
Loss of estrogen receptor β decreases mitochondrial
energetic potential and increases thrombogenicity of platelets
in aged female mice

Muthuvel Jayachandran & Claudia C. Preston & Larry W. Hunter &

Arshad Jahangir & Whyte G. Owen & Kenneth S. Korach & Virginia M. Miller

Received: 28 May 2009 /Accepted: 15 October 2009 /Published online: 12 November 2009
# The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Platelets derived from aged (reproductively
senescent) female mice with genetic deletion of
estrogen receptor beta (βER) are more thrombogenic
than those from age-matched wild-type (WT) mice.
Intracellular processes contributing to this increased
thrombogenicity are not known. Experiments were

designed to identify subcellular localization of estro-
gen receptors and evaluate both glycolytic and
mitochondrial energetic processes which might affect
platelet activation. Platelets and blood from aged
(22–24 months) WT and estrogen receptor β knock-
out (βERKO) female mice were used in this study.
Body, spleen weight, and serum concentrations of
follicle-stimulating hormone and 17β-estradiol were
comparable between WT and βERKO mice. Number
of spontaneous deaths was greater in the βERKO
colony (50% compared to 30% in WT) over the
course of 24 months. In resting (nonactivated)
platelets, estrogen receptors did not appear to coloc-
alize with mitochondria by immunostaining. Lactate
production and mitochondrial membrane potential of
intact platelets were similar in both groups of mice.
However, activities of NADH dehydrogenase,
cytochrome bc1 complex, and cytochrome c oxidase
of the electron transport chain were reduced in
mitochondria isolated from platelets from βERKO
compared to WT mice. There were a significantly
higher number of phosphatidylserine-expressing
platelet-derived microvesicles in the plasma and a
greater thrombin-generating capacity in βERKO
compared to WT mice. These results suggest that
deficiencies in βER affect energy metabolism of
platelets resulting in greater production of circulating
thrombogenic microvesicles and could potentially
explain increased predisposition to thromboembo-
lism in some elderly females.
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Introduction

Incidence of cardiovascular disease, including throm-
bosis and associated events such as stroke, myocardial
infarction, and pulmonary embolism, increases in
women following the decline of circulating estrogen
associated with menopause (Bushnell et al. 2006; Hu et
al. 1999; Mari et al. 2007; Rexrode et al. 2007). The
cellular basis for this increased risk is not entirely clear.
Cellular responses to estrogen are initiated mostly
through binding to one or both estrogen receptors α
(αER) and β (βER). Platelets, cytoplasmic fragments
of bone marrow megakaryocytes, are required for
normal hemostasis and thrombosis. Although both
estrogen receptors are present in bone marrow mega-
karyocytes and platelets, βER is the predominant
estrogen receptor subtype in anucleated platelets and
appears to play a role in mediating aging-associated
changes in platelet number and activity (Bracamonte et
al. 2002; Jayachandran et al. 2003; Jayachandran and
Miller 2002; Khetawat et al. 2000; Moro et al. 2005;
Nagata et al. 2003). Genetic deletion of βER did not
affect platelet characteristics in young female mice, but
in aged female mice, numbers of circulating platelets,
platelet aggregation, and ATP secretion from dense
granules decreased, whereas number of young (reticu-
lated) platelets and platelet procoagulant surface
expression of P-selectin and phosphatidylserine
increased (Jayachandran et al. 2005).

Activation processes (aggregation and secretion) of
platelets utilize energy provided by glycolysis and
oxidative phosphorylation (Holmsen 1975; Merlo-
Pich et al. 2004; Salganicoff and Fukami 1972).
Therefore, an energetic defect within platelets associ-
ated with aging and ER deficiency may explain
increased thrombogenicity of blood in the elderly
female. Both αER and βER are associated with
neuronal and cardiac mitochondria (Chen et al.
2004; Yang et al. 2004) and could regulate genes
required for mitochondrial function (O’Lone et al.
2007). Activated platelets contribute to thrombotic
complications by providing membrane phosphatidyl-
serine required for thrombin generation (Bouchard
and Tracy 2001; Butenas and Mann 2002). During

activation, platelets shed sealed submicron-sized
plasma membrane vesicles called microvesicles (or
microparticles), which express phosphatidylserine on
their surface and are thus thrombogenic. The present
study was designed to determine how the loss of βER
could affect energy metabolism in platelets and thus
provide a link between the number and characteristics
of circulating microvesicles in aged female mice. It
was hypothesized that loss of βER would affect
platelet energy metabolism to increase shedding of
thrombogenic microvesicles.

