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Semantic segmentation based on deep learning has undergone remarkable advancements in recent years. However, due to the
neglect of the shallow features, the problems of inaccurate segmentation have persisted. To address this issue, a semantic
segmentation network-attention-based auxiliary extraction and hybrid subsampled network (AAEHS-Net) is suggested in this
study. To extract more deep information and the shallow features, the complementary and enhanced extractionmodule (CEEM) is
utilized by the network. As a result, the edge segmentation of the model is improved. Moreover, to reduce the loss of features, a
hybrid subsampledmodule (HSM) is introduced. Meanwhile, global max pool and global avg pool module (GAGM) is designed as
an attention module to enhance the features with global and important information and maintain feature continuity. ,e
proposed AAEHS-Net is evaluated on three datasets: the aerial drone image dataset, the Massachusetts roads dataset, and the
Massachusetts buildings dataset. On the three datasets, AAEHS-Net achieves 1.15%, 0.88%, and 2.1% higher accuracy than U-Net,
reaching 90.12%, 96.23%, and 95.15%, respectively. At the same time, our proposed network has obtained the best values for all
evaluation metrics in three datasets compared to the currently popular algorithms.

1. Introduction

As a basic assignment in computer vision research, semantic
segmentation allocates a class label to each pixel of the
picture. However, this is a challenging assignment [1].
Moreover, due to providing category information at the
pixel level, semantic segmentation plays a key role in nu-
merous applications and areas [2], such as self-driving ve-
hicles [3, 4], medical image analysis [5], image classification
[6], target detection [7], and face recognition [8, 9]. Over the
last decades, numerous techniques have been proposed for
image segmentation. In general, segmentation methods can
be broadly classified into two categories of traditional
methods and deep neural network-based methods.

While in the former methods, such basic attributes of the
image as the regions [10], edges [11], and thresholds [12] are
used to achieve segmentation. In this case, the region-based
methods extract the region by considering the similar
characteristics of the pixels in terms of spatial and grey
information. Nevertheless, the challenge lies in the initial

division and the setting of the split-merge similarity mea-
surement. While it is suitable for complex images, the high
computational complexity as well as the destruction of the
boundaries when splitting can be mentioned as the draw-
backs. ,e edge-based segmentation methods detect the
edge pixels at the boundaries and connect them to form edge
contours, thus the image is divided into different regions.
However, while these methods enjoy a simple computational
process and a relatively effective performance, the algo-
rithms are susceptible to noise. Yet, threshold-based
methods adopt one or more thresholds and compare them to
every pixel of the picture. Based on the comparison results,
the pixels are classified into the appropriate category. ,ese
methods are simple and highly efficient, particularly for
images with a uniform grey or less grey difference between
the target and the background. However, while the grey of
the pixels are taken into consideration, the semantic, spatial,
and other feature information of the image are overlooked.
Besides, the methods are susceptible to noise and, accord-
ingly, not proper for complex images. So, to summarize, it
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can be argued that the traditional approaches rely heavily on
manually designed features and suffer from certain
drawbacks.

In recent years, the great development of neural net-
works has turned them into the dominant resolution for
semantic segmentation. For example, to extract local fea-
tures, AlexNet [6] adopts convolution, which highly im-
proves the performance of segmentation over traditional
methods. Fully convolutional neural networks (FCN) [13]
enables end-to-end segmentation by classifying images at
the pixel level, and accordingly, solving the problem of
merely accepting fixed-size input images. In addition, in-
spired by the FCN, several convolutional neural networks
are proposed. For example, to extract deeper features, the
residual network (ResNet) [14] improves accuracy by adding
to the depth of the network. As a result, the integrity of the
information is protected through strengthening the initial
features and mitigating the disappearance of the gradient.
Moreover, to capture information at different scales, a
pyramid pooling module is adopted by the pyramid scene
parsing network (PSPNet) [15]. ,is leads to the aggregation
of the contexts of different regions, which enables the model
to understand the global information.

,e typical encoder-decoder based network U-Net [16]
shows a good segmentation performance for all variants of
convolutional neural networks (CNN). It consists of an
encoder and a decoder. Moreover, to connect the different
features of the encoder and the decoder and obtain a more
accurate segmentation, skip connections are added to the
network which allows the spatial information to be applied
directly to the deeper layers. With the popularity of U-Net,
several innovative models have been introduced. Utilizing
superimposition, U-Net++ [17] integrates the features of all
stages in down sampling, the result of which is a fused
feature map that contains numerous features. Swin-UNet
[18] combines U-Net with a transformer [19] and replaces
the original encoder and decoder completely with a trans-
former, with good results. However, the excessive param-
eters used in the network can be stated as its disadvantage.
C-UNet [20] introduces two network models, namely, the
original U-Net and a multiscale dense dilated convolution
U-Net. In this network, the end result is a fusion of the
prediction maps from the two networks. However, in
contrast to the other methods, C-UNet requires a more
complex training process. To extract features, SmaAt-UNet
[21] uses attention modules and depthwise-separable con-
volutions, which results in a good segmentation with fewer
parameters. Furthermore, proposed by Wang et al., ECA-
Net [22] improves the channel attention, overcomes the
paradox of performance and complexity trade-off, and re-
duces the complexity of the model. Nevertheless, spatial
attention is not considered by the network. Moreover, as a
new semantic segmentation network based on spatial and
channel attention, SCAttNet [23] integrates lightweight
spatial and channel attention modules and, consequently,
adaptively refine the features.

