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may persist well beyond tumor-cell death. Over time, the immune 
response may broaden to target multiple TAAs not found in the initial 
vaccine construct. As T cells lyse tumor cells, additional TAAs may 
be taken up by APCs and presented to immune cells as potential new 
targets. This expanded T-cell response is known as antigen spreading or 
antigen cascade,5 a process that can broaden and become more clinically 
relevant over time. In fact, emerging data show improved clinical 
outcomes in patients who mount a broad immunologic response.6-8

Immune checkpoint inhibitors interfere with the immune 
system’s autoregulatory mechanisms, allowing for an expanded T-cell 
response and greater antitumor effects.9 However, inhibiting the 
body’s mechanism for protecting against autoimmunity can create 
immune-related toxicities. Ipilimumab, a fully human monoclonal 
antibody, inhibits negative signals sent to T cells through the cell-surface 
molecule cytotoxic T lymphocyte antigen-4 (CTLA-4), thus blocking a 
negative checkpoint and removing the physiologic brake on the immune 
system. This first-in-class immune checkpoint inhibitor was Food and 
Drug Administration (FDA)-approved for the treatment of metastatic 
melanoma, based on overall benefit seen in clinical trials. Ipilimumab 
is currently being evaluated in late-stage clinical trials in patients with 
metastatic castration-resistant prostate cancer (mCRPC).10

SIPULEUCEL‑T (PROVENGE®)
Sipuleucel-T is an autologous dendritic-cell vaccine designed to target 
PAP. APCs collected by leukapheresis are transported to a central 

INTRODUCTION
Results of recent clinical trials have intensified interest in immunotherapy 
for prostate cancer. The primary aim of immunotherapy is to harness 
the immune system’s ability to recognize and destroy tumor cells. 
Prostate cancer is particularly well suited for immunotherapeutic 
approaches for three reasons.1 First, early detection, along with the 
relatively indolent clinical course of prostate cancer, allows sufficient 
time to generate immune responses that may take weeks or months to 
mount. Second, prostate cancer cells express several tumor-associated 
antigens (TAAs), such as prostate-specific antigen (PSA), prostatic acid 
phosphatase (PAP) and prostate-specific membrane antigen, which can 
serve as targets for activated immune cells.2-4 Finally, since the prostate 
is a nonessential organ, eradication of residual normal prostate tissue 
as a result of the immune response has no clinical sequelae.

Current strategies at the forefront of immunotherapy for prostate 
cancer include therapeutic vaccines and immune checkpoint inhibitors. 
Therapeutic cancer vaccines are designed to stimulate immune cells to 
target specific TAAs overexpressed on cancer cells and are associated 
with minimal toxicity. Antigen-presenting cells  (APCs) present 
antigens to the immune system via major histocompatibility complex 
molecules, which bind to appropriate T-cell receptors. Activated 
T cells travel to the tumor, which they recognize by way of the TAAs 
presented in the context of the major histocompatibility complex, 
leading to T cell-mediated killing of tumor cells or immunogenic cell 
death. Unlike standard cancer treatments, immunotherapeutic effects 
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processing facility where CD54 + APCs are pulsed with PA2024, a fusion 
protein consisting of PAP linked to the immunomodulatory cytokine 
granulocyte-macrophage colony-stimulating factor (GM-CSF).11,12 The 
vaccine product must meet a minimum threshold of CD54 expression 
before it can be released for use. The vaccine is then infused into the 
patient three times at biweekly intervals. Promising early clinical data 
led to a pair of small phase III trials in which the primary endpoint 
was time to progression (TTP), with overall survival (OS) as a planned 
secondary endpoint.13,14 In each trial, men with asymptomatic or 
minimally symptomatic mCRPC were randomly assigned 2:1 to receive 
either sipuleucel-T or a placebo not pulsed with PA2024. Analysis of 
the 225 men from both trials showed no improvement in TTP, but a 
consistent benefit in OS relative to placebo (23.2 vs 18.9 months, hazard 
ratio (HR), 0.67, 95% confidence interval (CI) 0.49–0.91).

