as schisandrin B (Sch
B), B-elemene (B-ELE), betulinic acid (BA), quercetin (Que)
and curcumin (CUR), can directly exert antitumor effect
through inducing tumor cell apoptosis and inhibiting tumor
cell proliferation when combined with chemotherapy drugs.
Sch B could inhibit the invasion and metastasis of lung can-
cer cells by inhibiting vascular endothelial growth factor. At
the same time, it could also enhance the cytotoxicity of
doxorubicin (DOX) and further promote cell apoptosis (Cai
et al,, 2020). B-ELE could inhibit cell proliferation, arrest cell
cycle and induce apoptosis (Zhai et al, 2019). BA had an
effective antitumor effect on paclitaxel (PTX)-resistant human
lung cancer cells (H460) through G2/M cell cycle arrest and
induced mitochondrial apoptosis (Zhan et al., 2018). BA may
also inhibit the proliferation, migration, invasion and tumor-
igenesis of pancreatic cancer cells by activating AMPK signal,
and it combined with gemcitabine (GEM) had an antitumor
effect on pancreatic cancer cells (Sun et al., 2019). Que com-
bined with PTX significantly inhibited cell proliferation and
increased cell apoptosis, blocked cell cycle at G2/M phase,
inhibited cell migration, induced endoplasmic reticulum
stress, and increased reactive oxygen species (ROS) produc-
tion (Zhang et al., 2020b). CUR could improve PTX-induced
apoptosis of HPV-positive human cervical cancer cells through

DRUG DELIVERY 2131

NF-kB-p53-caspase-3 pathway, and it combined with PTX
may have a better therapeutic effect in the treatment of
human cervical cancer (Dang et al., 2015). Cheng et al. (2018)
found that CUR could improve the antitumor effect of
Cisplatin (CDDP). The mechanism was related to ROS, and
the content of ROS was positively correlated with the inhi-
bition of cell proliferation. The combined treatment of RES
and 5-fluorouracil (5-FU) could enhance the anti-proliferation
effect on colorectal cancer cells (HCT116 and DLD1), induce
cell cycle arrest and increase apoptosis in S phase, inhibit
pAkt and pSTAT3 signal transduction, and reduce telomerase
activity (Chung et al., 2018). RES could activate TRPM2 chan-
nels in DBTRG glioblastoma cells to enhance PTX apoptosis
and oxidation by increasing intracellular steady-state ROS
levels and mitochondrial dysfunction (Ozturk et al., 2019). In
addition, B-ELE promoted the anti-proliferation and apoptosis
of CDDP in gingival squamous cell carcinoma (GSCC) in vitro
and in vivo by inhibiting STAT3 and blocking JAK2-STAT3
signaling pathway (Huang & Yu, 2017). B-ELE inhibited the
proliferation of bladder cancer cells in vitro through
ROS-5’AMP-activated protein kinase (AMPK) signaling pathway
and enhanced CDDP-induced mitochondrial-dependent apop-
tosis (Gan et al., 2020). Rhein and DOX played a synergistic
antitumor effect by reducing mitochondrial energy metabo-
lism in hepatocellular carcinoma cells (Wu et al., 2020a). BCL
combined with DTX inhibited tumor growth, increased cell
apoptosis, and reduced tumor angiogenesis in vivo, and
enhanced the antitumor effect of DTX on non-small cell lung
cancer (NSCLC) in a B-catenin-dependent manner (Lu et al.,
2020a). Oridonin and DOX presented a synergistic cytotoxic
effect in osteosarcoma cells. Oridonin increased the accumu-
lation of intracellular DOX and the rate of apoptosis
(Kazantseva et al.,, 2022). Compared with brusatol (BR) or
CDDP alone, CDDP and BR could exert synergistic anti-tumor
effect by increasing the release of cytochrome c in CT-26
cells, decreasing the expression of caspase-3 and caspase-9,
and increasing the ratio of the B-cell lymphoma 2 (Bcl-2)-
associated X protein/Bcl-2 (Chen et al., 2018). CDDP and
triptolide (TPL) combination treatment could induce apop-
tosis by increasing the expression of caspase-3, 8 and 9, PARP
and cytochrome ¢ (Ho et al., 2015).

2.2. Inhibit tumor multidrug resistance

Tumor multidrug resistance (MDR) refers to the phenomenon
that tumor cells are resistant to a series of chemotherapy
drugs with different structures and mechanisms when they
are resistant to a kind of chemotherapeutic drug, which is
an important reason for the failure of chemotherapy in clinic
(Kunjachan et al., 2013; Cao et al., 2018). The mechanisms of
MDR include elevated metabolism of xenobiotics, enhanced
efflux of drugs, growth factors, increased DNA repair capacity,
and genetic factors (gene mutations, amplifications, and epi-
genetic alterations) (Bukowski et al., 2020). Several factors
could be associated with drug resistance in cancer such as
overexpression of P-glycoprotein (P-gp), cancer stem cells
(CSCs), defect in apoptosis, mutation and alteration in DNA
repair pathways, angiogenesis, autophagy, and modulation
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in metabolic enzymes (Mohammad et al., 2020). One of the
advantages of co-loading natural active ingredients with che-
motherapy drugs is to reverse MDR. Many natural compo-
nents, such as resveratrol (RES) (Zhang et al., 2016b),
tetrandrine (TET) (Liao et al., 2019; Li et al., 2020e), epigal-
locatechin gallate (EGCG) (Cheng et al., 2016), pachymaric
acid and dehydrotudouic acid (PT) (Li et al., 2020f), quinine
hydrochloride (QN) (Shen & Qiu, 2017), B-ELE (Zhang & Guo,
2021), ferulic acid (FA) (Muthusamy et al., 2016), naringin
(Jabri et al., 2019), baicalein (BCL) (Li et al., 2018b), Que (Lu
et al, 2020b) and Sch B (Wang et al., 2017), could inhibit
MDR by inhibiting the ABC transport, including P-gp, BCRP,
ABCB1, etc. In addition, natural components can also inhibit
MDR effects by inhibiting epithelial-mesenchymal transition
through other pathways, such as RES (Buhrmann et al., 2015;
Xu et al,, 2017b), EGCG (Yuan et al,, 2017) and BCL (Yu et al,,
2017). At the same time, some natural components can
inhibit MDR effects by acting on genetic factors, such as Que
(Sang et al, 2014), CUR (Lu et al, 2017a; Xu et al., 2020),
RES (Vinod et al.,, 2015), cinnamaldehyde (CA) (Abbasi et al.,
2020) and chrysin (Lee et al.,, 2021). Rhein could increase the
accumulation of DOX in SMMC-7721/DOX cells by inhibiting
energy metabolism and inducing the opening of mitochon-
drial permeability transition pore (mPTP), and reverse the
drug resistance of SMMC-7721/DOX cells (Wu et al., 2019a).
A summary of the mechanism of reversing MDR of chemo-
therapy drugs by different natural active ingredients is shown
in Table 1.

2.3. Decrease side effects of chemotherapy drugs

Chemotherapy drugs can also damage normal tissues or cells
of the body while treating tumors, resulting in toxic and side
effects. Natural active ingredients combined with chemother-
apy drugs can affect on tumor tissues from multiple targets
and pathways, and reduce its toxicity by reducing the dosage
of chemotherapy drugs. Zeng et al. (2019) found that (3-ELE
could replace part of cabazitaxel (CBX) and reduce the dos-
age of CBX, thereby reducing toxicity. Jiang et al. (2016)
found that the antitumor activity of CUR combined with
etoposide (ETP) was higher than that of CUR and ETP alone,
and the dosage was reduced.

Some natural active ingredients can also directly decrease
the side effects of chemotherapy drugs, improve the safety
of clinical medication. Many natural active ingredients, such
as berberine (BER) (Coelho et al., 2017; Wu et al., 2019b),
EGCG (Cheng et al., 2016), honokiol (Huang et al., 2017; Pillai
et al, 2017; Huang et al., 2020), RES (Gu et al., 2018), gly-
cyrrhizin (GL) (Figure 1) (Lv et al., 2020), Que (Chen et al,
2019) and Sch B (Thandavarayan et al., 2015; Cai et al., 2020),
could reduce DOX-induced cardiotoxicity. In addition, BER
(Wang et al.,, 2021) could reduce irinotecan-induced gastro-
intestinal toxicity. RES could reduce PTX-induced neuropathic
pain (Li et al., 2019¢). Chrysin could reduce methotrexate
(MTX)-induced Hepatotoxicity (Ali et al., 2014). Angelica poly-
saccharide (ASP) could protect bone marrow stromal cells
from 5-FU chemotherapy damage (Xiao et al., 2017). CUR
could improve CDDP-induced spatial learning and memory

impairment (Oz et al., 2015) and nerve oxidative damage
(Ozkaya & Naziroglu, 2020). CUR (Soetikno et al., 2019) and
oleanolic acid (OA) (Potocnjak et al., 2019) could reduce
CDDP-induced nephrotoxicity. A summary of the mechanism
of natural active ingredients reducing side effects of chemo-
therapy drugs is shown in Table 2.