Despite the achievement of rather good segmentation
results, not only the above mentioned networks do not
consider the shallow information, but an increase in the

network layers leads to the less desirable segmentation of
edge details. At the same time, since some level of accuracy is
lost in the down-sampling process, the resulted precision
loss leads to large semantic differences in the up-sampling
process. Hence, the present study proposes an attention-
based auxiliary extraction and hybrid subsampled network
(AAEHS-Net) through which more abundant deep features
are extracted by continuous multilayer residual convolu-
tions. Moreover, the edge information is effectively utilized
in the proposed model. In addition, the network captures
more information and reduces feature loss, the important
features are enhanced through fusion which in turn im-
proves the segmentation accuracy. Furthermore, on the two
datasets considered in this study, superior performance is
obtained by the proposed network. Hence, the major con-
tributions of the study are summarized as follows:

(1) A complementary and enhanced extraction module
(CEEM) is introduced to improve the edge feature
extraction capability of the segmentation model. It
consists of two branches, namely, the main branch
and the auxiliary one, which extract deep and
shallow features, respectively, and fuse them to en-
hance the effect on edge segmentation.

(2) A hybrid subsampled module (HSM) is set forth, in
which a convolutional combination is utilized, and
an attention mechanism is introduced after convo-
lution. ,us, the loss of features is improved
effectively.

(3) global max pool and global avg pool module
(GAGM) is presented to enhance the integrity of the
contextual information as well as to improve the
performance of segmentation. Using GAGM, the
global and shallow information are captured sepa-
rately and are fused together later.

(4) ,e comparison of the proposed model in this study
with those of the U-Net family set forth in recent
years revealed improved experimental results ob-
tained by the present model.

,e rest of this paper is organized as follows: Section 2
reviews the literature of the study. Next, the proposed
AAEHS-Net is illustrated in Section 3. In Section 4, the
experimental results and discussion are presented. Finally,
the conclusions are given in Section 5.

2. Related Work

2.1. U-Net. U-Net is an improved fully convolutional net-
work model, the structure of which is displayed in Figure 1
[16]. It is a successful encoder-decoder network.,e encoder
is adopted for extracting features. While each module
contains two convolutions with the size of 3× 3, the number
of channels is different, i.e., 64, 128, 256, 512, and 1024,
respectively. ,e decoder consists of a deconvolution, a
concatenation, and two convolutions. ,e number of
channels is the exact opposite of that of the encoder. To
compress the feature map, the pooling operation is intro-
duced. As a result, it becomes smaller, and the complexity of
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the network is reduced. In contrast to pooling operations,
deconvolution is intended to expand the features. ,e
concatenation operation is to obtain more initial features.

,e complete process of U-Net is as follows: each time
encoding is passed, the size of the feature is halved, and the
number of channels is doubled. ,is is done until the
number of channels is 1024. Moreover, the decoding section
corresponds to the encoding one. ,en, to recover the
corresponding feature size and the number of channels, the
decoding process is carried out. Subsequently, it is stitched
with the encoded features at the corresponding positions. To
obtain the final output, the decoding operation is repeated
until the feature size is restored to its original size. After-
wards, the number of channels is adjusted with the con-
volution, the sigmoid or softmax is activated, and the final
segmented image is obtained.

2.2. Attention Mechanism. ,e performance of numerous
models has been remarkably improved by attention
mechanism in recent years. ,erefore, the mechanism has
been widely used in such fields as image segmentation,
speech recognition [24], and machine translation [25].

As a kind of dual attention mechanism, the convolu-
tional block attention module (CBAM) [26] contains two
independent submodules, namely, the channel attention
module and the spatial attention module. Figure 2 shows the
structure of CBAM. Taking the feature map as the input,
CBAM infers the attention map along the channel and
spatial dimensions.,en, for the purpose of adaptive feature
refinement, the attention map is sequentially multiplied by
the input feature map, leading to the considerable im-
provement of its performance, while keeping the overhead
small.

,e polarized self-attention (PSA) [27] (Figure 3) is
divided into two branches, one for the channel dimension
and the other for the spatial dimension. Regarding the
former, the input feature is converted into the Q and V

vectors with a convolution. Furthermore, the Q vector is
augmented with softmax. Subsequently, matrix multiplica-
tion and convolution operations are performed to integrate
the feature. Subsequently, LayerNorm is adopted to raise the
dimension of the channel. Finally, a sigmoid function is used
to achieve dynamic mapping.

3. AAEHS-Net

In this section, AAEHS-Net is introduced in details. First,
the whole architecture of AAEHS-Net is illustrated in
Section 3.1, and then, the structures of the three important
components, i.e., the complementary and enhanced ex-
traction module (CEEM), hybrid subsampled module
(HSM), and GlobalMaxpool and GlobalAvgpool Module
(GAGM) are provided in Section 3.2, Section 3.3, and
Section 3.4, respectively. ,e algorithm flow is given in
Section 3.5.