These results led to a larger phase III trial (IMPACT; n = 512) with 
OS as the primary endpoint rather than TTP. At a median follow-up 
of 34 months, patients treated with sipuleucel-T showed significantly 
improved OS compared with placebo (25.8 vs 21.7 months; HR, 0.78; 
95% CI, 0.61–0.98). As in the earlier trials, there was no significant 
change in time to radiographic or PSA progression and few declines 
in PSA.15 Patients treated with sipuleucel-T had less disease-related 
pain; a retrospective data analysis detected delayed median time 
to first use of opioid analgesics compared to patients given placebo 
(11.9 vs 8.3 months; HR, 0.73; 95% CI, 0.54–0.99).16 A subgroup analysis 
showed activation of APCs through upregulation of CD54, as well 
as antibodies and T-cell proliferation responses to PAP and PA2024. 
An immunologic assessment of patients in the three sipuleucel-T 
trials suggested that patients with more potent immune responses 
post-vaccination showed the greatest improvement in OS.17

Research demonstrating the biologic activity of neoadjuvant 
sipuleucel-T preradical prostatectomy has been revealing. 
Prostatectomy specimens from vaccinated patients showed a greater 
than twofold increase in CD3+ and CD4+ T cells at the tumor interface, 
suggesting that immune cells travel to the prostate and are active 
in disease control.18 Furthermore, a retrospective analysis of the 
IMPACT trial found that patients in the lowest quartile of baseline 
PSA values received the greatest benefit from the vaccine, with a 
13-month improvement in median OS (41.3 months with sipuleucel-T 
vs 28.3 months with placebo; HR, 0.51; 95% CI, 0.31–0.85). In 
contrast, patients in the highest baseline PSA quartile had a median 
OS of 18.4 vs 15.6 months for placebo (HR, 0.84; 95% CI, 0.55–1.29), 
an improvement of only 2.8 months.19 These results support the use of 
sipuleucel-T in earlier-stage disease.20 In all three trials, sipuleucel-T 
was well-tolerated, with minimal toxicity. Injection-site reactions, 
transient fever and flu-like symptoms were most frequently reported.

PSA‑TRICOM (PROSTVAC‑VF®)
PSA-TRICOM is a poxviral vector-based vaccine consisting of 
a priming dose of recombinant vaccinia followed by five or six 
recombinant fowlpox boosts.21,22 Both the vaccinia and fowlpox 
vectors are engineered to express PSA and three costimulatory 
molecules  (TRICOM) designed to enhance the immune response. 
PSA-TRICOM is an off-the-shelf vaccine that can be generated in large 
quantities. Frozen doses are simply thawed and injected into the patient, 
making PSA-TRICOM a logistically simple yet immunologically 
advanced vaccine. Several early trials demonstrated that the 
prime-and-boost regimen was well-tolerated, with toxicities consisting 
mainly of fevers and injection-site reactions.23-27 In a single-arm phase 
II trial of PSA-TRICOM, patients with mCRPC (n = 32) had a median 
OS of 26.6 months. Thirteen of 29 evaluable patients had a greater 

than twofold increase in PSA-specific T-cell immune response by 
ELISPOT assay  (interferon-g secretion in response to PSA) and an 
association between magnitude of immune response and improved 
OS was observed (P = 0.055). The study also suggested that patients 
with more indolent disease characteristics based on predicted survival 
derived the most benefit from vaccine.28 In a second multicenter 
phase II trial, 125 men were randomized 2:1 to receive vaccine or 
placebo, respectively. As in the sipuleucel-T trials, there was no 
difference in terms of TTP. However, a mature follow-up showed 
that PSA-TRICOM conferred significantly improved OS  (25.1 vs 
16.6 months; HR 0.56; 95% CI 0.37–0.85) and a 3-year survival of 30 vs 
17% for placebo.29 In addition, the presence of a preexisting antibody 
to a glycoprotein antigen in the vector was associated with improved 
outcome in patients who received PSA-TRICOM.30 This may result, in 
part, from the presence of a blood group A-like glycan on the surface 
of poxviruses that is presumably transferred from the chicken embryo 
dermal cells used as host cells in vaccine production. This glycan may 
help to optimize uptake of the poxviral vaccine by APCs.