Methods

Animals Three- to 4-month-old female αER+/+/βER+/+

(wild-type (WT)) and αER+/+/βER−/− (βER knockout
(βERKO)), C57BL/6 mice were obtained from the
colony at National Institutes of Environmental Health
Sciences, Research Triangle Park, NC, USA. These
mice have an insertion disruption in exon3 of the
mouse βER gene. The insert was designed to not
encode any protein, and the mRNA analysis of these
mice shows that all mRNA is out of frame. There is no
evidence that measurable βER protein is produced in
these mice. Animals were housed from the time of
arrival until used in experiments (23–24 months of
age) in stainless steel cages with five animals per cage
and kept in 12-hour light/dark cycles at Mayo Clinic,
Rochester, MN, USA, with free access to food
(laboratory mouse chow) and water. Experiments were
approved by the Institutional Animal Care and Use
Committee, Mayo Clinic, Rochester, MN, USA.

Blood collection Mice were anesthetized for less than
1 min with isoflurane in a closed chamber. Blood was
collected from the retro-orbital sinus plexus through
siliconized capillary tubes coated with hirudin and
tick anticoagulant peptide into 1.5-mL polypropylene
tubes containing 5 µL of 100 µM hirudin and 1 mM
tick anticoagulant peptide. Tubes without anticoagu-
lant were used for serum preparation. Plasma and
serum were prepared by centrifugation for 15 min at
3,000×g and then stored at −20°C until analysis.

Hormone assays Serum follicle stimulating hormone
(FSH) and plasma 17β-estradiol were measured with
rodent ELISA kits from Endocrine Technologies Inc.,
San Francisco, CA, USA.
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Immunofluorescence Blood was diluted in an equal
volume of modified Tyrode’s solution (NaCl
137 mM, KCl 2.7 mM, NaHCO3 11.9 mM, NaH2PO4

0.41 mM, MgCl2 1 mM, glucose 5.5 mM, HEPES
5 mM, pH 7. 4) and centrifuged at 150×g for 15 min
to obtain platelet-rich plasma (PRP). Samples
(100 µL) of PRP adjusted with Tyrode’s solution
1×105 platelets/μl were stained simultaneously with
Mitotracker Red (200 nM) and plated onto 25-mm
poly-L-lysine-coated glass coverslips at room temper-
ature for 20 min. The adherent platelets were rinsed
briefly with Tyrode’s solution and fixed in 2%
paraformaldehyde for 10 min. After fixation, platelets
were permeabilized with 0.2% Triton X-100 for
10 min and then rinsed three times with Tyrode’s
solution. Nonspecific antibody binding sites were
blocked with blocking buffer (2% bovine serum
albumin and 5% normal goat serum) for 1 h. Platelets
were then incubated overnight at 4°C with primary
αER or βER antibodies at 1:50 dilution in blocking
buffer. Platelets were then rinsed three times for
10 min with blocking buffer and incubated at room
temperature in darkness for 1 h in goat antirabbit IgG-
conjugated Alexa Fluor-488 secondary antibody
(1:200 dilution). After incubation, coverslips were
rinsed three times and mounted on glass slides using
ProLong Gold antifade reagent. For each experiment,
controls, in which the primary antibody or Mito-
tracker Red were omitted, were also processed.
Images were obtained using a Zeiss LSM 510
confocal laser scanning microscope equipped with a
Zeiss 100×/1.4 numerical aperture oil objective and
configured for dual-excitation and emission of laser
signals simultaneously with DIC imaging. Optical
slices, 0.8 μm in thickness, were obtained of discoid
platelets.

Lactate assay PRP was prepared as described above
and divided into equal volumes containing the same
number of platelets into one of three tubes: Tube-1 for
control (basal), tube-2 contained antimycin A
(100 µM for 1 h) to inhibit mitochondrial respiratory
chain, and tube-3 with collagen (6 µg/mL for 5 min)
to induce platelet activation. After all treatments, PRP
was centrifuged to pellet platelets at 2,600×g for
15 min. Platelet poor plasma was separated into
another tube. Pelleted platelets were washed with
tyrode buffer and then resuspended with lysis buffer
and lysed by passing through 26-gauge needle for

8–10 times. Lactate concentration of platelet lysate and
platelet poor plasma from control, Antimycin A, and
collagen-treated samples was measured using lactate
assay kit from Biovision, Moutain View, CA, USA.