3.1. Overall Architecture. Despite demonstrating effective
results, U-Net-based segmentation networks suffer from two
urgent questions.While the first issue is ignoring the shallow
features, which leads to poor edge segmentation, the second
is the degradation of precision due to the pooling operation.
To solve these issues, a new semantic segmentation network
(AAEHS-Net) is proposed. ,e overall architecture of the
model is illustrated in Figure 4. As can be seen in the figure,
AAEHS-Net is an end-to-end neural network.

Firstly, to extract more features as well as to quickly
reduce the scale, the input image goes through a 7× 7
convolution (strides� 2, channel� 64), followed by a max
pooling operation. Subsequently, feature extraction is per-
formed using CEEM. Moreover, for reducing the compu-
tational efforts, the features output from the CEEM are
passed through the proposed HSM for feature compression.
For ease of description, CEEM and HSM are collectively
referred to as the encoding process. With each encoding
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Figure 1: Overall architecture of the U-Net [16].
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process, the size of the feature map is halved, and the channel
is doubled. ,en, the encoding process is repeated for three
times until the number of channels reaches 512. ,e next
step is the decoding operation. Like U-Net, it contains a
deconvolution, a skip connection, and two normal convo-
lutions. While the purpose of the deconvolution is to restore
the size of the feature map, the skip connection combines
deep features with shallow features. Moreover, to maintain
better contextual integrity of the combined features as well as
to enhance shallow features, GAGM is introduced. ,e
features obtained from the encoding process are first sub-
jected to a deconvolution, while the skip connection features
are enhanced by GAGM, subsequently fusing the two parts.
,e fused features are subjected to feature extraction again
by twice convolution. ,is is a complete decoding process
which needs to be repeated four times. Finally, to obtain the
final output, the channel count is adjusted using convolu-
tion. While reducing feature loss from subsampling,

AAEHS-Net improves the extraction of edge information.
Using attention, the integrity of the contextual information
is ensured by enhancing the features before fusion. In the
next section, the details of the network and the design ideas
are described.

3.2. CEEM (Complementary and Enhanced Extraction
Module). Image semantic segmentation is considered as a
dense classification task, which focuses on the extraction of
deep feature information. Moreover, network depth is a
critical factor in determining the accuracy of segmentation
[28]. ,e deeper the network is, the deeper features can be
extracted. In order to extract the features, the traditional
U-Net uses two stacked convolutions, which can easily cause
inadequate extraction. To address this issue, the CEEM is
designed. ,e specific structure of CEEM is shown in Fig-
ure 5. As can be seen in the figure, it has two parts, namely, the
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main structure and the auxiliary structure, which are referred
to as MSM and ASM, respectively. ResNet34 is used as the
backbone of the MSM.,ere are a number of reasons for the
choice, including its numerous network layers for feature
extraction, as well as its residual structure which prevents it
from degrading the extraction power due to the high number
of the layers. ,e MSM consists of multiple double convo-
lutions, the structure of which is shown in Figure 6. As can be
seen in the figure, it consists of two sets of convolutions and
residuals. While the former is used for feature extraction, the
latter fuses more initial features. Each convolution operation
contains a normalization and a linear activation. Meanwhile,
to reduce the computation complexity, the numbers of double
convolutions in each MSM are changed to 3, 4, 5, and 2 in the
present study.,e specific information is indicated in Table 1.
As can be seen in the table, CEEM1 contains both MSM1 and
ADM1, with an input and an output size of 128×128× 64.

Although an increase in the layers can result in better deep
features, deeper layers lead to the learning of less shallow
features, which in turn can result in the imprecision and
discontinuity of the detail segmentation effect. To avoid the
defect and ensure the validity of the extracted features, ASM is
introduced as an auxiliary structure to extract the edge
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information. ,e ASM is demonstrated in the dashed box in
Figure 5. Firstly, to reduce the parameters, an input image is
convolved. Subsequently, feature enhancement and edge
feature extraction are performed by the CBAM and a dilated
convolution, respectively. Finally, the three parts of the feature
are fused as the output of the ASM. To better accommodate
the extraction needs of the different layers, the rate of the
dilated convolution begins from 5 and continuously reduces
to 2 with each encoding process. Finally, the results obtained
from the ASM and MSM are fused as output. ,e CEEM can
also be given in the following equations:

b1 � MAE Xin( 􏼁

� C1×1 + DC3×3 C1×1 Xin( 􏼁( 􏼁 + CCBAM C1×1( 􏼁,

b2 � C
n
3×3 Xin( 􏼁,

Xout � b1 + b2,

(1)

where Xin and Xout denote the input and output of CEEM,
separately, Cn

k×k represents the convolution, k stands for the
size of the convolution kernel, n means the amount of
powers, and DCk×k suggests the dilated convolution. All
convolution operations include batch normalization and
ReLU, and CCBAM is the CBAM attention.

