
Research Article
In Silico Identification of Key Genes and Immune Infiltration
Characteristics in Epicardial Adipose Tissue from Patients with
Coronary Artery Disease

Yisen Deng,1,2 Xuming Wang,1,2 Zhan Liu,1,2 Xiaoshuo Lv,1,2 Bo Ma,2 Qiangqiang Nie,2

Xueqiang Fan,2 Yuguang Yang,2 Zhidong Ye,2 Peng Liu ,1,2 and Jianyan Wen 1,2

1Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
2Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China

Correspondence should be addressed to Peng Liu; liupeng6618@yeah.net and Jianyan Wen; jianyanwen@sina.com

Received 16 August 2022; Revised 4 October 2022; Accepted 17 October 2022; Published 29 October 2022

Academic Editor: Ken-ichi Aihara

Copyright © 2022 Yisen Deng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The present study is aimed at identifying the differentially expressed genes (DEGs) and relevant biological processes
and pathways associated with epicardial adipose tissue (EAT) from patients with coronary artery disease (CAD). We also explored
potential biomarkers using two machine-learning algorithms and calculated the immune cell infiltration in EAT. Materials and
Methods. Three datasets (GSE120774, GSE64554, and GSE24425) were obtained from the Gene Expression Omnibus (GEO)
database. The GSE120774 dataset was used to evaluate DEGs between EAT of CAD patients and the control group. Functional
enrichment analyses were conducted to study associated biological functions and mechanisms using the Kyoto Encyclopedia of
Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA). After this, the least absolute
shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) were
performed to identify the feature genes related to CAD. The expression level of the feature genes was validated in GSE64554
and GSE24425. Finally, we calculated the immune cell infiltration and evaluated the correlation between the feature genes and
immune cells using CIBERSORT. Results. We identified a total of 130 upregulated and 107 downregulated genes in
GSE120774. Functional enrichment analysis revealed that DEGs are associated with several pathways, including the calcium
signaling pathway, complement and coagulation cascades, ferroptosis, fluid shear stress and atherosclerosis, lipid and
atherosclerosis, and regulation of lipolysis in adipocytes. TCF21, CDH19, XG, and NNAT were identified as feature genes and
validated in the GSE64554 and GSE24425 datasets. Immune cell infiltration analysis showed plasma cells are significantly more
numerous in EAT than in the control group (p = 0:001), whereas macrophage M0 (p = 0:024) and resting mast cells (p = 0:036)
were significantly less numerous. TCF21, CDH19, XG, and NNAT were correlated with immune cells, including plasma cells,
M0 macrophages, and resting mast cells. Conclusion. TCF21, CDH19, XG, and NNAT might serve as feature genes for CAD,
providing new insights for future research on the pathogenesis of cardiovascular diseases.

1. Introduction

Coronary artery disease (CAD) is one of the leading causes
of death worldwide, and atherosclerosis is its most basic
associated pathophysiological change [1]. Obesity represents
a significant risk factor for cardiovascular disease, and the
expansion of ectopic and visceral fat is strongly involved in
the pathogenesis of CAD [2]. Recent evidence revealed the
promising role of epicardial adipose tissue (EAT) in the

occurrence, development, and prognosis of CAD [3]. EAT
is recognized as a unique adipose storage, supplied by the
branches of the coronary artery and directly adjacent to
the myocardium. It is mainly comprised of adipocytes,
stroma-vascular cells, fibroblasts, nerves, and various
immune cells. Besides providing energy storage, the EAT
serves as an endocrine and immune organ [4, 5]. Under
physiological conditions, the EAT plays an important part
in cardiac metabolism, prevention of cardiac lipotoxicity,
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mechanical protection of coronary arteries, and provides
immunological support for the heart [6]. The link between
EAT inflammation and CAD has increasingly attracted
research focus. Over the recent years, the EAT has been pro-
posed as a biomarker for acute coronary syndrome (ACS),
major adverse cardiac events (MACE), and atrial fibrillation
(AF) [7–9]. Moreover, several large-scale cohort studies
demonstrated that the EAT volume is positively associated
with the occurrence, development, and prognosis of CAD
[10–12]. Specifically, it is currently accepted that some cyto-
kines secreted by the EAT either protect or negatively affect