These phase II trials suggested tumor-specific CTL responses and 
prolonged OS in patients treated with PSA-TRICOM. An international 
phase III randomized, placebo-controlled trial of PSA-TRICOM is 
currently enrolling 1200  patients with asymptomatic or minimally 
symptomatic mCRPC, with OS as the primary endpoint.31 Patients are 
randomized to receive either PSA-TRICOM with adjuvant GM-CSF, 
PSA-TRICOM with placebo GM-CSF or double placebo. Results of 
this trial are eagerly anticipated.

GVAX
Two phase III clinical trials of the allogeneic cell-based vaccine GVAX 
have had disappointing results.32,33 The vaccine is based on a platform of 
irradiated hormone-sensitive (LNCaP) and hormone-resistant (PC-3) 
prostate cancer cell lines genetically modified to secrete GM-CSF. Early 
clinical data suggesting clinical benefit led to two phase III trials of 
GVAX. VITAL-1 randomized patients with asymptomatic mCRPC 
to vaccine or docetaxel-prednisone, while VITAL-2 randomized 
symptomatic men to receive docetaxel or docetaxel plus GVAX. At a 
planned interim analysis, VITAL-2 demonstrated a trend towards more 
deaths in the experimental arm and shorter median OS, leading to the 
trial’s closure. These findings prompted a futility analysis of VITAL-1. 
When results suggested a <30% chance of improved OS with GVAX, 
that trial was terminated as well. It is unclear whether the failure to 
demonstrate clinical benefit reflects a flaw in trial design or a true lack 
of vaccine efficacy. Preclinical data suggesting that combining vaccines 
with immune checkpoint inhibitors may substantially augment a 
limited antitumor response34 led to a recent trial on the safety and 
feasibility of combining GVAX and ipilimumab.35 Exploratory T-cell 
monitoring of the 28 patients enrolled on this phase I/II dose escalation/
expansion trial found that patients with higher CTLA-4 expression 
on CD4 cells prior to treatment was associated with prolonged OS 
after therapy  (46.5 vs 21 months, HR, 0.271, 95% CI, 0.079–0.931, 
P = 0.036).36 It is unclear whether this survival advantage is due to the 
specific use of antibodies against CTLA-4, versus a reflection of a more 
activated T-cell state, which would lead to improved clinical outcome 
regardless of the type of immunotherapy. However, the identification 
of potential biomarkers for clinical efficacy is a key consideration given 
the unique profile of immune-related adverse events (irAEs).

IPILIMUMAB
Ipilimumab, a fully human anti-CTLA-4 monoclonal antibody, is 
a first-in-class immune checkpoint inhibitor. CTLA-4, the most 
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extensively studied immune checkpoint molecule, is expressed on 
CTLs after activation by APCs. The CTLA-4 receptor on CTLs is a 
negative regulator of T-cell activation that outcompetes CD28 for 
binding to B7 on APCs. In contrast to CD28/B7 binding, which acts as 
a costimulatory signal, the binding of CTLA-4 by ipilimumab removes 
the physiologic brake, augmenting the immune response by blocking 
the interaction of CTLA and B7.9

Ipilimumab was FDA-approved for the treatment of relapsed 
metastatic melanoma after demonstrating improved OS in a phase 
III trial.10 Patients were randomized to receive ipilimumab plus a 
glycoprotein vaccine  (gp100), ipilimumab alone or gp100 alone. 
OS significantly increased in patients given ipilimumab. Patients 
in the ipilimumab-alone arm showed improved median OS relative 
to gp100 alone (10.1 vs 6.4 months, HR, 0.68; 95% CI, 8.0–13.8), 
while patients receiving ipilimumab plus gp100 had a median OS 
of 10.0 months  (HR, 0.66; 95% CI 8.5–11.5). Interestingly, there 
was no significant difference in median TTP among the three arms, 
similar to results from the sipuleucel-T and PSA-TRICOM trials. 
Consistent with earlier clinical trials, ipilimumab’s toxicity profile 
included a wide range of irAEs, thought to be caused by a breaking 
of tolerance to other host tissues, allowing for collateral damage 
by activated CTLs.37,38 Common irAEs included enterocolitis, 
hepatitis, dermatitis and endocrinopathies, most of which could 
be medically managed.