3.3. HSM (Hybrid Subsampled Module). Currently, pooling
operations are used by most semantic segmentation models
to reduce the scale of the models and, accordingly, speed up
the computations to increase their robustness. However, as
can be predicted, the models lose most of their character-
istics in the pooling operation. So, to obtain satisfactory
results, some scholars have tried engaging different pooling
operations in parallel. Get inspired from here, as is shown in
Figure 7, and a hybrid subsampled method (HSM) is pro-
posed for AAEHS-Net. Firstly, the input features pass
through two branches, one of which reduces the feature
parameters by convolution. Subsequently, to obtain more
information, the perceptual field is expanded by a dilation
convolution. ,e other branch uses ordinary convolution.
To get the results, the features obtained from the two
branches are combined. Compared with the pooling

operation, the adopted convolution reduces the feature loss.
Meanwhile, in order to be adapted to different types of
segmentation requirements as well as to obtain richer se-
mantic information, features are fed into a PSAmodule. PSA
applies channel and spatial dimensions to enhance the
features. In addition, to learn more initial features and get
the final output, the residual structure is used to merge the
previous features. ,is particular process can also be
expressed by the following equation:

OMSM(X) � F + WPSA(F)

� f3×3(X) + f3×3 f1×1(X)( 􏼁

+ WPSA f3×3(X) + f3×3 f1×1(X)( 􏼁( 􏼁,

(2)

where X denotes an input, fk×k represents the convolution, k
stands for the size of the convolution kernel, and WPSA
means the PSA module.

3.4. GAGM (GlobalMaxpool and GlobalAvgpool Module).
,e attention mechanism is generally used to strengthen the
connections between the parts as well as to augment the
features. With regards to the pooling operation, while the
texture information is extracted by global max pooling, the
global information is ignored. Global average pooling, on the
other hand, preserves the global information but loses the
texture information. However, in order to enhance the input
features, CA attention [29] combines pooling operations
with an attention mechanism with good results. Inspired by
this, GAGM is introduced as a new attention mechanism in
this paper, the structure of which is shown in Figure 8. ,e
input features separately run through three branches of
global max pooling, depthwise separable convolution, and
global average pooling. While depthwise separable convo-
lution is used to obtain more features with the lower
computation complexity, global average pooling acquires
global features. In addition, global max pooling is applied to
focus on the important features. Finally, the results achieved
from the three branches are stitched together. ,e GAGM
enriches the feature information extracted by the encoder
while effectively combining the global and local information
to enhance edge features. ,e specific formula is as follows:

Table 1: Details of CEEM.

Blocks Input size Layers Output size
CEEM1 128×128 64 channels MSM1 ADM1 128×128 64 channels
MSM1 128×128 64 channels (Doule conv k� 3, c� 64, s� 1)× 3 128×128 64 channels

ASM1 128×128 64 channels Conv2D (k� 1, c� 64, s� 1) 128×128 64 channelsDilated conv (k� 3, c� 64, r� 4)
CEEM2 64× 64 128 channels MSM2 ADM2 64× 64 128 channels
MSM2 64× 64 128 channels (Doule conv k� 3, c� 128, s� 1)× 4 64× 64 128 channels

ASM2 64× 64 128 channels Conv2D (k� 1, c� 128, s� 1) 64× 64 128 channelsDilated conv (k� 3, c� 128, r� 3)
CEEM3 32× 32 256 channels MSM3 ADM3 32× 32 256 channels
MSM3 32× 32 256 channels (Doule conv k� 3, c� 256, s� 1)× 5 32× 32 256 channels

ASM3 32× 32 256 channels Conv2D (k� 1, c� 256, s� 1) 32× 32 256 channelsDilated conv (k� 3, c� 256, r� 2)
CEEM4 16×16 512 channels MSM4 16×16 512 channels
MSM4 16×16 512 channels (Doule conv k� 3, c� 512, s� 1)× 2 16×16 512 channels
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out � z f Fmax(X)( 􏼁􏼂 􏼃 × S(X)

+ z f Favg(X)􏼐 􏼑􏽨 􏽩 × S(X) + S(X),
(3)

where X denotes input, S represents deep separable con-
volution, Fmax stands for global max pool, Favg signifies
global average pool, f means convolution with BN, z is
sigmoid, and S suggests the single depthwise separable
convolution operation.

3.5. Algorithm Step. ,e specific algorithm flow is shown in
Table 2.

4. Experiments

First, the datasets used in the experiment are introduced in
this section. Next, the details of the implementation and
evaluation are provided. Subsequently, the ablation studies
carried out to verify the effectiveness of the proposed

submodules are presented. Finally, to confirm the advantage
of the approach proposed in this study, the presented model
is compared with the latest ones.