2.4. Immunomodulating activity

The immune function of the body has a great influence on
the occurrence and development of tumors. Tumor immu-
notherapy can achieve the purpose of identifying and killing
tumor cells by regulating the immune ability of patients, and
minimize the toxicity (Zhang et al., 2016¢).

The study has shown that natural polysaccharides can
activate T lymphocytes, B lymphocytes, macrophages and
other immune cells to exert their immune activities (Chen &
Huang, 2018). ASP could restore the balance of Th1/Th2
immune response, improve tumor microenvironment immu-
nosuppression and enhance antitumor immune function,
resulting in synergistic antitumor effect with DOX (Wang
et al., 2020). Astragalus polysaccharides (APS) could exert
anti-tumor effects by restoring immune organs, regulating
cellular immune response and increasing the levels of cyto-
kines IL-2, TNF-a and IFN-y. In addition, APS combined with
5-FU could improve the anti-tumor effect accompanied by
the immunosuppressive alleviation of 5-FU on immune sys-
tem, which may be suitable as an immune adjuvant for che-
motherapy (Li et al., 2020c). Que could reshape the tumor
microenvironment (TM) by reducing the expression of colla-
gen, and promote the penetration of DOX into deep tumor
tissues, so as to obtain better antitumor effect (Li et al,
2019b). Quagliariello et al. (2017) found that the combination
of rapamycin (RAP) and Que could significantly reduce the
levels of IL-8, IL-6 and IL-19 cytokines, suggesting that the
combination could regulate the immune state of the body
and enhance tumor immunity. Guo et al. (2016) found that
andrographolide combined with bleomycin could reduce the
levels of IL-1B, TNF-q, IL-6 and TGF-31 cytokines, regulate the
immune state of tumor cells, indicating that andrographolide
can be used as an adjuvant drug for bleomycin.

3. Advantages of NDCDS of natural drug active
ingredients and chemotherapy drugs

3.1. Increase the capacity of targeting delivery of
drugs to tumors

Targeted therapy in cancer is the primary role of NDCDS of
natural drug active ingredients and chemotherapy drugs. The
efficiency of nano-drug targeting tumor depends on the
physical and chemical properties of nanocarriers (such as
size and surface chemical properties) and the pathophysio-
logical characteristics of target tissues. At present, the clinical
application of nano-drugs mostly relies on passive targeting
(Arranja et al., 2017). Additionally, nanocarriers can be mod-
ified by surface modification, and target molecules can be
combined with receptors with high expression on the surface



Table 1. Mechanism of natural active ingredients reversing MDR of chemotherapy drugs.

DRUG DELIVERY 2133

Mechanism of natural active ingredients

Chemotherapy drugs

Natural active ingredients

Ref

Inhibit the activation of NF-kB and p38 MAPK signaling
pathways to reverse p-Glycoprotein (P-gp)-mediated
cellular MDR

Down-regulate the expression of ABCB1 transporter to
increase the intracellular concentration of chemotherapy
drugs

Inhibit P-gp transport activity to reduce the outflow of
DOX in cancer cells

Reduce the levels of P-gp and caveolin-1 protein to enhance
the sensitivity of DOX to drug-resistant MCF cells

Inhibit the function of P-gp and acting as the sensitizer of
DOX to prevent the outflow of DOX from MCF-7/ADR
cells

Inhibit the antioxidant protein peroxiredoxin-1 to reverse
DOX resistance of DOX-resistant osteosarcoma cells

Inhibit the expression of P-gp and down-regulating the
expression of anti-apoptotic protein surviving to
increase the intracellular accumulation of DOX

Down-regulating ABCB1 expression to overcome P-gp-
mediated MDR

Inhibit the expression of breast cancer resistance protein
(BCRP) to enhance the antitumor activity of PTX in
BCRP-mediated MDR

Reduce the expression of P-gp to increase the
accumulation of antitumor drugs

Reduce the activation of PI3K/Akt signaling pathway,
reducing the expression of P-gp, and reversing the
phenotypes of mesenchymal cells and stem cell-like
cells to reverse DTX resistance

Sensitize glioblastoma cells to DOX

Improve the sensitivity of rat glioma cell line (C6) cells to
™Z

Inhibit Hsp27 to sensitize glioblastoma cells to TMZ

Regulate PTEN/Akt signaling pathway to prevent
epithelial-mesenchymal transition (EMT), thereby
reversing DOX resistance in gastric cancer

Stimulate AKT/STAT3 pathway and inhibiting MDR1
signaling pathway to sensitize the apoptosis and
autophagy of CDDP-resistant oral cancer CAR cells

Inhibit epithelial-mesenchymal transition (EMT) and
anti-apoptotic genes mediated by PI3K/Akt/NF-kB
pathway to reverse CDDP resistance of A549 lung
adenocarcinoma cells

Up-regulate intercellular connection and down-regulating
NF-kB pathway to inhibit EMT phenotype, chemical
sensitizing colorectal cancer cells to enhance the
antitumor effect of 5-FU on colorectal cancer cells

Inhibit energy metabolism and inducing the opening of
mitochondrial permeability transition pore (mPTP) to
increase the accumulation of DOX in SMMC-7721/DOX cells

Reduce microRNA-30c-mediated metastasis-associated gene
1 to increase the sensitivity of PTX -resistant non-small
cell lung cancer cells to PTX

Block the G2/M phase to increase the resistance of 5-FU to
5-FU-resistant AGS cells.

Block the expression and activation of human epidermal
growth factor receptor-2(HER-2) to induce the death of
SK-BR-3 cells overexpressing HER-2

Adriamycin

Doxorubicin (DOX),
Vincristine, Paclitaxel
(PTX)

DOX

DOX

DOX

DOX

DOX

PTX

PTX

5-fluorouracil (5-FU),
Epirubicin
Docetaxel

DOX
Temozolomide

Temozolomide
DOX

Cisplatin (CDDP)

CcbDp

DOX

PTX

5-FU

Docetaxel

Resveratrol (RES)

Tetrandrine (TET)

Epigallocatechin gallate (EGCG)
Pachymaric acid and dehydrotudouic

acid
Quinine hydrochloride (QN)

B-elemene (B-ELE)

Schisandrin B (Sch B)

Ferulic acid (FA)

Naringin

Baicalein (BCL)

Quercetin (Que)

Cinnamaldehyde (CA)
Curcumin (CUR)

Que
RES

EGCG

BCL

RES

Rhein

CUR

Chrysin

RES

(Zhang et al., 2016b)

(Liao et al., 2019)

(Cheng et al., 2016)
(Li et al., 2020f)

(Shen & Qiu, 2017)

(Zhang & Guo, 2021)

(Wang et al., 2017)

(Muthusamy et al., 2016)

(Jabri et al., 2019)

(Li et al., 2018b)

(Lu et al., 2020b)

(Abbasi et al., 2020)
(Xu et al., 2020)

(Sang et al., 2014)
(Xu et al., 2017b)

(Yuan et al,, 2017)

(Yu et al., 2017)

(Buhrmann et al., 2015)

(Wu et al., 2019a)

(Lu et al., 2017a)

(Lee et al., 2021)

(Vinod et al., 2015)

of tumor cells to achieve the purpose of active targeting
delivery of drugs. Common targeted modification molecules
include folate (FT) (Hu et al., 2015), hyaluronic acid (HA)
(Zhang et al., 2019a), lactoferrin (Lf) (Fang et al., 2014), poly-
peptide (Yan et al,, 2017; Zan et al., 2019; Deng et al., 2020),
wheat germ lectin (Wang et al., 2019¢), fucoidan (Chu et al.,
2019), folic acid (FA) (Rawal et al., 2020a), prostate-specific
membrane antigen targeted ligand (Sun et al.,, 2021a), ritux-
imab (Varshosaz et al.,, 2021), etc.