Phase III trials of ipilimumab are ongoing in both chemotherapy-naïve 
and chemotherapy-refractory mCRPC, based on the results of 
early-phase studies. In an initial phase I/II study, patients with mCRPC 
received ipilimumab with or without radiation therapy. In the phase 
I component, with safety as the primary endpoint, side effects were 
similar to those seen with ipilimumab alone in patients with melanoma. 
In the phase II component, which examined preliminary evidence of 
efficacy, 26% of patients had a PSA decline of ≥50% over the course 
of the study. One patient had a complete response wherein PSA 
normalized and an initially large prostatic lesion became undetectable.39 
These results led to two ongoing phase III trials of ipilimumab in 
patients with mCRPC. The first randomizes chemotherapy-naïve 
patients to ipilimumab alone vs. placebo.40 The second compares 
limited radiation plus ipilimumab vs limited radiation plus placebo 
in patients previously treated with chemotherapy.41 Results of this 
trial were recently presented at the European Cancer Congress, with 
median OS favoring ipilimumab over placebo  (11.2 vs 10 months; 
HR 0.85, 95% CI 0.72–10.00), though statistical significance was not 
achieved (P = 0.053). Interestingly, median progression-free survival 
also favored ipilimumab over placebo (HR 0.70, 95% CI 0.61–0.82), 
as did PSA declines of ≥50% in evaluable patients (13.1% vs 5.3%).42

A PARADIGM SHIFT
Phase III trials of sipuleucel-T and ipilimumab in melanoma, along 
with the randomized phase II trial of PSA-TRICOM, demonstrated 
significant improvement in OS with no evidence of short-term clinical 
benefit (Figure 1), although preliminary data from a trial of ipilimumab 
suggests a possible improvement in progression-free survival, 
a secondary endpoint in that study.10,15,29,42 This class effect highlights 
a key difference between the mechanisms of action of immunotherapy 
and traditional cytotoxic therapies. While conventional therapies 
directly target the tumor and its microenvironment, therapeutic 
vaccines and immune checkpoint inhibitors target the immune system, 
which subsequently targets the tumor. Following administration of 
therapeutic vaccines and other immunotherapies, the combination 
of immunogenic tumor targeting and antigen cascade can lead to a 
delayed yet prolonged clinical response that lasts over a period of 
weeks to months.43 While the initial immune response to a single 
TAA is quite brisk, the activated immune response may in turn lead 
to the development of long-lived memory cells that can sustain clinical 
benefit beyond the period of treatment.44 This phenomenon allows for 
a broadened immune response over time, even as the tumor mutates 
to present antigens not included in the vaccine. This is another key 
contrast to conventional therapies, to which the body does not mount 
an evolving response and may even become resistant (Table 1).

Alternative strategies for assessing the delayed yet prolonged 
response to immunotherapy are emerging, based on a new 
understanding of tumor-growth equilibrium in response to vaccine. 
Tumor growth rate is influenced by intrinsic tumor biology as well 
as extrinsic factors such as chemotherapy. While conventional 
cytoreductive therapy reduces tumor burden during treatment, the 
response is transient. When chemotherapy is discontinued, tumor 
growth typically returns to its pretreatment rate. On the other hand, 
immunotherapy may reset the tumor-growth equilibrium. The 
continued immunologic pressure exerted by effector cells slows the 
rate of tumor growth over time.45 Recent data from prostate cancer 
vaccine trials at the National Cancer Institute suggest that tumor 
growth slows after treatment with vaccine.46 A retrospective analysis 
evaluated patients receiving chemotherapy, hormonal therapy and 
immunotherapy. In patients who received chemotherapy, tumor burden 