Mitochondrial membrane potential in unstimulated
platelets Membrane potential of mitochondria in
intact platelets was determined in freshly prepared
platelet-rich plasma by flow cytometry (FACSCantoTM)
using JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-
benzimidazolylcarbocyanine iodide; mitochondrial
membrane potential detection kit from Cell Technology
Inc., Mountain View, CA, USA). Platelets were gated
by forward and size scatter. Mitochondrial membrane
potential is expressed as a percentage of polarized
(high-red fluorescence), partially polarized (high-red
and green fluorescence), and depolarized (high green
fluorescence) mitochondria.

Superoxide (O�
2 �) generation The rate of O�

2 � gener-
ation from isolated mitochondria of platelets was
measured as superoxide dismutase (SOD)-inhibitable
ferricytochrome c reduction assay using a modified
method (Dzeja et al. 2003). The reaction mixture
contains 0.1 M potassium phosphate (pH 7.4),
130 µM acetylated cytochrome c, 5 µM rotenone,
20 mM glutamate/malate, and 50–60 µg/mL mito-
chondrial protein. One hundred units of SOD/mL
were added to the reference cuvette. Cytochrome c
reduction was recorded at 37°C for 10 min by
monitoring absorbance at 550–540 nm in the presence
or absence of SOD. The production of O�

2 � was
estimated with the extinction coefficient of
19 mM−1 cm−1. Rate of superoxide generation is
expressed as nanomoles (nmoles) per minute per
milligram protein.

Activity of isolated mitochondrial enzymes Activities
of electron transport chain (ETC) complexes were
determined as described previously (Preston et al.
2008). In brief, platelets were disrupted with two
cycles of 30 seconds sonication (Branson sonifier
with microtip, at level 4) and centrifuged for 15 min
at 1,000×g to pellet unbroken cells and debris. The
isolated mitochondria were disrupted by three rapid
freeze-thaw cycles and treated with 1 mM n-dodecyl-
β-D-maltoside. Activity of complex I (NADH
dehydrogenase) was measured by the rotenone-
sensitive reduction of ubiquinone-1 (Darley-Usmar
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Table 1 Baseline characteristics of mice

Wild type (n=8–10) βERKO (n=8–10)

Age (months) 23–24 23–24

Body weight (g) 33±1.8 33±2.3

Spleen weight (mg) 189±37 322±103

Serum FSH (ng/mL) 0.7±0.1 0.4±0.1

Plasma 17β-estradiol (pg/mL) 6±0.2 8±0.9

Number of deaths in house (from 4 months to 24 months) 6/20 10/20

Data are presented as mean±SEM

Fig. 1 Confocal laser-scanning microscopic images of immu-
nolocalization of αER and βER in resting mouse platelets.
Shown are individual nonactivated platelets from wild type (a–
d for αER, i–l for βER) and βERKO mice (e–h for αER, m–p
for βER). Left panels show differential interference-contrast

images of each platelet (a, e, i, m). Estrogen receptor staining is
shown in green. All were costained with Mitotracker Red to
identify mitochondria (c, g, k, o), shown in red. Merged images
showing signals from both corresponding fluorescent channels
are shown in d, h, l, and p
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1987). Activity of complex III (cytochrome bc1
complex) was determined by measuring reduction
of decylubiquinol–cytochrome c (Kwong and Sohal
2000; Trumpower and Edwards 1979). Activity of
complex IV (cytochrome c oxidase) activity was
measured by a colorimetric assay kit (Sigma-Aldrich
Inc., Saint Louis, MO). Activities of ETC complexes
are expressed as nanomoles per minute per milligram
protein.

Isolation of plasma microvesicles (microparticles)
Platelet-free plasma was prepared by double centrifu-
gation of anticoagulated blood at 3,000×g for 15 min.

After the platelet count ≤1was verified by Coulter
counter and flow cytometry, the plasma sample
(0.2 mL) was centrifuged at 60,000×g for 30 min.
Plasma supernatants were stored at −80°C for other
analysis. Pelleted microvesicles were resuspended
with 0.8 mL of twice-filtered (0.2 μm) Hanks’/
HEPES buffer pH 7.4, vortexed for 2 min, and
centrifuged again at 60,000×g for 30 min to remove
plasma contaminants. After centrifugation, the super-
natant was discarded, and the pellet containing the
microvesicles was suspended in the above buffer and
vortexed for 1–2 min prior to analysis by electron
microscopy and flow cytometry.