Guo et al. developed star-shaped polyester-based folic
acid-modified nanoparticles (DOX+ CUR-FA-NPs) to co-deliver

DOX and CUR to enhance tumor targeting selectivity. In vitro
and in vivo experiments showed (DOX + CUR)-FA-NPs not only
had remarkable tumor targeting and anticancer efficacy, but
also had less side effects on normal tissues (Guo et al., 2021).
Deng et al. (2020) developed a pH-responsive targeting
nanosystem modified with T7 peptide, which co-loaded DTX
and CUR for the treatment of esophageal cancer. This T7
peptide-modified targeting nanosystem released loaded
drugs in the acidic microenvironment of tumor and played
a synergistic antitumor effect. Wang et al. (2016) prepared
arginine-glycine aspartic acid (RGD) modified lipid-coated
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Figure 1. Schematic of GL attenuating DOX-induced cardiotoxicity. Reprinted with permission from Lv et al. (2020).

Table 2. Mechanism of natural active components reducing side effects of chemotherapy drugs.

Chemotherapy Natural active
Side effects drugs ingredients Mechanism of natural active ingredients Ref
Cardiotoxicity DOX Berberine (BER) Reduce oxidative stress and mitochondrial dysfunction, p66Shc (Coelho et al.,, 2017; Wu
mediated by sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3) to et al., 2019b)
protect against DOX-induced cardiotoxicity
Cardiotoxicity DOX EGCG Scavenge ROS produced by DOX and prevent ROS from (Cheng et al., 2016)
attacking cardiomyocytes to reduce DOX-induced
cardiotoxicity
Cardiotoxicity DOX Honokiol Mediate the activation of SIRT3, inhibit mitochondrial protein (Huang et al., 2017; Pillai
acetylation, enhance cardiac PPARy activity, inhibit the et al,, 2017; Huang et al,,
expression of thioredoxin-interacting protein and the 2020)
NOD-like receptor family pyrin domain-containing 3 to
protect the heart from DOX-induced cardiac injury
Cardiotoxicity DOX RES Block DOX-induced E2F transcription factor 1/AMP-activated (Gu et al., 2018)
protein kinase a2 and E2F1/mammalian rapamycin (RAP)
target protein complex 1 in cardiomyocytes to reduce
DOX-induced cytotoxicity
Cardiotoxicity DOX Glycyrrhizin (GL) Improve autophagy flux through Akt/mTOR signaling pathway (Lv et al., 2020)
dependent on high mobility group protein 1 to reduce
DOX-induced cardiotoxicity
Cardiotoxicity DOX Que Inhibit oxidative stress and up-regulate the expression of (Chen et al.,, 2019)
14-3-3y to protect cardiomyocytes from DOX injury
Cardiotoxicity DOX Sch B Regulate DNA damage, oxidative stress, and inflammation by (Thandavarayan et al., 2015)
inhibiting MAPK/p53 signaling pathway to prevent
DOX-induced cardiac dysfunction
Gastrointestinal Irinotecan BER Reduced the gastrointestinal toxicity caused by irinotecan (Wang et al., 2021)
toxicity
Neuropathic pain PTX RES Reduce apoptosis, inhibited inflammation, and alleviate (Li et al., 2019¢)
oxidative stress by activating PI3K/Akt and SIRT1/PGCla
signaling pathways to prevent PTX -induced neuropathic
pain
Hepatotoxicity Methotrexate Chrysin Restore the antioxidant defense function of cells and (Ali et al., 2014)
(MTX) down-regulate the expression of p53, Bax, and caspases 3
to reduce MTX-induced hepatotoxicity
Bone marrow 5-FU Angelica Reduce oxidative damage of stromal cells and improve their (Xiao et al., 2017)
stromal cells polysaccharide hematopoietic function to protect bone marrow stromal
injury (ASP) cells from 5-FU chemotherapy damage
Spatial learning CDDP CUR Restore cholinergic function and enhance oxidative state to (Oz et al., 2015)
and memory improve CDDP-induced spatial learning and memory
impairment impairment
Nerve oxidative CDDP CUR Inhibit mitochondrial ROS production by regulating transient (Ozkaya & Naziroglu, 2020)
damage receptor potential melastatin 2 signaling pathway to prevent
CDDP-induced optic nerve oxidative damage and cell death
Nephrotoxicity CDDP CUR Inhibit inflammation, apoptosis, extracellular regulated kinase (Soetikno et al., 2019)
1/2 phosphorylation, and NF-kB expression of oxidative
stress
Nephrotoxicity CDDP Oleanolic acid Inhibit oxidative stress, apoptosis, autophagy, and inflammatory  (Potocnjak et al., 2019)

(OA)

response induced by CDDP

PLGA nanoparticles (RGD-SRF-Que NPs) for targeted delivery  preparations in both the NPs group and the solution group

of sorafenib (SRF) and Que to treat liver cancer. The results
showed that the efficacy of SRF combined with Que

were better than that of a single drug preparation. And
RGD-SRF-Que NPs had a more significant tumor growth



inhibitory effect than non-RGD modified SRF-Que NPs. Chu
et al. (2019) used dual nanosystems to jointly deliver EGCG
and CUR. A dual targeting system was established by using
HA and fucoidan as targeting agents for CD44 on prostate
cancer cells and P-selectin in tumor vascular system, respec-
tively. It was found that compared with EGCG/CUR combined
solution, EGCG/CUR loaded nanoparticles were more
absorbed into prostate cancer cells, resulting in better anti-
tumor efficiency.

3.2. Maintain the optimal proportion of combined drug
administration

In combination antitumor therapy, the optimal proportion of
drugs has a great influence on the antitumor effect. The
inappropriate proportion of drugs may cause antagonism of
combined drug administration and reduce the therapeutic
effect. NDCDS can change the original pharmacokinetic char-
acteristics of drugs, so as to ensure that the combined drugs
enter tumor cells with a constant proportion, which is con-
ducive to the synergy between drugs.

At present, in order to maintain the optimal ratio of com-
bined drug administration, the optimal ratio of the two drugs
was first screened through in vitro cytotoxicity experiments
and calculation of the combination index. Then the
nano-formulations are prepared according to the proportions.
Finally, in vitro release and in vivo pharmacokinetic studies
were used to verify whether the optimal proportion was
maintained in the nano-formulations. Jia et al. (2015) pre-
pared multifunctional mesoporous silica nanoparticles (MSN)
co-delivery of PTX and TET. When the molar ratio of PTX/
TET was 4.4:1, the drug resistance of MCF-7/ADR cells to PTX
was completely reversed, and it was more effective than
PTX-CTAB @ MSN or free PTX in inhibiting the growth of
tumor cells. Chen et al. (2014) developed PLGA nanoparticles
co-delivery of VCR and verapamil (VRP). In multidrug resistant
MCF-7/ADR cells, the 1:250 molar ratio of VCR/VRP showed
a strong synergistic effect, which could enhance the efficacy
of multidrug resistant breast cancer and reduce the toxicity
to normal cells. Chen et al. (2017) prepared bovine serum
albumin (BSA) coated supermagnetic iron oxide nanoparticles
(SPIOs) by co-precipitation method. CUR and sunitinib (Sun)
were co-loaded in BSA-SPIOs (denoted as SPIO-SC) to achieve
synergistic treatment. The study showed that the proportion
range of the initial designed optimal concentration of CUR
and Sun was maintained at the tumor target site (Sun:CUR
= 0.5-0.25), resulting in the optimal synergistic effect and
more effective treatment results. Rawal et al. (2020a) devel-
oped FA modified NLCs to promote the targeting and pro-
portional co-delivery of DTX and CUR, namely FA-DTCR-NLCs.
In vivo pharmacokinetic study, DTX and CUR showed a syn-
ergistic ratio of 1:2 throughout the cycle. The in vivo toxicity
evaluation of FA-DTCR-NLCs showed that DTX-related side
effects were significantly reduced. The results of preclinical
studies in vitro and in vivo proved the excellent therapeutic
and safety of FA-DTCR-NLCs in the treatment of NSCLC.

Liposomes can also be used to maintain the required
proportion of synergistic drugs and coordinate the release
of co-delivery drugs to achieve enhanced antitumor activity
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in vivo (Shen & Qiu, 2017). Cheng et al. (2018) prepared CUR
and CDDP co-loaded liposomes (CDDP/CUR-Lip) for the treat-
ment of hepatocellular carcinoma. MTT method and median
effect method were used to determine the optimal synergistic
drug loading ratio when the molar ratio of CDDP to CUR
was 1:8. In vitro release experiments showed that CDDP and
CUR had similar release rates within 24 h, indicating that the
ratio of the two drugs can remain stable to ensure the opti-
mal synergistic ratio at all time points. In vivo pharmacoki-
netic studies also showed that CDDP/CUR-Lip in plasma at
different time points could maintain a synergistic drug ratio
of 1:8. Zucker and Barenholz (2010) prepared topotecan and
VCR-loaded liposomes (LipoViTo). Pharmacokinetics and bio-
distribution studies showed that LipoViTo simultaneously
delivered two drugs to tumors and released them in a pre-
determined proportion. LipoViTo were more effective in two
mouse tumor models than free drugs and liposomes alone
or in combination.