Figure 1: Overall survival curve for (a) ipilimumab (reproduced from 
Hodi et al.101), (b) sipuleucel‑T (reproduced from Kantoff et al.115) 
and (c) PSA‑TRICOM (reproduced from Kantoff et al.29)

a

b

c
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decreased for a variable period of time, but the tumor growth rate 
returned to pretreatment levels when treatment was stopped. Patients 
who received vaccine did not experience an immediate decrease in 
tumor burden or initial slowing of tumor growth rate, but over time, 
immunologic pressure appeared to slow tumor growth rates, resulting 
in longer OS.

The concept that immunotherapy has the potential to induce 
a sustained immune response and slow the tumor growth rate 
without short-term benefit in TTP is supported by results from 
late-phase clinical trials of sipuleucel-T and PSA-TRICOM in 
mCRPC and ipilimumab in melanoma. Two trials in earlier-stage 
disease have also provided supportive evidence that vaccine 
slows the rate of tumor growth, as measured by PSA doubling 
time (PSA DT). In the PROTECT trial, patients with nonmetastatic 
castration-sensitive prostate cancer and normal testosterone 
were randomized 2:1 to receive sipuleucel-T or placebo after 
3–4 months of androgen-deprivation therapy (ADT).20 Patients who 
received sipuleucel-T had a 48% longer PSA DT after testosterone 
normalization (155 vs 105 days; P = 0.038), supporting the notion that 
therapeutic cancer vaccines modulate tumor growth rates over time. 
A second trial evaluated patients with recurrent prostate cancer but 
no metastasis (stage D0). Patients were treated with PSA-TRICOM 
monthly for 3 months and then once every 3 months. In a post hoc 
analysis, patients treated with vaccine had an improvement in PSA 
DT of 4.4–7.7 months (P = 0.002), further suggesting the ability of 
vaccine to reset tumor-growth equilibrium.47

Evidence of immunogenic modulation of tumor growth over time 
suggests that the greatest clinical benefit accrues to patients who receive 
vaccine early in the disease course. This is supported by a retrospective 
analysis of baseline PSA values from the IMPACT trial, which found 
that patients in the lowest PSA quartiles  (≤22) had the greatest 
improvements in survival (HR 0.51).19 HRs increased with PSA, further 
suggesting that greater benefit was seen in patients treated earlier in 
the course of disease. Conversely, administering immunotherapy in 
later-stage disease is associated with worse outcomes. Analyses of 
OS curves in randomized, controlled studies of therapeutic vaccines 
have shown a delayed separation, with no evidence of benefit for 
the first 6–12 months. Thus, patients destined to die within the first 
6 months to a year after receiving vaccine derived no benefit.1 These 
data influenced the decision to enroll in the ongoing phase III trial of 
PSA-TRICOM only those patients with a life expectancy of >1 year. 
Analysis of retrospective data from the IMPACT trial detected a 
delayed separation in the time to first opioid analgesic use in patients 
who received vaccine vs those who did not,16 further supporting the 
notion that starting immunotherapy earlier has a greater impact on 
more disease-specific outcomes such as OS.

There is also evidence to suggest that changes in PSA kinetics 
may impact clinical endpoints such as metastasis-free survival. In a 

post hoc analysis of 146 men treated in four phase II trials investigating 
nonhormonal agents for biochemically recurrent nonmetastatic 
prostate cancer, changes in PSA DT and change in (log) PSA slope 
were associated with metastasis-free survival. Specifically, men whose 
PSA DT increased after study entry or whose PSA slope decreased had 
improved metastasis-free survival. While retrospective, this study gives 
credence to the value of PSA kinetics in determining clinical endpoints 
in trial design.48