WT (n=8) βERKO (n=8)

Lactate production (nmol/µg protein)

Control 0.06±0.01 0.05±0.01

Antimycin A 0.12±0.03 0.10±0.02

Collagen 0.13±0.02* 0.12±0.02*

Mitochondrial membrane potential (% number of mitochondria)

Polarized 19±9 32±11

Partially polarized 8±2 6±2

Depolarized 56±7 45±10

Table 2 Lactate production
and mitochondrial mem-
brane potential in platelets
from aged female wild
type (WT) and estrogen
receptor β knockout
(βERKO) mice (data are
shown as mean±SEM)

*P<0.05, statistically sig-
nificant from control

Fig. 2 Cumulative data of
activity of complex I (a;
NADH dehydrogenase),
complex III (b; cytochrome
bc1 complex), and complex
IV (c; cytochrome c oxi-
dase) of the electron trans-
port chain and rate of
superoxide generation (d) in
mitochondria isolated from
platelets of aged WT and
βERKO mice. *P<0.05
denotes statistical signifi-
cance between aged WT and
βERKO mice
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Electron microscopy Isolated microvesicles were
identified by scanning and transmission electron
microscopy as described previously for microvesicles
from human (Jayachandran et al. 2008).

Flow cytometry Identification and characterization of
isolated microvesicles from blood was described
previously (Jayachandran et al. 2008). In brief, a
FACSCantoTM (BD Biosciences, San Jose, CA) was
used to define microvesicles by size and positive
fluorescence. Gates to define size were set with an
internal standard of 1- and 2-µm beads (Sigma-
Aldrich) and TruCOUNTTM beads (BD Biosciences,
San Jose, CA). All buffers and antibodies were
filtered twice through 0.2-µm filter to eliminate
chemical particles and reduce instrument noise.
Isolated microvesicles (50 μL) were incubated with
4 µL of fluorescein conjugated annexin-V and/or
combination of annexin-V fluorescein with phycoer-
ythrin (PE)-conjugated platelet-specific antibodies
(i.e., CD61 or CD41) and/or isotype control for
30 min. Once stained, microvesicles were fixed with
400 µL of 1% paraformaldehyde for 15 min, and
50 µL of TruCOUNTTM beads were added to enable
intensities of isotype control and absolute vesicle/
particle counts. The threshold for positively stained
microvesicles was set using isotype control antibodies
conjugated with PE. In addition, microvesicles pre-
pared and stained in phosphate-buffered saline or
HEPES buffered saline pH 7.4 without calcium were
used as negative controls for annexin-V positivity.
Flow cytometric acquisition of microvesicles was
stopped automatically after acquiring 30,000 events
or after 3 min. Outer leaflet phosphatidylserine and
platelet-derived microvesicles were identified with

annexin-V-Fluorescein isothiocyanate (FITC) and
hamster antimouse CD61 (integren β3)–phycoerythrin
(CD61-PE) and/or rat antimouse CD41 (αIIb)–PE,
respectively (Jayachandran et al. 2008). The absolute
number of microvesicles was calculated from the
number of events in the region containing micro-
vesicles divided by the number of events in the
calibration bead region times the number of calibra-
tion beads per test volume (Jayachandran et al. 2008).
Phosphatidylserine and platelet-derived microvesicles
are expressed as number per microliter plasma.

Procoagulant activity Microvesicles (20,000 in
Hanks’/HEPES) were incubated in Tyrode’s solution
containing 5 nM human Factor Xa and 10 nM human
Factor Va at 37°C for 3 min. Then, 2-µM human
prothrombin and 50-µM fluorogenic substrate
(D-VPR-ANSNH-C4H9 • 2 HCl) were added, and
the change in fluorescence was measured immediately
with λex=355 and λem=450 nm for 10 min. Throm-
bin generation is expressed as relative fluorescence vs
time.