3.3. Control the sequence of drug release

The multi-stage NDDS can control the sequence and process
of drug combination therapy by regulating the release
response mechanism and release rate of combined drugs
under different stimuli, so as to achieve more accurate drug
delivery process and improve the effect and specificity of
combination. Lin et al. (2019) designed a pH and redox
two-stage response nanocarrier for co-delivery of phosphor-
ylated curcumin (p-CUR) and DOX. MSNs nanocarriers
(Figure 2) were functionalized by specific cuttable PEGylation
and disulfide cross-linked hydrogel coatings: MSNs were
encapsulated as core-loaded DOX, p-CUR in hydrogel coat-
ings. In the blood circulation, PEGylated nanocarriers had a
longer time. In tumor tissues, polyethylene glycol (PEG) shell
was cracked due to its sensitivity to pH, and cationic hydrogel
coating was exposed to improve cell uptake. In tumor cells,
the hydrogel coating could be lysed and released by gluta-
thione. Thus, the double-response shell endowed the nano-
carrier with the cell uptake and specific cancer cell target
release triggered by the extracellular pH of tumor cells, and
the synergistic effect of p-CUR and Dox enhanced the apop-
tosis of HelLa cells. In order to kill cancer stem-like cells (CSCs)
in tumors, Shen et al. (2021) prepared nanoparticles to
co-load all-trans retinoic acid and camptothecin (CPT).
All-trans retinoic acid is released under hypoxic conditions,
resulting in CSCs differentiation under hypoxic conditions. In
differentiated CSCs, ROS levels increased, leading to CPT
release and subsequent cell death. This dual strategy could
control drug release in stem cells, reduce stem cell-related
drug resistance, and enhance chemotherapy response. It
could inhibit tumor growth and prevent postoperative tumor
recurrence and metastasis in breast tumor mouse models.

3.4. Used as a drug carrier

Some natural active ingredients have not only the same drug
encapsulation ability as synthetic nanomaterials, but also
better biodegradability, biocompatibility and safety than
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Figure 2. lllustration of the dual responsive nanocarriers for co-delivery p-Cur and Dox. Reprinted with permission from Elsevier (Lin et al., 2019).

synthetic nanomaterials. They can be used as natural drug
carrier for nano-drug delivery, which can improve the bio-
availability and efficacy of drugs. At present, ASP (Wang
et al.,, 2020), bletilla polysaccharide (Wang et al., 2019a),
Ganoderma lucidum polysaccharide (Zheng et al., 2021a),
ursodeoxycholic acid (MDCA) (Anwar et al., 2018), Semen
Armeniacae Amarum protein (Lin et al., 2020) have been suc-
cessfully used for the delivery of DOX, MTX, sulfasalazine and
PTX. A summary of the studies of natural active components
as drug carriers in NDCDS is shown in Table 3.

4. Types and characteristics of NDCDS

NDCDS have shown strong advantages in the delivery of
natural active ingredients and chemotherapy drugs, including
high encapsulation efficiency, prolonging circulation time,
controlling release and improving therapeutic effect. At pres-
ent, there are mainly two strategies for NDCDS of natural
active ingredients and chemotherapy drugs (Figure 5), phys-
ical encapsulation and carrier-linked prodrug delivery system,
and physical encapsulation include liposomes, nanoparticles,
polymer micelles, polymer drug conjugates, nanosuspensions,
nanoemulsions, etc.

4.1. Liposomes

Liposomes have the characteristics of nanoscale, biofilm-like
structure, good biocompatibility, and relatively stable.
Moreover, their surface modification properties make the
application of liposomes truly extend to targeted and envi-
ronmentally sensitive delivery systems (Li et al., 2019a). The
aqueous phase and lipid bilayer of liposomes can contain a
variety of drugs. For example, hydrophilic drugs can be

encapsulated in the core of hydrophilicity. Hydrophobic drugs
can be encapsulated in the lipid membrane. Amphoteric
drugs can be located on the phospholipids in the aqueous
phase and membrane. A summary of the liposomes used to
co-deliver chemotherapy drugs and natural active ingredients
is shown in Table 4.

4.1.1. Passive targeting liposomes

The distribution of the passive targeting preparation in the
body after it is administered intravenously is determined by
the size of the microparticles. Small-size nanoparticles usually
have strong tissue permeability and small renal excretion
(Sohail et al., 2021).

Jiang et al. (2016) prepared the nano-lipid carrier
(ETP-CUR-NLC) containing ETP and CUR, which showed low
cytotoxicity in normal tissues and high cytotoxicity in tumor
tissue in vivo. Meng et al. (2016a) co-encapsulated Res and
PTX in PEGylated liposomes, which could produce strong
cytotoxicity to drug-resistant MCF-7/ADR tumor cells in vitro,
and improve the bioavailability of drugs and tumor retention
ability in vivo.

4.1.2. Active targeting liposomes

Through the modification of the special ligands, liposomes
can also achieve active targeting. HA can modify the surface
of liposomes to give them targeting. This may be because
the specific adhesion of cancer cells to HA ligands is
enhanced, and the activity and permeability of HA adminis-
tration are increased, resulting in the improvement of the
efficacy of standard dosage, reduction of side effects, and
overcoming drug resistance. Mahira et al. (2019) prepared
cationic liposomes of CBX and silibinin (SIL) by ethanol injec-
tion method, and performed surface functionalization with
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Figure 3. Proposed schematic diagram of AP-PP-DOX (Angelica polysaccharide-peptide-doxorubicin) nanoparticles for antitumor drug delivery. Reprinted with

permission from Wang et al. (2020).

Dual Active Targeting

MDCA

Figure 4. Structure of lactobionic/folate dual-targeted amphiphilic
maltodextrin-based micelles for targeted delivery of sulfasalazine and resver-
atrol. Reprinted with permission from American Chemical Society (Anwar et al.,
2018).

anionic HA through electrostatic interaction. The results
showed that HA-coated liposomes were more effective, and
CBX and SIL showed a synergistic effect on prostate cancer.
Liu et al. (2016b) constructed HA modified nanoliposomes
(NLCs) as a carrier for co-delivery of BCL and DOX. In vitro
cytotoxicity experiments showed that HA-modified NLCs were
better than BCL/DOX-NLCs in reducing the activity of breast
cancer (MCF-7/ADR) cells, which may be due to the fact that
HA ligands on the surface of particles can target HA receptors
on the surface of tumor cells, thereby promoting the entry
of BCL and DOX into cancer cells. Lu et al. (2017b) prepared

the targeted NLCs modified by HA for co-delivery of GEM
and BCL precursors by nanoprecipitation technology. In vivo
antitumor experiments showed that HA-GEM-BCL NLCs had
the strongest antitumor effect on pancreatic cancer animals
compared with other liposomes, and had less systemic tox-
icity to tumor treatment in vivo. At the same time, the cell
uptake efficiency of HA-GEM-BCL NLCs in vitro was signifi-
cantly higher than that of other NLCs.

4.1.3. pH-sensitive liposomes

When liposomes deliver therapeutic drugs in vivo, the change
of pH can make some new liposomes release drugs in specific
pathological tissues. pH-sensitive liposomes are widely used
environmental-sensitive liposomes (Li et al., 2019a). Cao et al.
(2019a) developed a pH-sensitive nanostructured lipid carrier
(DOX/ELE Hyd NLCs) loaded with DOX and B-ELE for the
treatment of lung cancer. When NLCs were transported to
acidic tumor sites, acid-sensitive hydrazone bonds may
decompose and promote drug release. Compared with non
pH-sensitive NLCs and single drug-loaded NLCs, pH-sensitive
and double drug-loaded NLCs showed higher cytotoxicity
and tumor inhibition rate.