4.1. Datasets

4.1.1. Aerial Drone Image Dataset. ,e aerial drone image
dataset [30] is accessible on Kaggle, which offers 24 cate-
gories of datasets. To improve the security of autonomous
drone flights and landing sequences, the dataset focuses on
the semantic comprehension of urban scenarios. Images
depict the picture of more than 20 houses taken from the
lowest point (aerial view) at the heights of 5 to 30 meters
above the ground. A high resolution camera is used to
capture 6000× 4000 px images. Accordingly, the individual
images containing few categories were removed. As the
result, a total number of 400 images were obtained. Data
enhancement was performed on the data by resizing the
images first. Subsequently, the dataset was expanded to 2000
images (1152× 768 pixels) after applying such data en-
hancement techniques as random noise addition, horizontal
flipping, vertical flipping, and light adjustment and blurring
operations. ,e training, the validation, and the test sets
were also divided with a ratio of 80%, 10%, and 10%, re-
spectively. ,e sample images are shown in Figure 9. Here,
the first and third rows are the original images, and the
second and fourth rows are the labels.

4.1.2. Massachusetts Roads Dataset. ,e Massachusetts
roads dataset [31] contains 1171 images (1500×1500 pixels).
,e data were randomly divided into three parts, with a
training set of 1108 images as well as a validation set of 14
and a test set of 49 images, respectively. Furthermore, the
dataset covers over 2600 km2 of various city, countryside,
and village areas. ,e target maps were generated by ras-
terizing the road centerlines obtained by the open street-
map project. Sample images are displayed in Figure 10. In
this case, the first and third rows are the original images, and
the second and fourth rows are the labels.

4.1.3. Massachusetts Buildings Dataset. ,e Massachusetts
buildings dataset [31] consists of 151 aerial images of the
Boston area, with each of the images being 1500×1500 pixels
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Figure 9: Sample images of the aerial drone image dataset.

Table 2: Details of algorithm steps.

Blocks Input size Output size
Input 512× 512× 3
Conv2d c� 64, k� 7, s� 2 512× 512× 3 256× 256× 64
Max pool 256× 256× 64 128×128× 64
CEEM1 128×128× 64 128×128× 64
HSM1 128×128× 64 64× 64× 64
CEEM2 64× 64× 64 64× 64×128
HSM2 64× 64×128 32× 32×128
CEEM3 32× 32×128 32× 32× 256
HSM3 32× 32× 256 16×16× 256
CEEM4 16×16× 256 16×16× 512
Transpose2d 16×16× 512 32× 32× 256
Concat 32× 32× 256 32× 32× 512
(Conv2d, c� 256) ∗ 2 32× 32× 512 32× 32× 256
Transpose2d 32× 32× 256 64× 64×128
Concat 64× 64×128 64× 64× 256
(Conv2d, c� 128) ∗ 2 64× 64× 256 64× 64×128
Transpose2d 64× 64×128 128×128× 64
Concat 128×128× 64 128×128×128
(Conv2d, c� 64) ∗ 2 128×128×128 128×128× 64
Transpose2d 128×128× 64 256× 256× 32
Concat 256× 256× 32 256× 256× 96
(Conv2d, c� 32) ∗ 2 256× 256× 96 256× 256× 32
Transpose2d c� 32 256× 256× 32 512× 512× 32
Conv2d c� 1 512× 512× 32 512× 512×1
Output 512× 512×1
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for an area of 2.25 square kilometers.,e data are split into a
training set of 137 images, a test set of 10 images, and a
validation set of 4 images. ,e dataset covers mostly urban
and suburban areas and buildings of all sizes, including
individual houses and garages, which are included in the
labels. In order to train the model adequately, we expand the
dataset. Data enhancement is performed on the data by
resizing the images first. Subsequently, the dataset was ex-
panded to 1500 images after applying such data enhance-
ment techniques as random noise addition, horizontal
flipping, vertical flipping, and light adjustment and blurring
operations.,e sample images are shown in Figure 11. Here,
the first and third rows are the initial pictures and the second
and fourth rows are the labels.

4.2. Implementation Details and Evaluation

4.2.1. Implementation Settings. To maintain objectivity, the
proposed model in this study was implemented using
TensorFlow with the same data increments. ,e model was
also trained using a 48GB Quadro RTX 8000 GPU. In
addition, to speed up the process as well as to minimize the
loss function, both datasets were evaluated using the Adam
optimizer [32]. ,e initial learning rate obtained was 0.0001.

,e gradient descent algorithm was implemented as well.
Table 3 shows the remaining hyperparameters.

4.2.2. Evaluation Metrics. To quantitatively evaluate the
performance of different models on the Massachusetts roads
dataset, four measures, namely, accuracy, MIOU, Dice, and
AUC were adopted as the evaluation metrics. However, in
the aerial drone image dataset, AUC was not adopted as an
evaluation indicator. AUC was defined as the area under the
ROC curve.,e definitions of accuracy, MIOU, and Dice are
given as follows:

Accuracy �
TP + TN

TP + TN + FP + FN
,

MIOU �
1

k + 1
􏽘

k

i�0

TP
TP + FP + FN

,

Dice �
2TP

2TP + FP + FN
,

(4)

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively.

Figure 10: Sample images of the Massachusetts roads dataset.
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4.3. Experimental Results. To confirm the effectiveness of
AAEHS-Net, extensive experiments were conducted on two
image semantic segmentation datasets. In this section, the
ablation properties of CEEM, HSM, and GAGM are in-
vestigated, compared, and discussed with other semantic
segmentation networks.