Materials Antibodies were purchased as follows:
FITC- and PE-conjugated purified recombinant
annexin-V, PE-conjugated hamster antimouse CD61
(CD61-PE), and rat antimouse CD41 (CD41-PE)
monoclonal antibodies were from BD PharMingen
International, San Diego, CA, USA. Rabbit antihuman
estrogen receptor α (H184) and β (H150; recognizes
150 amino acids of the N terminus of the β-receptor)
polyclonal antibodies were from Santacruz Biotechnol-
ogy, Santa Cruz, CA, USA. Rabbit antihuman estrogen
receptor β (ERb11-A; recognizes 16 amino acids on the
C terminus) was from Alpha Diagnostic International,
San Antonio, TX, USA. Mitotracker Red CMXRos,
ProLong Gold antifade reagent, Alexa Fluor-conjugated
goat antirabbit IgG, and normal goat serum were from
Molecular Probes, Eugene, OR. Collagen (equine
tendon) was from Helena Laboratories, Beaumont,
TX, USA. HEPES, Hanks’ balanced salts, mouse
thrombin, bovine serum albumin, and poly-L-lysine
were purchased from Sigma Chemical Co., St. Louis,
MO, USA. Lactate assay kit was from Biovision,
Mountain View, CA, USA. Paraformaldehyde (16%
solution, EM grade) purchased from Electron Micros-
copy Sciences, Hatfield, PA, USA. All other reagents
and solvents used in this study were of analytical/
reagents grade.

Fig. 3 Representative scatter plot of microvesicles obtained by
FACSCantoTM flow cytometry. a Gates of microvesicles with
and without fluorescein-conjugated antibodies and calibration
(size and TruCountTM Beads) beads. b, c, d Representative
quadrants derived from the microvesicle gate shown in a.
Microvesicles only shown in b; Annexin-V-FITC labeled
microvesicles from wild type (c) and βERKO (d) mice.
Phosphatidylserine (annexin-V)-negative (Q3) and positive
(Q4) microvesicles from WT and βERKO mice. e Cumulative
data of total number of phosphatidylserine positive micro-
vesicles from aged WT and βERKO mice. Representative
images of scanning (f) and transmission (g) electron microsco-
py of isolated microvesicles from mouse blood. Arrowheads
indicate membranes. *P<0.05 denotes significant difference
between aged WT and βERKO mice

R
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Statistical analysis Statistical significance was evalu-
ated by two-tailed unpaired Student’s t test. Statistical
significance was accepted at P<0.05. All values are
presented as mean±SEM. All experiments were
carried out independently; n equals the number of
individual mice from wild-type and βERKO colonies.

Results

Body and spleen weights were similar between wild
type and βERKO mice; concentrations of serum FSH
and plasma estradiol were also comparable between
groups (Table 1). Of the 20 mice in each group, six
(30%) WT and ten (50%) βERKO died during the
course of 24 months. Autopsies were not performed
on these animals; cause of death was not determined.
Among the ten βERKO mice surviving until sacrifice,
two had ovarian tumors, whereas none of surviving
WT animals had similar tumors (n=14). Mice with
tumors were excluded from this study.

Both estrogen receptors α and β were identified in
platelets of WT mice by immunofluorescence. Most
platelets had three to seven mitochondria. In both
mouse types, αER staining was easily identified as
diffuse labeling throughout each platelet with addi-
tional small distinct regions of higher concentration.
The antibody which recognized the C terminus of the
βER gave inconsistent staining, and in some cases,
scant positive staining was observed in platelets from
βERKO mice. On the contrary, the antibody which
recognized the N terminus of βER was punctuated in
platelets from WT mice and absent in platelets from
βERKO mice (Fig. 1). There was little to no
colocalization of ERs with mitochondria (Fig. 1).

Lactate concentrations in plasma containing fixed
number of platelets did not change significantly

following either inhibition of mitochondrial respirato-
ry chain with antimycin A or activation with collagen
and did not differ in plasma from WT and βERKO
mice (data not shown). Lactate concentrations in
platelet lysates increased by 50% following inhibition
of mitochondrial respiration with antimycin A and by
60–70% following collagen activation in both groups
of mice (Table 2). The mitochondrial membrane
potentials of intact platelets from βERKO and WT
mice were not significantly different (Table 2). Ac-
tivities of electron transport chain complexes I, III,
and IV and the generation of superoxide were about
45–50% lower in mitochondria from βERKO com-
pared to WT mice reaching statistical significance at
P<0.05 for complex III and IV (Fig. 2). Activities of
complex II (succinate dehydrogenase) and complex V
(ATP-synthase) were not detectable (below the detec-
tion limit of our assay) in isolated mitochondria of
platelets from either group of mice (data not shown).