4.1.4. Ultra-deformable liposomes

Liposomes can increase the penetration rate of drugs through
the skin, but they are limited by their positioning in the
stratum corneum during use. Ultra-deformable liposomes
composed of phospholipids and edge activators are used to
increase the skin penetration of different biologically active
substances, which can achieve obvious drug localization even
in the bloodstream. Cosco et al. (2015) co-encapsulated RES
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Figure 5. Two strategies for NDCDS of natural active ingredients and chemotherapy drugs: physical encapsulation and carrier-linked prodrug delivery

system.

and 5-FU in ultra-deformable liposomes. Compared with the
free drug form and a single encapsulant, the ultra-deformable
liposomes co-encapsulated by the two drugs had increased
antitumor activity in skin cancer cells. This effect may depend
on super-deformable liposomes, which may accumulate in
deeper skin layers, thereby creating a skin reservoir from
which RES and 5-FU can be gradually released.

4.2. Nanoparticles

4.2.1. Lipid nanoparticles

Lipid nanoparticles have stable properties, simple prepara-
tion, and a certain sustained and controlled release effect,
which can reduce the toxicity of drug loading. Targeted lipid
nanoparticles with specific modifications can actively target
the diseased tissues (Tapeinos et al., 2017). Li et al. (2020g)
established an active targeting drug delivery system (FA-LB-
MSNs) for FA modified PEGylated lipid bilayer modified mes-
oporous silica nanoparticles, which jointly delivered PTX and
tanshinone IlA (Tan IlA). The bioadhesion between FA and
its receptors significantly increased the uptake of FA-LB-MSNs
by NB4 cells. Compared with uncoated MSNs, FA-LB-MSNs
showed sustained drug release, and PTX and Tan IIA were
released synchronously from the carrier. Gao et al. (2019)
prepared MSNs with a layer of polyethylene glycol lipid
bilayer (PL) on the surface, which was used to co-load PTX
and CUR, and to control the release of loaded drugs from
the mesoporous. Cell uptake and localization studies showed
that MSNs with a layer of polyethylene glycol lipid bilayer
could effectively carry drugs into cancer cells with sustained

release characteristics, reduce the clinical dosage of the drug,
reduce its side effects, and showed good targeting charac-
teristics for breast cancer.

4.2.2. Active targeting nanoparticles

In order to improve the targeting of nanoparticles, research-
ers have tried to functionalize their surface to better achieve
the purpose of active targeting in recent years. Dong et al.
(2020) developed mesoporous silica nanoparticles (Figure 6)
coated with graphene oxide modified by HA for the com-
bined administration of CA and DOX to enhance their com-
bined therapeutic effect on tumor cells. CA and DOX
co-loaded graphene oxide coated mesoporous silica nanopar-
ticles (MSNCA @ GODOX-HA) actively targeted tumor cells
through the “ligand receptor” affinity between HA and CD44
receptors, improved the advantages of CA and DOX, limited
their shortcomings, so as to achieve effective treatment of
cancer. Li et al. (2017c) prepared Tf-modified DTX and BCL
loaded solid lipid nanoparticles (Tf-D/B-SLNs) for lung cancer
combined chemotherapy, which had better antitumor effi-
ciency than unmodified SLNs and single drug loaded SLNs.
Gao et al. (2021) prepared PLGA NPs encapsulated antitumor
drugs DOX and CUR by solvent evaporation method. Then,
the extracted TE10 cell membrane and DSPE-PEG were
self-assembled to wrap the drug-loaded PLGA NPs, so that
the drug carrier had homologous targeting function, signifi-
cantly improved the drug concentration of the target site.
The results showed that PMPNs could be specifically taken
up by TE10/DOX cells, and exhibited good antitumor effect
in vitro. At the same time, it had excellent targeting and
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therapeutic effect in TE10/DOX xenograft mice. Wang et al.
(2015b) synthesized PTX and BCL prodrugs containing FA
and HA dual targeting ligands, and prepared multifunctional
self-assembled nanoparticles for delivery of PTX prodrug and
BCL prodrug. HA and FA on the surface of the complex could
bind to CD44 receptor and folate receptor respectively. The
results showed that PTX-BCL nanoparticles exhibited good
antitumor activity in a wide range of drug concentration and
had obvious synergistic effect. In addition, nanoparticles with
folate receptor (Hiremath et al., 2019; Guo et al., 2021) active
targeting and dual targeting (Wang et al., 2015b; Cui et al.,
2016) were also studied.

4.2.3. pH-sensitive nanoparticles

The pH-sensitive polymer nanocarriers are developed by
using the acidic microenvironment in tumor tissues and
tumor cell/lysosomes to achieve the efficient and rapid
release of antitumor drugs tumors. Martinez-Edo et al. (2020)
prepared a glycyrrhetinic acid (GA)-modified pH-triggered
MSN based nanocarrier for the delivery of DOX/
CPT-polyethylene glycol(CPT-PEG). GA modified drug delivery
system could be selectively absorbed by HepG2 cells. Under
acidic conditions (pH = 4), DOX could be rapidly released
and CPT-PEG could be gradually released. The results showed
that the presence of this system reduced the systemic toxicity
of combined treatment, but still maintained the effective
cytotoxicity of liver cancer. Gao et al. (2017a) prepared a new
type of pH-sensitive prodrug nanoparticles by synthesizing
the self-assembly of amphiphilic macromolecular prodrugs

for selective co-delivery of DOX and CUR. Compared with
the neutral environment (pH = 7.4), CUR-DOX-NPs could
release DOX and CUR more effectively in acidic environments
(pH = 5.0). CUR-DOX-NPs were easily absorbed by cells, and
selectively released drugs into human breast cancer cell line
MCF-7 with significant cytotoxicity. Compared with the free
DOX at the same level, CUR-DOX-NPs had lower cardiac tox-
icity and were safer for zebrafish. Khan et al. (2019b) prepared
pH-sensitive CDDP/OA calcium carbonate nanoparticles (LCC
NPs) by microemulsion method. In vitro release studies
showed that LCC NPs released more drugs at acidic pH than
at alkaline pH, and it was pH-sensitive and ideal carrier for
chemotherapy drugs. Cell viability test and toxicity evaluation
showed that CDDP/OA-LCC NPs could not only reduce
CDDP-induced hepatotoxicity, but also effectively treat hepa-
tocellular carcinoma. Zeng et al. employed HA-conjugated
CUR and D-a-tocopheryl acid polyethylene glycol succinate
as selective drug-carrying carriers to deliver dasatinib to can-
cer cells. The nanoparticles were pH sensitive and could
accelerate drug release at low pH conditions. In vitro and in
vivo experiments showed that the nanoparticles had obvious
cytotoxicity to HepG2 cells and could inhibit the growth of
solid tumors in mice (Zeng et al., 2022).

4.2.4. Redox-responsive nanoparticles

In addition to pH-responsive nanoparticles, redox-responsive
nanoparticles were also used for the co-delivery of natural
active ingredients and chemotherapy drugs. Xue et al. pre-
pared citronellol-cabazitaxel conjugate self-assembled
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nanoparticles (CSNPs) by conjugating cabazitaxel with citro-
nellol via the disulfide bond that was redox-sensitive to the
high concentration of glutathione within tumor cells (Xue
et al,, 2016). CSNPs could rapidly release cabazitaxel in tumor
cells. The in vivo pharmacokinetics of CSNPs could be appar-
ently improved, and CSNPs had a target effect for accumu-
lating at the tumor site. Li et al. developed a novel pH and
redox dual-sensitive polypeptide-calcium phosphate hybrid
nanoparticles (Li et al., 2021b). With the disulfide-crosslinked
interlayer and the Calcium phosphate (CaP) shell, the
polypeptide-calcium phosphate hybrid nanoparticles encap-
sulated CUR into the hydrophobic core of micelles and loaded
DOX on the hydrophilic segment of micelles as well as CaP
shell. The premature leakage of drugs from the nanoparticles
at physiological pH was efficiently restrained because of the
enhanced structure integrity, whereas at acidic and hypoxia
microenvironment the release of both drugs was promoted
due to the rapid dissolution of the CaP shell and the break
of the disulfide crosslinked network.

A summary of the researches of nanoparticles used to
co-deliver chemotherapy drugs and natural active ingredients
is shown in Table 5.

4.3. Polymeric micelles

Polymeric micelles are a macromolecular assembly formed
by synthetic block copolymer or graft copolymer, which have
a two-phase structure of a spherical core and a shell
(Yokoyama, 2014). Polymer micelles have core-shell structures.
Hydrophobic nuclei are commonly used to encapsulate poorly
water-soluble or hydrophobic drugs, which can improve the
solubility and bioavailability of encapsulated drugs and avoid
rapid degradation of drugs in vivo. Hydrophilic shells can
prolong circulation time and improve spatial stability by
reducing hydrolysis in blood circulation. Polymeric micelles
can selectively and effectively accumulate in tumors by
enhancing the permeability and retention (EPR) effect, thus
improving the therapeutic effect of chemotherapy drugs. A
summary of the researches of polymer micelles used to
co-deliver chemotherapy drugs and natural active ingredients
is shown in Table 6.