BIOMARKERS
While our understanding of the fundamental differences between 
immunotherapies and standard cytoreductive treatments has grown, 
there is still an urgent need for definitive biomarkers to assess the 
short-term benefits of immunotherapies. Without clear markers of 
short-term benefit, such as reduced tumor volume or PSA decline, 
practitioners are faced with difficult choices as they integrate 
immunotherapy into treatment for prostate cancer. The absence of 
objective measures of a vaccine’s effectiveness makes deciding whether 
to continue treatment or move on to the next course of therapy difficult 
at best.49

Theoretically, markers of immune activation may be evaluable 
in blood samples weeks or months after administration of vaccine. 
Retrospective data evaluating immune parameters in patients treated 
with sipuleucel-T suggest a correlation between the magnitude of 
cumulative APC activation and OS.17 An ongoing open-label phase 
II trial  (OpenAct) will extensively evaluate cellular and humoral 
activation following treatment with sipuleucel-T.50 Similarly, improved 
clinical outcomes have been associated with CTL response in patients 
treated with PSA-TRICOM.28 Subsequent analysis also noted a 
significant correlation with survival in patients with prevaccination 
antibodies to a glycoprotein antigen in the vector.30 The ongoing 
phase III trial of PSA-TRICOM in mCRPC aims to evaluate immune 
endpoints and provide further data supporting vaccines’ ability to alter 
growth rate while providing clinically significant improvement in OS. 
However, it must be noted that, to date, no surrogate biomarkers for 
clinical outcomes in patients treated with immunotherapy have been 
identified.

Next steps: optimal combinations and sequencing of therapy
One apparent drawback of immunotherapy is the fact that other 
treatment modalities produce measurable tumor response in 
addition to improving OS. Thus, the maximum clinical benefit of 
immunotherapies may only be realized when they are combined 
or sequenced with conventional treatments for prostate cancer, 
preferably early in the course of disease when both tumor burden and 
tumor-induced tolerance are minimal.51,52

Dead or dying cancer cells may release antigens that stimulate an 
immune response in a process known as immunogenic cell death.53 
There is strong evidence that combining immunotherapies for prostate 
cancer with conventional treatments such as chemotherapy and 
radiation can enhance the immune response by altering the tumor 
phenotype. This immunogenic modulation renders cells more sensitive 
to CTL killing, further supporting the rationale for combined treatment 
regimens.54,55

Preclinical data have demonstrated that combining vaccine and 
docetaxel induces enhanced immune activity compared with either 
treatment alone.56 In a study of patients with metastatic breast cancer, 
docetaxel combined with a poxviral vaccine targeting mucin-1 and 
carcinoembryonic antigen prolonged TTP (6.6 vs 3.8 months, P = 0.12, 
HR 0.67).57 Radiation therapy can also enhance antigen expression 
and immune-mediated tumor-cell killing.58,59 The potential value of 

Table 1: Comparisons between conventional therapies and therapeutic 
vaccines

Conventional therapies Therapeutic vaccines

Target Tumor/tumor 
microenvironment

Immune system

Pharmacodynamics Action often immediate Delayed action

Memory response No Yes

Tumor evolution/new 
mutations

Create resistance to 
therapy

Create new  
immunogenic targets

Limitations Toxicity Require adequate systemic and 
tumor‑site immune function
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this effect in prostate cancer was demonstrated in a clinical trial that 
combined vaccine with definitive radiation therapy in 30  patients 
with newly diagnosed disease. Patients treated with vaccine plus 
radiation had a significantly enhanced prostate cancer-specific immune 
response compared with those who received standard radiation 
alone.60,61 An interim analysis of a radiation combination trial using the 
radioisotope samarium-153 (Sm-153) combined with PSA-TRICOM 
showed prolonged TTP compared to treatment with Sm-153 alone. 
The combination of vaccine and Sm-153 was well-tolerated, with 
similar toxicity to Sm-153 alone, further supporting the rationale for 
combining vaccine and radiation.62

ADT is a mainstay of treatment for prostate cancer, having been 
shown in preclinical models to potentiate antitumor immunity via 
immune conditioning.63 Increasing data suggest that ADT can augment 
the immune response by increasing CTL infiltration of the prostate.64 
ADT has also been shown to increase thymic production of naïve 
T cells, which can be harnessed by immunotherapy and directed at 
PSA.65 Other data suggest that ADT mitigates immune tolerance, 
allowing immunotherapies to target cancer cells that overexpress 
self-antigens.66 While the optimal sequencing of immunotherapy with 
ADT is unclear, combining ADT with immunotherapy for a defined 
period of time may help to eradicate residual prostate cancer cells once 
ADT is discontinued.