Isolated microvesicles from both βERKO and WT
mice were heterogeneous in size (Fig. 3). The total
number of annexin-V positive microvesicles was
significantly greater in βERKO mice (Fig. 3). Al-
though, the overall concentration of microvesicles
derived from platelets (CD61 or CD41 positive) was
similar between WT and βERKO, the proportion of
those which were positive for annexin-V was signif-
icantly higher in βERKO mice (Fig. 4). Thrombin
generating capacity of microvesicles was associated
with annexin-V (surface phosphatidylserine) positiv-
ity and was significantly greater in βERKO mice
compared to WT (Fig. 4).

Discussion

Platelets generate energy during activation and gran-
ular secretion by both glycolysis and oxidative
phosphorylation. Results of the present study demon-
strate that loss of βER did not alter anaerobic energy
metabolism of intact platelets as determined by lactate
production at baseline and following inhibition of
mitochondrial respiration or platelet activation by
collagen. However, the capacity for oxidative metabo-
lism was diminished in platelets from aged female mice
lacking βER as evidenced by reduced activities of
enzymes of the electron transport chain enzymes and
generation of superoxide in isolated mitochondria when
compared to age-matchedWTmice. These observations

Fig. 4 Representative quadrants of PE-conjugated isotype IgG
(a WT and b βERKO) and PE-conjugated CD61 antibody (c
WT and d βERKO) in combination with fluorescein-
conjugated annexin-V derived from scatter plots of micro-
vesicles obtained by FACSCantoTM flow cytometry (see
Fig. 3a). e Cumulative data of number of platelet-derived (Q1 +
Q2, unfilled) microvesicles from aged WT and βERKO mice,
and proportion of those which are stained-positive for phospha-
tidylserine (Q2, filled). f Thrombin generation by microvesicles
(20,000) derived from wild type ( n=8; filled diamond) and
βERKO (n=8; open square) mice. *P<0.05 denotes significant
difference between aged WT and βERKO mice

R
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are consistent with decreases in energy requiring
functions (aggregation and granular secretion) of plate-
lets from agedβERKOmice (Jayachandran et al. 2005).
The overall decrease in oxidative capacity of these
platelets in the absence of βER may result in decreased
viability of platelets and increased release of activated
membrane microvesicles.

In other cells, estrogen can modulate mitochondrial
functions including ATP synthesis and mitochondrial
membrane potential, but it is unclear whether these
actions are estrogen receptor-dependent mechanisms
(Irwin et al. 2007; Nilsen and Brinton 2004; Nilsen et
al. 2007). The plasma levels of 17β-estradiol in the
present study were less than those reported by others
and likely reflect their reproductive senescence at
24 months of age (Couse et al. 2003, 2004). The
presence of ovarian tumors in the βERKO mice is
similar to what has been described in women with
ovarian cancers associated with low expression of
βER (Bardin et al. 2004). It was not possible to
determine if these cancers were responsible for the
increased mortality of the aged βERKO mice.

Although both αER and βER are present in
platelets, βER is the predominant ER in platelets of
humans, pigs, and mice (Jayachandran and Miller
2002, 2003; Jorgensen et al. 1972; Khetawat et al.
2000). However, a consistent subcellular localization
of βER has not been established, as the receptor has
been identified in mitochondria of primary cultures
of rat neurons and cardiomyocytes, a murine hippo-
campal cell line, MCF-10F and trMCF cells, and
human heart (Yang et al. 2004) but not in mitochon-
dria of mouse liver and human T leukemia cells
(Rezaul et al. 2005; Schwend and Gustafsson 2006).
A high-quality antibody with high specificity for
βER is lacking and may account for these inconsis-
tent findings. The immunofluorescence analysis in
this study showed that βER did not appear to
colocalize with mitochondria of nonactivated (rest-
ing) platelets from aged female mice. The antibody
used to detect βER was produced against the
N-terminal amino acid 1 to 150 of the protein. A
potential limitation of this study was that other
antibodies developed against other epitopes were
not evaluated. In addition, direct analysis of βER in
isolated mitochondria was not feasible because of
limited amounts of mitochondria in platelets. In the
future, alternative techniques need to be applied to
address this question.