4.3.1. Passive targeting polymer micelles

Sabzi et al. (2020) synthesized a novel biodegradable
polye-caprolactone-co-maleic anhydride grafted citric acid
copolymer micelles (PCL-co-P(MA-g-CA)) for co-delivery of
DOX-CUR to eradicate MDA-MB231 cells. The unique micelle
structure allowed the simultaneous loading of hydrophilic
DOX and hydrophobic CUR, and the loading efficiency of
each drug was above 98 %. DOX@CUR loaded micelles
showed synergistic effect, and the combined treatment of
DOX and CUR nanoparticles enhanced the cytotoxicity of
MDA-MB231 cells by promoting apoptosis. Lv et al. (2016b)
prepared polyethylene glycol-bock-polylactic acid micelles
for co-delivery of DOX and CUR to multidrug-resistant breast
cancer (MCF-7/ADR) cells. In vitro experiments showed that
(DOX + CUR)-micelles could reduce the DOX efflux rate

through the inhibitory effect of CUR on P-gp, significantly
increase the uptake of DOX by MCF-7/ADR cells, thereby
enhancing the in vitro cytotoxicity of DOX. In vivo experi-
ments showed that compared with (DOX)-micelles, (CUR)-
micelles, free (DOX+ CUR), free DOX, and free CUR,
(DOX + CUR)-micelles had more tumor accumulation and bet-
ter antitumor effect in drug-resistant MCF-7/ADR xenograft
model. Zheng et al. (2021b) developed a polymer nano
micelle for co-delivery of TPL and an antitumor chemother-
apeutic drug SN38. Amphiphilic SN38 prodrug polymeric
micelles (PSN38) and encapsulated the hydrophobic
esterase-responsive prodrug of TPL, TPL-naphthalene sulfon-
amide (TPL-nsa), were synthesized to form PSN38@TPL-nsa
nanoparticles. PSN38@TPL-nsa showed strong antitumor
effect and reshaped tumor microenvironment in cancer-related
fibroblasts-rich peritoneal disseminated tumor and
patient-derived xenograft model of gastric cancer.

4.3.2. Active targeting polymer micelles

The polymer micelles are surface modified to achieve the
active targeting of tumor sites. Sarisozen et al. (2016) devel-
oped PEG-PE-based polymeric micelles modified with
single-chain fragment variable region of glucose transporter-1
antibody as ligand for the synergistic delivery of DOX and
CUR for the treatment of glioblastoma to promote blood-brain
barrier transport and glioblastoma targeting. Sabra et al.
(2018) prepared a new type of natural self-assembly micelles
with hydrophilic Lf as the micelle corona to co- deliver RAP
and wogonin (WOG). Lf corona enhanced tumor targeting
and prolonged the cycling of nanocarriers. This combined
NDDS maximized the synergistic cytotoxicity of RAP and WOG
in tumor inhibition of MCF-7 breast cancer cells and Ehrlich
ascites tumor animal models.

4.3.3. pH-sensitive polymeric micelles

Multistage pH-responsive micelles can better control drug
release in tumor sites. Yang et al. (2017b) synthesized a
pH-sensitive polymer polyethylene glycol-benzoic
acidimine-poly(y-benzyl-L-aspartate)-b-poly (1-vinylimidazole)
block copolymer (PPBV), and developed a pH-responsive
micelle system (Figure 7) for PTX and CUR co-delivery and
synergistic removal of breast cancer stem cells (bCSCs) and
non-bCSCs. The results of in vitro release experiments showed
that the benzoic acid-imine bond was relatively stable in
neutral medium, and the hydrophilic PEG layer prevented
the outward diffusion of hydrophobic drugs and limited the
drug release. However, in the acidic extracellular environment
of tumor cells, the PEG layer gradually separated from the
PPBV micelles and the volume of the PPBV micelles was
reduced. The EPR effect was used to effectively target breast
tumors, thereby promoting their cellular uptake and tumor
deep penetration, and triggering the rapid release of PTX
and CUR. These advantages were also conducive to the max-
imum efficacy of the combined treatment of PTX and CUR,
achieving superior tumor inhibitory activity and effective
bCSCs killing ability in vivo. Qi et al. (2018) developed a novel
pH and redox dual-sensitive nanocarrier loaded with CUR
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and antitumor peptide (AP). Amphiphilic block copolymers
were prepared by triphenylphosphine (TPP)/oligomeric hyal-
uronic acid (oHA)/disulfide-menthone 1,2-glycerolone (SM),
referred to as TPP-oHSM. In vitro release and cellular uptake
experiments showed that C/A@TM targeted mitochondria
and CD44 receptors, and it was sensitive to pH and redox.
In addition, C/A@TM showed satisfactory cytotoxicity to
MDA-MB-231 cells and MCF-7 cells. Finally, it showed good
therapeutic effect in clinical application.

4.3.4. Redox-responsive self-assembled polymer micelles
Self-assembled micelles can adjust the ratio of the two drugs
and optimize the synergistic effect of drug combinations by
using a simple co-assembly strategy, which is simple and
feasible. Xu et al. (2019b) prepared redox-sensitive rod-like
micelles by co-assembly of CPT-disulfide bond-PEG200
0-4-carboxyphenylboronic acid and CPT-disulfide bond-GEM
to achieve controllable redox and tumor-targeted synergistic
self-delivery of CPT and GEM. In vitro drug release studies
verified the redox triggering and synchronous rapid release
of CPT and GEM by the co-assembled nano micelles. Nano
micelles had obvious synergistic anti-proliferation effect on
MCF-7/ADR and 4T1 cells in vitro. In addition, biodistribution
nano micelles preferentially aggregated in the breast tumor
site, which could improve the therapeutic effect and reduce
the side effects of nonselective antitumor drugs.

4.4. Polymer-drug conjugates

Polymer-drug conjugates are designed to release drugs in
tumor tissues or cells. They are mostly designed and man-
ufactured to release drugs in tumor tissues or cells trig-
gered by different stimuli to reduce systemic toxicity of
parent drugs and improve their therapeutic effects (Feng
& Tong, 2016). Polymer-drug conjugates remain stable in
the process of transport in the body. Through the reason-
able design of the connecting group, the physiological
environment such as pH value, enzyme, temperature, and
magnetic sensitivity is obtained, so as to realize the effec-
tive release of drugs in tumor targeting sites. A summary
of the researches of polymer-drug conjugates used to
co-deliver chemotherapy drugs and natural active ingre-
dients is shown in Table 7.

2 ;
c-gumpuagL 5o Y
{' 9..,}; /'y \,/\/"”‘ @ Curcumin
o=¢
o
A
@ Paclitaxel
PBLA | PEG |
Charge Switching,
PEG detachment

Tumour Microenvironment
(pH 6.5~6.8)
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4.4.1. Passive targeting

Graft copolymers have the characteristics of easy preparation,
high drug loading, good stability, and tumor accumulation,
which are often used as delivery carriers of antitumor drugs.
Tai et al. (2014) designed a new graft copolymer, which can
form polymer nanocarriers similar to protein folding for
co-delivery of CPT and DOX. CPT was polymerized on the
catenary segment of the graft polymer, while DOX was
non-covalently wrapped in the hydrophobic core. In vivo
studies have shown that compared with free drugs, nano-
carriers show strong accumulation in tumor sites, and have
significant antitumor activity in lung cancer xenograft mouse
models. Huo et al. (2020) successfully prepared a
dextran-deoxycholic acid (Dex-DOCA) amphiphilic polymer
for co-delivery of PTX and silybin (SB). Dex-DOCA had good
encapsulation efficiency for PTX and SB, and the drug loading
was adjustable. The release of PTX and SB at a fixed dose
ratio was consistent with the initial drug loading ratio of
co-donor nanoparticles (PTX:SB = 1:1.4), which was conducive
to the generation of synergistic effect. In vivo studies showed
that co-loaded nanoparticles could effectively accumulate in
the tumor site through passive targeting, and ultimately
improve the permeability of nanoparticles to tumors in the
A549 xenograft model by enhancing the intratumoral per-
meability and the sensitization of SB to PTX. Zou et al. (2017)
used one-step nanoprecipitation method to co-load PTX and
natural compound Borneol (BNL) in the prepared PEG-PAMAM
NPs, denoted as PB/NPs. The results showed that PB/NPs and
P/NPs+BNL had high cellular uptake and cytotoxicity on
A2780/PTX cells, and could improve the apoptosis rate. More
importantly, although PB/NPs and P/NPs+BNL showed similar
tumor accumulation in tumor-bearing mice, PB/NPs could
significantly decrease tumor growth of A2780/PTX
tumor-bearing mice, in comparison to P/NPs+BNL.