cardiomyocytes’ function and coronary arteries through
paracrine or vasocrine mechanisms [13, 14]. Cytokines
secreted by the EAT might diffuse through the interstitial
fluid into coronary wall layers. Besides, they could be
directly released into the vasa vasorum of the coronary arter-
ies [15, 16]. In pathological conditions, the proinflammatory
or proatherogenic factors secreted by the EAT, including IL-
6, IL-8, monocyte chemoattractant protein 1, leptin, resistin,
and tumor necrosis factor α [15], exert their pathophysiolo-
gical effects through direct diffusion, enhancing the potential
to induce atherogenic changes in monocytes and endothelial

5

10

Group

EAT

SAT

G
SM

34
15

03
5

G
SM

34
15

03
4

G
SM

34
15

03
3

G
SM

34
15

03
2

G
SM

34
15

03
1

G
SM

34
15

03
0

G
SM

34
15

02
9

G
SM

34
15

02
8

G
SM

34
15

02
7

G
SM

34
15

01
6

G
SM

34
15

01
5

G
SM

34
15

01
4

G
SM

34
15

01
3

G
SM

34
15

01
2

G
SM

34
15

01
1

G
SM

34
15

01
0

G
SM

34
15

00
9

(a)

2.5

5.0

G
SM

34
15

03
5

G
SM

34
15

03
4

G
SM

34
15

03
3

G
SM

34
15

03
2

G
SM

34
15

03
1

G
SM

34
15

03
0

G
SM

34
15

02
9

G
SM

34
15

02
8

G
SM

34
15

02
7

G
SM

34
15

01
6

G
SM

34
15

01
5

G
SM

34
15

01
4

G
SM

34
15

01
3

G
SM

34
15

01
2

G
SM

34
15

01
1

G
SM

34
15

01
0

G
SM

34
15

00
9

7.5

10.0

12.5

Group

EAT

SAT

(b)

6

8

10

12

14

16

G
SM

15
74

19
4

G
SM

15
74

19
2

G
SM

15
74

19
2

G
SM

15
74

19
0

G
SM

15
74

18
8

G
SM

15
74

18
6

G
SM

15
74

18
4

G
SM

15
74

18
2

G
SM

15
74

16
9

G
SM

15
74

17
1

G
SM

15
74

17
3

G
SM

15
74

17
5

G
SM

15
74

17
7

G
SM

15
74

17
9

G
SM

15
74

18
1

G
SM

15
74

18
3

G
SM

15
74

18
5

G
SM

15
74

18
7

G
SM

15
74

18
9

G
SM

15
74

19
1

G
SM

15
74

19
3

G
SM

15
74

17
0

G
SM

15
74

17
2

G
SM

15
74

17
4

G
SM

15
74

17
6

G
SM

15
74

17
8

G
SM

15
74

18
0

Group

EAT

SAT

(c)

6

8

10

12

14

16

G
SM

15
74

16
9

G
SM

15
74

17
1

G
SM

15
74

17
3

G
SM

15
74

17
5

G
SM

15
74

17
7

G
SM

15
74

17
9

G
SM

15
74

18
1

G
SM

15
74

18
3

G
SM

15
74

18
5

G
SM

15
74

18
7

G
SM

15
74

18
9

G
SM

15
74

19
1

G
SM

15
74

19
3

G
SM

15
74

17
0

G
SM

15
74

17
2

G
SM

15
74

17
4

G
SM

15
74

17
6

G
SM

15
74

17
8

G
SM

15
74

18
0

G
SM

15
74

18
2

G
SM

15
74

18
4

G
SM

15
74

18
6

G
SM

15
74

18
8

G
SM

15
74

19
0

G
SM

15
74

19
2

G
SM

15
74

19
4

Group

EAT

SAT

(d)

Figure 1: Box plot of datasets before and after normalization. GSE120774 expression profile before (a) and after (b) normalization;
GSE64554 expression profile before (c) and after (d) normalization.
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cells [17]. Leptin, for example, is regarded as an independent
risk factor for atherosclerosis that exerts a variety of athero-
genic effects, such as increasing endothelial dysfunction,
promoting inflammatory responses, oxidative stress induc-
tion, platelet aggregation and migration, and the prolifera-
tion of vascular smooth muscle cells [3, 18].