4.3.1. Ablation Study of CEEM. ,e impact and significance
of the CEEM on the performance of the network are dis-
cussed in this section. First, the U-Net is adopted as the
baseline model. Next, the feature extraction structure is
replaced with the CEEM in the U-Net. Table 4 provides the
specific experimental results of these two methods.

Figure 11: Sample images of the Massachusetts buildings dataset.

Table 3: ,e remaining hyperparameters.

Value Aerial drone image dataset Massachusetts roads dataset Massachusetts buildings dataset
Batch size 8 16 8
Optimizer Adam Adam Adam
Learning strategy Poly decay Fixed Fixed
Beta 1 0.900 0.900 0.900
Beta 2 0.999 0.999 0.999
Epochs 400 300 400
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As can be observed in Table 4, U-Net-CEEM obtains the
values of 95.47%, 52.11%, and 64.25% for ACC, MIOU, and
Dice on the Massachusetts roads dataset, respectively. ,is is
while the values achieved by U-Net were 95.35%, 51.38%,
and 63.56%, respectively. Comparison of the two methods
reveals an improvement in the values obtained by U-Net-
CEEM by 0.12%, 0.72%, and 0.68%, respectively. ,erefore,
the performance of feature extraction can be argued to be
enhanced by the CEEM to a certain extent.

To clearly demonstrate the results of the ablation study,
the experimental results of two example images are provided
in Figures 12 and 13. ,e red box in the figures shows the
better segmentation of the CEEM. ,is can be argued to be
due to the deeper total network layer of the CEEM. As a
consequence, more deep information is learned, and the
accuracy of the model is improved. Furthermore, more
attention is paid to the target regions neglected by the
inflated convolution and CBAM attention. Consequently,
this is significantly more accurate segmentation of the edge
information, which is also well demonstrated on the aerial
drone image dataset. To be more exact, ACC, MIOU, and
Dice are improved by approximately 0.08%, 0.42%, and
0.29%, with the CEEM, respectively. Hence, the effectiveness
of the CEEM is confirmed by the obtained experimental
results.

4.3.2. Ablation Study of HSM. ,e effect of HSM on seg-
mentation performance was also examined. ,e corre-
sponding segmentation results are obtained on U-Net by
sequentially choosing the max pooling operation and using
the HSM. ,e specific experimental results are showed in
Table 5.

As shown in Table 5, the highest ACC, MIOU, and Dice
are achieved with the HSM on the aerial drone image
dataset.,e indicators improved by 0.14%, 0.41%, and 0.36%
over the baseline network, respectively. HSM also achieves
the best performance for all evaluation indicators on the
Massachusetts roads dataset.

Similarly, to corroborate the experimental results,
sample images were given on both datasets, as shown in
Figures 14 and 15. ,e differences between the methods are
demonstrated by the red boxes in the diagram. As can be
observed, the segmentation network using HSM segmen-
tation is finer and more complete for fine features. ,is can
be argued to be due to the reduction of feature loss during
being subsampled in the convolution operation as well as the
enhancement of the feature information by PSA attention.

4.3.3. Ablation Study of GAGM. To demonstrate the ef-
fectiveness of the GAGM, the segmentation results of the
U-Net were also compared with the improved U-Net using
the GAGM. Table 6 shows the corresponding results.

As shown in Table 6, while the values of MIOU and Dice
are 51.38% and 63.56% for the U-Net on the Massachusetts
roads dataset, respectively, they are 52.43% and 64.29% for
the GAGM. ,is is to say that ACC was improved by 0.28%
to 95.63%. Furthermore, ACC, MIOU, and Dice increased
by 0.14%, 0.58%, and 0.50% on the aerial drone image
dataset with GAGM, respectively.

,is is reinforced by the graphs of the experimental
results. As can be observed in Figure 16, the edge contour
within the red boxes segmented with GAGM is more
continuous. Moreover, as is shown in Figure 17, compared
with U-Net, the yellow gates are segmented more accurately
with the GAGM, which can be argued to be due to the ability
of global average pooling and global max pooling in the
GAGM to learn some of the global and important features,
respectively. Hence, the improvement of all of the scalar
metrics of the network confirms the effectiveness and use-
fulness of the GAGM.

4.4. Comparison of AAEHS-Net with Other Models on Dif-
ferent Datasets. To confirm the validity of AAEHS-Net, the
network was also compared with FPN [33], DeepLabv3 [34],
NHSU-Net [35], HDA-ResUNet [36], MR-UNet [37], and
CE-UNet [38] on different datasets.

4.4.1. Aerial Drone Image Dataset. Table 7 provides the
segmentation results of the various networks on the aerial
drone image dataset. Compared with other models, the
model proposed in this study performs well with regard to
the overall segmentation performance. To be more exact,
compared with the original U-Net, the MIOU, Dice, and
ACC increased by 1.03%, 1.27%, and 1.15% with AAEHS-
Net, respectively. In addition compared to FPN and
Deeplabv3, Dice improved by 1.74% and 0.9% and achieved
the best results in the other two metrics. ,is is to say that
U-Net is not adequate for feature extraction, FPN ignores
the enhancement of the features, and Deeplabv3 does not
take steps to reduce the feature loss of the down-sampling
operation. Hence, their accuracy is lower than that of the
algorithm proposed in this study.