4.4.2. Active targeting polymer-drug conjugates

When nanoparticles are modified with various ligands, they
can specifically target components in the tumor microenvi-
ronment, including dendritic cells, macrophages, fibroblasts,
tumor vascular system (Yang et al, 2021). In recent years,
polymer dendrimers have been widely used for targeted
delivery of antitumor drugs due to their homogeneity and
biocompatibility. Anbazhagan et al. (2021) prepared

Figure 7. Schematic illustration of pH multistage responsive PTX and CUR-loaded PPBV micelles with the PEG detachment and charge-switching function for
enhanced cellular uptake and tumor penetration. Reprinted with permission from Elsevier (Yang et al., 2017b).
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Table 8. The researches of carrier-free NDCDS of natural active ingredients and chemotherapy drugs.
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The role of natural active

Nanocarrier type Feature Drugs Experimental Subject ingredients Ref
Self-assembled EPR PTX/Succinic acid A549 cells, nude mice Antitumor effect (Xu et al.,, 2017a)
nanofibers
Nanoparticle EPR Cytarabine/CPT Human umbilical vein endothelial cells Antitumor effect (He et al., 2017)
(HUVEC), B16F10 cells, B16F10
tumor-bearing mice
Janus Redox-sensitive ~ GEM/CPT A549 cells, NCI-H460 cells, MCF-7/ADR Antitumor effect (Xu et al., 2018)
nano-prodrug cells, HCT116 cells, HT-29 cells
Nanoparticle Redox-sensitive ~ GEM/CPT Hela cells, MCF-7 cells, KM mouse model  Antitumor effect (Hou et al., 2017)
Nanoparticle Targeting folate ~ MTX/CPT Hela cells, MCF-7 cells, A549 cells, Hela Induce tumor cells (Li et al., 2017d)

Nanoparticle
Nanofiber

Nanoparticle

receptor
EPR
EPR

Targeting folate

Erlotinib/CUR
PTX/TET

MTX/Ursolic acid

tumor-bearing BALB/c nude mice

BxPC-3 cells, NIH-3T3 cells, female nude
mice

MGC-803 gastric tumor cells, female nude
mice

MCF-7 cells, BALB/c nude mice

B16F10 cells, HelLa cells, HepG2 cells,
MCF-7 cells, male KM mice

HepG2 cells, H22 cells, ICR mice

L-02 cells, MDCK cells

apoptosis, inhibit tumor
cells proliferation
Antitumor effect

Induce tumor cells
apoptosis
Antitumor effect

Anti-metastasis effect

Antitumor effect

(Cheng et al.,
2020)

(Li et al., 2020d)

(Lan et al., 2021a)

(Li et al., 2018a)

(Fang et al., 2021)

receptor
Nanoparticle Aspirin/Ursolic acid
Nanoparticle EPR 5-FU/CA
Nanoparticle EPR PTX/Semen
Armeniacae
Amarum protein
Self-assembled EPR PTX/CPT

nanoparticle

LLC cells, A549 cells, MEF cells

Used as drug carrier (Lin et al., 2020)

Antitumor effect (Gao et al.,, 2020)

polyamidoamine (PAMAM) dendrimers co-loaded FA and PTX
coupled with arginine-glycine-aspartic acid (RGD) to over-
come the multidrug resistance of oral cancer cells overex-
pressing P-gp. In vitro drug uptake data showed that
RGD-PAMAM-FP could deliver more PTX than PAMAM-FP in
KB CH-R8-5 cells. This indicated that RGD promoted the accu-
mulation of intracellular PTX through active targeting on
multidrug-resistant KBCH-R8-5 cells. In vitro toxicity experi-
ments showed that when FA and PTX were loaded on
RGD-PAMAM nanocarriers, more KBCH-R8-5 cell apoptosis
might be induced than loaded on PAMAM nanocarriers.
Zhang et al. (2017b) prepared iRGD peptide modified
lipid-polymer hybrid nano system (LPN) to couple PTX and
TET in a 1:1 ratio. PTX was conjugated to the PLGA polymer
core through disulfide bonds, and TET was encapsulated in
the hydrophobic polymer core. Due to the enhanced
TET-mediated cellular uptake and P-gp inhibition, the accu-
mulation of PTX in A2780/PTX cells treated with PTX+TET/
iRGD LPNs was significantly higher than that in free drugs
or non-iRGD modified LPNs. PTX+TET/iRGD LPNs had the
highest cytotoxicity to A2780/PTX cells, especially promoting
ROS production, enhancing apoptosis, and cell cycle arrest.

4.5. Nanosuspension

Nanosuspensions are nanoscale, heterogeneous aqueous dis-
persions of insoluble drug particles stabilized by surfactants
(Jacob et al., 2020). Nanosuspension technology is the only
alternative when many disadvantages of drug molecules such
as the inability to form salt, high molecular weight, and
dosage hinder the development of appropriate dosage forms.
This technique is attractive due to the reduced use of excip-
ients, which usually cause toxicity or side effects. NS made
from hydrophobic drugs have the advantages of increasing
drug loading, improving solubility, improving bioavailability

(Sahu et al., 2016), and reducing side effects (Wang
et al., 2019d).

Wang et al. (2019d) prepared PTX-BA hybrid nanosuspen-
sion to induce early apoptosis of MCF-7 cells through the
decrease of mitochondrial membrane potential (Jiang et al.,
2015). Compared with PTX-NS and BA-NS, PTX-BA-NS has the
strongest effect on MCF-7 cell apoptosis, which may be partly
attributed to the enhanced accumulation of PTX-BA-NS in
cells and the synergistic effect of PTX and BA. Sahu et al.
(2016) prepared nanosuspension of poorly water-soluble CUR
and DTX by precipitation homogenization technology, and
modified it with polyethylene glycol to increase its solubility
and bioavailability, thereby improving the efficacy. Chen et al.
(2015) and Zhao et al. (2015b) chose 10-hydroxycamptothecin
(HCPT) and DOX to prepare HD nanoparticles (HD NPs) by
“green” and convenient self-assembly method, which success-
fully improved the water solubility of HCPT. Due to the higher
chemical sensitization and improving intracellular drug accu-
mulation induced by DOX/HCPT combination, HD NPs showed
synergistic therapeutic effect and enhanced inhibitory effect
on breast cancer cells and drug-resistant cancer cells in vitro.
Liu et al. (2021a) prepared multifunctional nanosuspension
of CUR and irinotecan hydrochloride by precipitation using
carrier-free self-assembly strategy, which showed better anti-
tumor effect on gastric cancer cells.

4.6. Nanoemulsion

Nanoemulsions (NM) usually include aqueous and oil phases,
which can overcome the shortcomings of low drug solubility
by improving bioavailability, increasing drug stability, and
reducing side effects when used as drug carriers (Yukuyama
et al,, 2017). Guo et al. (2020a) developed a novel NM as an
oral 5-FU and CUR synergistic delivery system (CUR/5-FU-NM)
for synergistic treatment of liver cancer. The comprehensive
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Figure 8. Schematic representation of the carrier-free nanoparticles (NPs) via co-assembly between UA and MTX. International Journal of Nanomedicine 2021
16 1775-1787' Originally published by and used with permission from Dove Medical Press Ltd.

ratio analysis showed that when the molar ratio of CUR:5-FU
was 2:1, CUR and 5-FU had the greatest synergistic effect.
CUR /5-FU-NM enhanced the solubility and permeability of
CUR and 5-FU, and improved the oral bioavailability of CUR
and 5-FU, thereby enhancing the anti-hepatocellular carcinoma
effect of CUR and 5-FU in vitro and in vivo. Meng et al. (2016b)
encapsulated PTX and BCL in nanoemulsion (PTX/BA NM) to
treat breast cancer. The experiment showed that the syner-
gistic effect of PTX and BA in combination with the weight
ratio of 1:1 was the strongest. In vitro cytotoxicity test and
in vivo antitumor study showed that PTX/BA NM had better
antitumor effect on MCF-7/Tax cells than other PTX prepara-
tions. Pangeni et al. (2018) designed an oral co-administration
system of pemetrexed (PMX) and Que based on oil-in-water
NM (PMX/N®-deoxycholyl-L-lysyl-methylester (DCK)-Que-NM).
PMX/DCK-QCN-NE had good intestinal permeability and
increased cell absorption of PMX/DCK and Que. In vivo exper-
iments showed that compared with free PMX and QCN, the
oral bioavailability of PMX and QCN in rats was significantly
improved, and PMX/DCK-QCN-NE had the strongest inhibitory
effect on tumor growth in A549 tumor-bearing mice.