To explore this possibility, a phase II randomized trial is ongoing 
in which 68 patients with biochemically recurrent prostate cancer are 
randomized to receive sipuleucel-T either 6 weeks before or 12 weeks 
after a year-long course of ADT.67 Analysis of antitumor immune 
response will establish which sequence is more effective. The study will 
also compare PSA progression and metastasis-free survival in the two 
arms. An interim analysis has suggested an increase in antigen-specific 
responses and in vivo cytokines in the arm in which ADT is followed by 
vaccine, providing evidence for a possible improvement in antitumor 
response when ADT is administered first.68 Final results will further 
elucidate the optimal sequencing of immunotherapy with ADT.

PSA-TRICOM has also been studied in combination with standard 
therapies. A phase II study randomized 42 men with nonmetastatic 
CRPC to receive PSA-TRICOM or ADT, with an option to cross over 
to combined therapy at disease progression.69 This study suggested 
improved survival in patients who received vaccine prior to ADT. 
Promising data have also emerged from an ongoing trial evaluating 
flutamide with PSA-TRICOM in nonmetastatic CRPC. Interim TTP 
analysis favored the combination of PSA-TRICOM and flutamide 
compared to flutamide alone (192 vs 108 days).70

GVAX is also being studied in combination with cyclophosphamide 
and ADT in the neoadjuvant setting, based on preclinical data 
suggesting augmented antitumor immune responses if low-dose 
cyclophosphamide precedes vaccine.1 The ongoing neoadjuvant trial 
randomizes patients to cyclophosphamide and GVAX followed by ADT 
versus ADT alone prior to radical prostatectomy.72 Primary outcome 
measures include comparison of intraprostatic CD8 + T-cell infiltration 
between treatment arms.

The advent of novel hormonal agents such as abiraterone and 
enzalutamide has sparked interest in combining these therapies with 
immune-based approaches. An ongoing phase II trial randomizes 
men with mCRPC to receive sipuleucel-T followed by abiraterone 
in combination with prednisone or to concurrent therapy with 
both of these agents.73 This addresses an important issue regarding 
sequencing, as preclinical data suggest that immunotherapy may be 
optimally effective when administered before androgen ablation.74 
Abiraterone, a CYP17 inhibitor FDA-approved for use in mCRPC, 

suppresses levels of circulating androgen. Suppression of the androgen 
axis via abiraterone may be immunostimulatory, suggesting that 
abiraterone plus sipuleucel-T could be synergistic. At the same time, 
administering abiraterone with prednisone may theoretically blunt an 
immunologic response; however, previous data suggest that memory 
cells are relatively resistant to steroid-induced killing compared 
with naïve cells.75 An interim analysis of this study shows similar 
humoral and cellular responses to sipuleucel-T in both the concurrent 
and sequential arms, suggesting that the steroids when given with 
abiraterone did not appear to blunt the immune response. This is in 
line with previous observations about the addition of glucocorticoids 
and immune response.75,76 Additionally, preliminary findings suggest 
that sipuleucel-T is well-tolerated in combination with concurrent 
or sequential abiraterone with prednisone.77 Recently reported data 
on 64 patients from this phase II trial indicate that sipuleucel-T can 
be successfully manufactured during concurrent abiraterone and 
prednisone without affecting product potency and immunologic 
prime-boost response.78