Measures of platelet mitochondrial functions have
been proposed to be used as peripheral biomarkers for
diseases associated with aging (Biagini et al. 1998;
Lenaz et al. 1998; Merlo Pich et al. 1996). Mitochon-
drial oxidative phosphorylation and ATP synthesis
decline in platelets with aging, which is accompanied
by increases in mitochondrial DNA damage and free
radical production (Cortopassi and Wong 1999; Lee
and Wei 2000; Xu et al. 2007). A simple biochemical
phenomenon, Pasteur effect (a decreased mitochon-
drial function induce glycolysis in order to maintain a
constant ATP synthesis in a cell) can be used to
determine both glycolytic and mitochondrial ATP
generation (D’Aurelio et al. 2001). Lactate production
after inhibition of mitochondrial respiration differ-
entiates relative glycolytic and mitochondrial ATP
production. Lactate production and the ratio of
oxidative ATP over glycolytic ATP are decreased in
platelets from aged individuals suggesting that there is
a decrease in ATP utilization with aging (Lenaz et al.
2000). In the present study, lactate production after
inhibition of mitochondrial respiratory chain with
Antimycin A or platelet activation with collagen was
similar in platelets from aged WT and βERKO mice.
Likewise, in intact unstimulated platelets, mitochondrial
membrane potential, a sensitive measure of mitochon-
drial function used as indicator of cell survival and
platelet quality (Bertino et al. 2003; Leaver et al. 2006;
Verhoeven et al. 2005; Wadhawan et al. 2004), was not
different between WT and βERKO mice. However, it
is not clear how mitochondrial ATP production might
vary between groups when the platelets would be
stimulated with an agonist, for example, thrombin,
thromboxane, or ATP. Additional studies are needed to
clarify these issues.

Mitochondrial electron transport, ATP synthesis,
and generation of reactive oxygen species are linked.
Enzyme complexes of the electron transport chain are
composed of subunits encoded by nuclear as well as
mitochondrial DNA. With aging, there are decreases in
the gene transcripts and functional activities of oxidative
phosphorylation complexes in the rat heart and mito-
chondrial proteins in the mouse heart (Chakravarti et al.
2008; Preston et al. 2008). In mitochondria isolated
from platelets of aged βERKO mice, activities of
oxidative phosphorylation complexes and superoxide
production were lower compared to WT mice. As
estrogen receptors regulate genes of the electron
transport chain and reactive oxygen species generating
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pathways (O’Lone et al. 2007), effect of βER on
regulation of these enzymes at the transcription and
translational level warrants further investigation.

In a previous study of aged female mice, loss of
βER was associated with increased numbers of
circulating activated platelets (Jayachandran et al.
2005). Consistent with this finding is the observation
from the present study of increased number of
platelet-derived phosphatidylserine (annexin-V)-posi-
tive microvesicles (marker of in vivo platelet activa-
tion) and their thrombogenic capacity (procoagulant
activity) in βERKO mice. Platelet- derived micro-
vesicles are associated with thrombosis and thrombosis-
associated events (Barry and FitzGerald 1999; Barry et
al. 1998; Berckmans et al. 2001; Forlow et al. 2000;
Heijnen et al. 1999; Horstman and Ahn 1999; Jy et al.
1995, 1999; Merten et al. 1999; Morel et al. 2006;
VanWijk et al. 2003; Zwaal and Schroit 1997). Thus,
this activated state of platelets may account for lower
total number of circulating platelets and increased
number of new (reticulated) platelets, reflecting
increased production of platelets in aged βERKO
compared to WT mice (Jayachandran et al. 2005).
Increased procoagulant state in the βERKO mice may
be responsible for the greater number of spontaneous
deaths in this group over the 2 years of aging, which
was also observed in mice with experimentally induced
myocardial infarction (Pelzer et al. 2005).

In conclusion, the thrombin-generating capacity
and number of platelet-derived phosphatidylserine-
positive microvesicles increase with age in female
βERKO mice. Increased shedding platelet microve-
sicles may result from decreases in activity of enzymes
of the mitochondrial electron transport chain. In
women, polymorphisms in βER are associated with
thrombotic events including myocardial infarction,
venous ulceration, and deep vein thrombosis (Alessio
et al. 2007; Ashworth et al. 2008; Rexrode and
Manson 2007). Results of present study provide one
possible mechanism of how loss of βER may increase
thrombotic events in aged women by increasing
activation of platelets and shedding of thrombogenic
microvesicles in the circulation.
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