4.7. Carrier-free NDCDS

Carrier-free NDCDS is a kind of covalent binding prodrug
delivery system, and two identical or different drug molecules
can be coupled together through chemical bonds to form

the inactive precursor of the drug. When it reaches the tumor
site, drug activation or biotransformation through environ-
mental stimulation can prevent drug leakage in the process
of in vivo circulation. Carrier-free NDCDS can improve drug
loading, drug stability, and bioavailability, and increase drug
safety, so as to achieve high flexibility in drug response
release and synergistic combination therapy (Huang et al,,
2021; Karaosmanoglu et al., 2021). A summary of the
researches of carrier-free NDCDS used to co-deliver chemo-
therapy drugs and natural active ingredients is shown in
Table 8.

Some natural active ingredients and chemotherapy drugs
can be coupled together via ester bonds or acetal bonds to
form carrier-free nano-systems to obtain high drug loading
and synergistic antitumor effects, such as PTX and succinic
acid (SA) (Xu et al., 2017a), 5-FU and CA (Fang et al., 2021),
MTX and ursolic acid (UA) (Figure 8) (Lan et al., 2021a).
Additionally, natural active ingredients can also be coupled
with chemotherapy drugs through disulfide bonds to form
redox-sensitive carrier-free nano-system to achieve the con-
trolled release of drugs in tumor-specific microenvironment,
such as CPT and arabinoside (Ara-C) (He et al, 2017), CPT
and GEM (Hou et al.,, 2017), CPT and PTX (Gao et al., 2020).

What is more, carrier-free NDCDS can maintain the optimal
ratio of natural active ingredients and chemotherapy drugs.
For example, one mole of the natural active ingredients and
one mole of the chemotherapeutic drug can be linked together
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by ester bonds or disulfide bonds. Carrier-free nano-systems
coupled by ester or disulfide bonds can release drugs in a
fixed proportion, which have better antitumor effect. Li et al.
(2017d) coupled CPT and MTX by ester bond to synthesize
MTX-CPT conjugates. In the tumor/lysosomal environment, the
ester bond in the conjugate can be rapidly lysed by acid
hydrolysis and/or enzymatic hydrolysis, and the dual drugs
can be released synchronously at a fixed proportion. In vitro
and in vivo studies suggested that the MTX-CPT NPs exhibited
a superior synergistic effect, and could improve the therapeutic
efficiency significantly with reduced toxicity compared to either
individual free drug or a combination of both free drugs. Xu
et al. (2018) prepared a novel redox-sensitive Janus nanopre-
cursor drug synthesized by disulfide bond connection to
achieve self-administration and synergistic anti-proliferation of
CPT and GEM. Due to the hydrophobicity of CPT and the
hydrophilicity of GEM, the prepared amphiphilic prodrug
CPT-SS-GEM can self-assemble into organized nanoparticles to
realize the self-delivery of CPT and GEM without additional
materials. At the same time, the dose ratio of CPT and GEM
was always 1:1 when CPT-SS-GEM was degraded by high con-
centration of glutathione in tumor cells, resulting in synergistic
antitumor effect.

4.8. Other nanocarriers

In recent years, studies have shown that Graphene (Deb
et al,, 2018), gold nanocages (Zhang et al., 2018b), hydrogels
(Ren et al., 2019; Wang et al., 2019b; Abedi et al, 2021),
prodrug nanogel (Ma et al., 2022), microspheres (Liu et al,,
2017; Xu et al, 2021) and nanoclusters (He et al., 2020) can
also be used for the co-delivery of natural active ingredients
of and chemotherapy drugs. A summary of the researches
of other nanocarriers used to co-deliver chemotherapy drugs
and natural active ingredients is shown in Table 9.

5. Discussion

With the deepening of the research on the mechanism of
tumorigenesis and development, drug combination therapy
shows obvious advantages in tumor treatment, and the
development of nanotechnology in the field of pharmaceutics
has brought broad application prospects. NDCDS of natural
active ingredients and chemotherapy drugs also have advan-
tages and limitations in tumor treatment.

Firstly, natural products are a key source for the develop-
ment of innovative anti-cancer medicines that may be used
both preventively and therapeutically, and natural active
ingredients have effects on cellular processes and signaling
pathways (Chavda et al., 2022), which can directly or indi-
rectly affect tumor cells. Therefore, the natural active ingre-
dients can play a synergistic role in combination with
chemotherapy drugs. However, the potential regulation mech-
anism of some natural active components on tumor micro-
environment is still in the preliminary research stage. A better
understanding of the synergistic antitumor effect of natural
active ingredients and chemotherapy drugs can develop more
effective anti-tumor drugs. Secondly, although the

combination of natural active ingredients and chemotherapy
drugs can reduce the side effects of chemotherapy drugs by
reducing the intake of chemotherapy drugs and directly act-
ing on certain targets, the nanocarrier itself can also cause
toxicity, and the toxicological properties of nanomaterials
have gradually been paid attention to. Therefore, the biode-
gradable and biocompatibility materials will become the first
choice for nanocarriers in the future, and the carrier-free
NDCDS will also become the focus of attention. In addition,
due to the limitations of safety, the complexity of the prepa-
ration process, and the controllability of precise drug release,
the co-delivery nanocarrier preparations of natural active
ingredients and chemotherapy drugs have not yet entered
the clinical stage. Before the clinical stage, the formulation
or technology of nanopreparations faces great challenges in
achieving universal applicability and achieving effective load-
ing, targeted delivery and sustained release of the two drugs
at the required proportion, and there are several problems
to be considered in formulating an ideal NDCDS.

First, the optimal ratio of natural active ingredients and
chemotherapy drugs is the primary issue. Some studies have
not determined the optimal ratio of natural active ingredients
and chemotherapy drugs, others had carried out to investi-
gate on the optimal ratio of natural active ingredients and
chemotherapy drugs by in vitro cell tests, but it is often
difficult to obtain the optimal ratio in vivo.

Second, selecting appropriate nano carriers to realize the
effective encapsulation of natural active ingredients and che-
motherapy drugs is the important procedure. A suitable nano
carrier can maintain the ratio of the multiple drugs constant
and deliver them stably to the tumor tissue. At present, mul-
tifunctional mesoporous silica nanoparticles, PLGA nanoparti-
cles, bovine serum albumin-coated superparamagnetic iron
oxide nanoparticles, liposomes, and carrier-free NDCDS help to
control proportional release. At the same time, due to the fact
that at least two drugs are loaded on NDCDS, and the
water-solubility and physicochemical characteristics of drugs
are different, so the procedure for drug loading needs to be care-
fully considered in preparation. In addition, during the prepa-
ration process, the loading of one drug may affect the
encapsulation efficiency and drug loading of another drug.

Third, how to achieve the targeted delivery of multiple
drugs requires precise design, which puts forward higher
requirements for the complex structure of carriers. A delivery
system with multi-target modified and multiple environmen-
tal responses is designed by encapsulating two or more
stimulus response units, which is expected to achieve higher
targeting efficiency and improve the efficacy.

Fourth, sequential and precise drug release in vivo is
another impactful parameter of determining the synergistic
action of co-delivery drugs. However, many studies had car-
ried out to investigate on the drug release of NDCDS in
model microenvironment with pH buffer of normal body
fluid, or tumor tissue and cell, which is difficult to show the
real extent of drug release in vivo.

Fifth, although NDCDS of natural active ingredients and
chemotherapy drugs works well in the experiment, the clin-
ical efficacy is still limited. More in-depth and effective phar-
macodynamic evaluation methods are needed to explain the



rationality of the combined use of natural active ingredients
and chemotherapy drugs in NDCDS.

Although faced with many difficulties, it is believed that
with the continuous revelation of the mechanism of action
of natural active ingredients and the continuous development
of nanotechnology, the NDCDS of natural active ingredients
and chemotherapy drugs will show a promising prospect in
antitumor therapy.
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