Meanwhile, the present model was also compared with
the recently proposed algorithmic models. ,e results
revealed the highest level of accuracy, i.e., 90.12% by the
model proposed in this study. In addition, the CE-UNet
achieved the second highest Dice, with 0.17% below that of
our model. Moreover, while MR-UNet uses the coding
structure of ResNet34, and consequently, more deep features
are able to be extracted; it ignores the shallow information.
Although MHSU-Net gains an improved down-sampling
operation, the results are still inferior to those of our model.
,e reason can be argued to be due to the convolution being
more efficient, compared with pooling operations. Fur-
thermore, despite all using attention mechanisms, both ACC
and MIOU of AAEHS-Net outperform the HAD-ResUNet

Table 4: Results of the ablation study for the CEEM.

ACC MIOU Dice
Methods on the Massachusetts roads dataset
U-Net 0.9535 0.5138 0.6356
U-Net-CEEM 0.9547 0.5211 0.6425
Methods on the aerial drone image dataset
U-Net 0.8897 0.5269 0.6870
U-Net-CEEM 0.8905 0.5311 0.6899
,e bold value indicates the best value for the item.
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and CE-UNet, which is due to the effective extraction of edge
feature information as well as the reduction of feature loss in
the subsampled process in our model.

Meanwhile, to clearly demonstrate the segmentation
results, they are provided for the sample images of the
mainstream algorithms in Figure 18. From the top to the

bottom are the original image, the label, MHSU-Net, HAD-
ResUNet, MR-UNet, CE-Net, and AAEHS-Net. ,e parts
marked with red circles reveal the best segmentation per-
formance of AAEHS-Net for people in the first and second
test images and for nets and wires in the third image. While
the MHSU-Net and the HAD-ResUNet networks are able to
roughly predict people in the first image and the second test
image, respectively, it is only the MR-UNet and CE-Net
networks that are incapable of predicting the line in the third
image. Hence, it can be concluded that compared with other
methods, AAEHS-Net enjoys a stronger segmentation effect.

4.4.2. Massachusetts Roads Dataset. To further evaluate the
effectiveness of our approach, experiments on the

(a) (b) (c) (d)

Figure 12: Massachusetts roads CEEM comparison (a) original image, (b) mask image, (c) U-Net, and (d) U-Net-CEEM.

(a) (b) (c) (d)

Figure 13: Aerial drone image CEEM comparison (a) original image, (b) mask image, (c) U-Net, and (d) U-Net-CEEM.

Table 5: Results of the ablation study for the HSM.

ACC MIOU Dice
Methods on the Massachusetts roads dataset
U-Net 0.9535 0.5138 0.6356
U-Net-HSM 0.9558 0.5219 0.6430
Methods on the aerial drone image dataset
U-Net 0.8897 0.5269 0.6870
U-Net-HSM 0.8911 0.5310 0.6906
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Massachusetts roads dataset were conducted for the eight
methods, the results of which are provided in Table 8.

As can be seen in the table, compared to the various
classical networks, AAEHS-Net achieved the best results in
all metrics. To be more exact, compared with U-Net, the
ACC, Dice, MIOU, and AUC are improved by 0.88%, 1.14%,

1.27%, and 0.89%, respectively. ,is is an indication of the
extraction of sufficient features and retaining the informa-
tion to the feasible extent by the model proposed in this
research. To verify the effectiveness of the network, exper-
imental comparisons were also made with the latest
methods. As can be seen in Table 8, this study presented an
algorithm which obtained the best results in all evaluation
metrics. In particular, compared with HAD-ResUNet, the
ACC increased by 0.27% with AAEHS-Net. Moreover,
compared with MR-UNet and CE-UNet, MIOU was im-
proved by 0.37% and 0.35%, respectively, and the reason of
low accuracy can be argued to be due to the ignorance of the
edge features by the networks. Meanwhile, since the features
were not well used in down sampling, the Dice of MHSU-
Net is 0.69% less than that of our method. Hence, the ob-
tained results of the experiments again corroborate the

(a) (b) (c) (d)

Figure 14: Massachusetts roads HSM comparison (a) original image, (b) mask image, (c) U-Net, and (d) U-Net-HSM.

(a) (b) (c) (d)

Figure 15: Aerial drone image HSM comparison (a) original image, (b) mask image, (c) U-Net, and (d) U-Net-HSM.

Table 6: Results of the ablation study for the GAGM.

ACC MIOU Dice
Methods on the Massachusetts roads dataset
U-Net 0.9535 0.5138 0.6356
U-Net-GAGM 0.9563 0.5243 0.6429
Methods on the aerial drone image dataset
U-Net 0.8897 0.5269 0.6870
U-Net-GAGM 0.8911 0.5327 0.6920
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strong semantic segmentation capability of the model set
forth in this study.

Figure 19 displays the segmentation results of two
sample images. As can be observed by the red box, compared

with the other methods, the one proposed here integrates the
edge information more thoroughly, and accordingly, of-
fering more complete and accurate details. ,is, in turn,
corroborates the effectiveness of AAEHS-Net.