FDA approval of enzalutamide for the treatment of chemotherapy-
refractory mCRPC has stimulated interest in using this novel androgen 
receptor antagonist  (ARA) in earlier-stage prostate cancer and in 
combination with immunotherapy, given its favorable side-effect 
profile.79 This next-generation ARA binds to the androgen receptor with 
greater affinity than first-generation ARAs and prevents downstream 
effects, including nuclear translocation, DNA binding and signaling 
to coactivators. Another important characteristic of this ARA is that, 
unlike the androgen-biosynthesis inhibitor abiraterone, enzalutamide 
does not require daily prednisone. Patients with nonmetastatic 
castration-sensitive prostate cancer are currently being enrolled in 
a phase II trial that randomizes men to receive a 3-month course of 
enzalutamide with or without PSA-TRICOM.80 The primary endpoint 
of this study is to determine the vaccine’s effect on PSA growth kinetics 
after enzalutamide is discontinued. This proof-of-concept study will 
help to define the benefits of combining ADT and immunotherapy. 
A similar study is being conducted in chemotherapy-naïve patients 
with metastatic disease (Table 2).81

Combining immunotherapies (immunogenic intensification)
Combining immunotherapies could potentially generate a greater 
immune response and enhanced antitumor activity.82 Previous studies 
have shown evidence of enhanced clinical outcomes without increased 
toxicity. For example, combining ipilimumab and PSA-TRICOM 
provides directed T-cell activation while removing physiologic brakes 
on the immune system, allowing for a more robust CTL response. 
A  phase I study treated 30  patients with docetaxel-refractory or 
chemotherapy-naïve mCRPC with a fixed dose of PSA-TRICOM in 
conjunction with escalating doses of ipilimumab given at monthly 
intervals. Rates of irAEs in patients receiving the combination therapy 
were similar to those reported with ipilimumab alone, including 
endocrinopathies and colitis, but no dose-limiting toxicities were 
observed. Only 1/6  patients previously treated with chemotherapy 
had a PSA decline from baseline. Of the 24  patients who were 
chemotherapy-naïve, 14 (58%) had PSA declines, six of which (25%) 
were >50%. In addition, the median OS of patients treated with this 
combination (34.4 months) appears to be greater than patients treated 
with vaccine alone.83 These hypothesis-generating data suggest that 
intensification of immune-based therapies may improve clinical 
outcomes.

Based on preclinical models suggesting synergy between 
ipilimumab and the whole tumor cell vaccine GVAX,84 a phase I 



Asian Journal of Andrology 

Immunotherapy and therapeutic vaccines in prostate cancer  
BH Singh and JL Gulley

369

dose-escalation trial enrolled chemotherapy-naïve patients with 
mCRPC and treated them with GVAX and concurrent intravenous 
ipilimumab for 24 weeks. Approximately 29% of patients experienced 
grade  3 irAEs; for one patient, 5 mg kg  −1 of ipilimumab led to a 
dose-limiting toxicity. PSA declines of >50% were observed in 25% of 
men, with a median OS of 29.2 months.35 A recent preclinical study 
explored optimal sequencing of CTLA-4 blockade with cell-based 
immunotherapy.85

Early safety and efficacy studies of ipilimumab plus vaccine 
opened the door for future trials of combination therapy with immune 
checkpoint inhibitors, and provided the rationale for combining 
prostate cancer vaccines with monoclonal antibodies targeting 
programmed cell death protein 1. Early clinical trials of this novel 
immune checkpoint inhibitor have suggested antitumor activity with 
less frequent and severe irAEs than are reported with ipilimumab.86-88

CONCLUSIONS
Immunotherapies have contributed significantly to the evolving 
landscape of prostate cancer treatment. Ongoing phase III trials of 
PSA-TRICOM and the immune checkpoint inhibitor ipilimumab may 
soon broaden the scope of immunotherapies available to patients with 
mCRPC. Current strategies are also exploring optimal combinations 
and sequencing of immunotherapies with conventional treatments. 
Integration of immunotherapy into standard treatment regimens 
has been hampered by the lack of short-term measures of objective 
response. However, an evolving understanding of these agents’ effects 
on tumor growth rate equilibrium, coupled with well-designed clinical 
trials evaluating immune endpoints and growth rate kinetics, may soon 
provide answers to this dilemma.
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