Although a high number of studies confirmed the
involvement of the EAT in the development and progression
of coronary atherosclerosis through adipokines, the exact
mechanisms through which the EAT participates in CAD
remain unclear [3, 5, 19–21]. A considerable limitation of
these studies relates to the sole recruitment of patients who
underwent cardiac surgery. Furthermore, it is difficult to col-
lect the EAT from healthy subjects due to ethical concerns,
whereby the subcutaneous adipose tissue (SAT) is usually
used as control across various studies [22–25]. Bioinformat-
ics analysis has been extensively applied to the identification
of differentially expressed genes (DEGs) at the genome-wide
level and constitutes a useful strategy for exploring the
potential biomarkers and molecular mechanisms associated
with the EAT and CAD. Here, we screened two microarray
datasets from the Gene Expression Omnibus (GEO) data-
base for DEGs between the EAT and the SAT. We attempted
to explore the underlying biological functions using enrich-
ment analysis and identified the best feature genes by
employing machine-learning algorithms. In addition, we
used CIBERSORT to investigate the proportion of immune
cells that are present in the EAT [26, 27] and studied the
relationship between the feature genes and infiltrating
immune cells to provide a basis for further research.

2. Materials and Methods

2.1. Microarray Data. The GSE120774, GSE64554, and
GSE24425 datasets were downloaded from the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/). The GSE120774
dataset was used as the discovery cohort, and GSE64554
and GSE24425 datasets were used as the validation cohort.
We analyzed a total of 9 EAT and 8 SAT samples from

patients with CAD in GSE120774, which was based on the
GPL6244 Affymetrix Human Gene 1.0 ST Array. In addi-
tion, there were 13 EAT and 13 SAT samples from patients
with CAD in GSE64554, which was based on the GPL6947
Illumina HumanHT-12 V3.0 expression bead chip. Further-
more, 6 EAT and 6 SAT samples from patients with CAD in
GSE24425 were also analyzed, which was based on the
GPL6884 Illumina HumanWG-6 V3.0 expression beadchip.
We used the limma package in R to normalize the expres-
sion data and ensure a similar distribution among these
datasets.

2.2. Identification of Differentially Expressed Genes. The
DEGs were identified by the limma package in R. A volcano
plot was used to assess the DEGs, and the cutoff was set as
jlog 2 fold change ðFCÞj ≥ 1 (adjusted p value < 0.05).

2.3. Functional Annotation for Differentially Expressed
Genes. Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) enrichment analyses were con-
ducted using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID). GO was composed of
biological processes (BP), cell components (CC), and molec-
ular function (MF). The R package ggplot was used to visual-
ize the results. Functional enrichment analysis on all
expression data was performed by Gene Set Enrichment
Analysis (GSEA). The R packages clusterProfiler and http://
org.Hs.eg.db were used to conduct GSEA. The GSEA cutoff
point was set as a p value < 0.05 and jnormalized
enrichment score ðNESÞj > 1.