4.4.3. Massachusetts Buildings Dataset. In order to make our
method more convincing, eight methods were experimented
with on the Massachusetts buildings dataset, and their re-
sults are presented in Table 9.

It can be seen from Table 9 that we achieved the best
results on the Massachusetts buildings dataset as well.
When compared to the baseline network, the accuracy of
our proposed network improved by 2.1%, the AUC by
1.59%, and Dice by 2.79%, which fully demonstrates that
our proposed individual modules are effective. To further
enhance the convincing effect, we are compared with the

(a) (b) (c) (d)

Figure 17: Aerial drone image GAGM comparison (a) original image, (b) mask image, (c) U-Net, and (d) U-Net-GAGM.

Table 7: Results of different models on the aerial drone image
dataset.

Method Accuracy Dice MIOU
U-Net 0.8897 0.6870 0.5269
FPN 0.8905 0.6823 0.5252
Deeplabv3 0.8911 0.6907 0.5277
MHSU-Net 0.8933 0.6966 0.5321
HAD-ResUNet 0.8943 0.6953 0.5349
MR-UNet 0.8976 0.6957 0.5347
CE-UNet 0.8985 0.6980 0.5338
Ours 0.9012 0.6997 0.5372
,e bold value indicates the best value for the item.

(a) (b) (c) (d)

Figure 16: Massachusetts roads GAGM comparison (a) original image, (b) mask image, (c) U-Net, and (d) U-Net-GAGM.
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(a) (b) (c)

Figure 18: ,e results of the images tested on the aerial drone image dataset. (a) ,e original image, (b) the ground truth labeled image, (c)
and the predicted labels.
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Table 9: Results of segmentation on the Massachusetts buildings dataset.

Method Accuracy Dice MIOU AUC
U-Net 0.9305 0.6931 0.6782 0.9524
MHSU-Net 0.9451 0.7155 0.6781 0.9587
HAD-ResUNet 0.9428 0.7142 0.6802 0.9574
MR-UNet 0.9462 0.7179 0.6798 0.9620
CE-UNet 0.9490 0.7137 0.6811 0.9598
Ours 0.9515 0.7210 0.6835 0.9683
,e bold value indicates the best value for the item.

(a) (b) (c) (d) (e) (f ) (g)

Figure 19:,e segmentation results of four currently popular models for two sample images on the Massachusetts roads dataset. (a) Image,
(b) mask, (c) MHSU-Net, (d) HAD-ResUNet, (e) MR-UNet, (f ) CE-UNet, and (g) AAEHS-Net.

Table 8: Results of segmentation on the Massachusetts roads dataset.

Method Accuracy Dice MIOU AUC
U-Net 0.9535 0.6356 0.5138 0.9082
FPN 0.9517 0.6370 0.5153 0.9056
Deeplabv3 0.9540 0.6326 0.5207 0.9071
MHSU-Net 0.9577 0.6401 0.5231 0.9146
HAD-ResUNet 0.9596 0.6397 0.5242 0.9140
MR-UNet 0.9563 0.6441 0.5228 0.9149
CE-UNet 0.9571 0.6437 0.5230 0.9157
Ours 0.9623 0.6470 0.5265 0.9171
,e bold value indicates the best value for the item.

(a) (b) (c) (d) (e) (f ) (g)

Figure 20: Segmentation results on the Massachusetts buildings dataset. (a) Image, (b) mask, (c) MHSU-Net, (d) HAD-ResUNet, (e) MR-
UNet, (f ) CE-UNet, and (g) AAEHS-Net.
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currently popular algorithms. ACC is improved by 0.87%,
Dice by 0.68%, MIOU by 0.33%, and the AUC by 1.11%
when compared to the HAD-ResUNet.,e reason for this
may be that our proposed GAGM is able to enhance
global features as well as shallow features, which is not
available in the HAD-ResUNet network. Compared to
MHSU-Net, ACC is increased by 0.64% and the AUC by
0.96%. ,is is probably because HSM is subsampled by
convolution, which causes less loss compared to pooling
operations, and this enhances the features.

At the same time, the results of the experiments are
plotted to demonstrate the validity of our model. Figure 20
shows the results of the segmentation on the Massachusetts
buildings dataset. From the red box, it is clear that the
AAEHS-Net is best for segmentation. ,is demonstrates the
validity of our proposed model.

5. Conclusion

AAEHS-Net was proposed as an improved semantic
segmentation framework based on U-Net in this research.
By using CEEM, AAEHS-Net enhanced the extraction of
edge features. Moreover, the replacement of pooling
operations with HSM led to the reduction of feature loss.
Simultaneously, more global and focused information was
obtained through the use of GAGM, which resulted in the
enhancement of the features. ,e network used the above
modules to extract more edge features. Meanwhile, the
global and focused information pieces of the features were
enhanced, and the feature loss was reduced, which en-
sured the integrity of the contextual information and
improved the segmentation accuracy. Compared with the
previous works, the experiments on the two datasets
confirmed the effectiveness of the proposed model.
However, the issue of multiple parameters remained,
which will be dealt with through using GAN in our future
work.
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