2.4. Feature Genes Identification. We used two machine-
learning algorithms to screen for the most significant candi-
date biomarkers between SAT and EAT. The least absolute
shrinkage and selection operator (LASSO), which was based
on a regression analysis algorithm, is suitable for both linear
and nonlinear cases. We used the glmnet package in R to
perform LASSO. Support vector machine (SVM) is another
machine-learning algorithm that is used for regression or
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Figure 2: Volcano map showing the DEGs between EAT and SAT in CAD patients. The red dots represent for the upregulated genes, and
the blue dots represent for downregulated genes. Genes with the most significant logFC are labeled.
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classification. To avoid overfitting, the SVM-recursive fea-
ture elimination (RFE) was used to screen for feature genes
from selected genes. We selected the top 20 genes for the
SVM-RFE algorithm according to |log2 fold change (FC)|
and then merged the obtained genes using the two algo-

rithms to get the intersection. Both LASSO and SVM-RFE
were performed using the e1071 and mlbench R packages.
To further evaluate the diagnostic ability of the candidate
biomarkers, we calculated the area under the curve (AUC)
of the receiver operating characteristic (ROC) curve.
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Figure 3: KEGG and GO functional enrichment analyses. (a) BP enrichment; (b) CC enrichment; (c) MF enrichment; (d) KEGG
enrichment.

4 BioMed Research International



2.5. Immune Cell Infiltration Analysis.We used CIBERSORT
(https://cibersortx.stanford.edu/) to analyze immune cell
infiltration in GSE120774 and obtained 22 types of immune
cells. The cutoff point was set as a p value < 0.05. The vioplot
package in R was used to visualize the different immune cells
in the SAT and the EAT. We also built a bar plot in R to
show the percentage of immune cells present in each sample.

2.6. Correlation Analysis between Biomarkers and Infiltrating
Immune Cells. The relationship between feature genes and
immune cells was evaluated using Spearman’s rank correla-
tion analysis in R. The ggplot2 package was used to visualize
the results.

2.7. Statistical Analysis. R software (version 4.2.0) was used
for all statistical analyses. Continuous variables are
expressed as the mean ± SD, and group comparisons were
performed using Student’s t-test for normally distributed
variables and the Mann–Whitney U test for abnormally dis-

tributed variables. A p value < 0.05 was considered statisti-
cally significant.

3. Results

3.1. Identification of DEGs. The GSE120774, GSE64554, and
GSE24425 datasets were normalized before analysis
(Figure 1 and Supplemental File-Figure 1 show both the
nonnormalized and normalized data). We identified a total
of 130 upregulated and 107 downregulated genes. Genes
with the most significant logFC in EAT compared with
SAT in CAD patients are shown in the volcano plot of
Figure 2.

3.2. Functional Enrichment Analysis of DEGs. We subse-
quently conducted functional enrichment analyses, includ-
ing GO, KEGG, and GSEA, to explore the biological
function and pathways associated with the DEGs. GO
enrichment analysis revealed that negative regulation of
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Figure 4: GSEA functional enrichment analysis. (a) Calcium signaling pathway; (b) complement and coagulation cascades; (c) ferroptosis;
(d) fluid shear stress and atherosclerosis; (e) lipid and atherosclerosis; (f) regulation of lipolysis in adipocytes.
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transcription from RNA polymerase II promoter, negative
regulation of cell proliferation, cell adhesion, angiogenesis,
and response to lipopolysaccharide are enriched terms in
BP (Figure 3(a)); plasma membrane, extracellular space,
extracellular region, and extracellular exosome are enriched
terms in CC (Figure 3(b)); and RNA polymerase II tran-
scription factor activity, calcium ion binding, integrin bind-
ing, and DNA-binding activities are enriched in MF
(Figure 3(c)). In addition, KEGG pathway analysis revealed
that DEGs are mainly involved in the complement and coag-
ulation cascades, fluid shear stress and atherosclerosis, and
TNF signaling pathway (Figure 3(d)). In the GSEA, we iden-
tified several enriched pathways, including the calcium sig-
naling pathway, complement and coagulation cascades,
ferroptosis, fluid shear stress and atherosclerosis, lipid and
atherosclerosis, and regulation of lipolysis in adipocytes
(Figures 4(a)–4(f)).

3.3. Identification and Validation of Feature Genes. The
LASSO regression algorithm was used to narrow down the
number of DEGs, and 10 genes were then identified
(Figures 5(a) and 5(b)). Moreover, 12 genes were obtained
using the SVM-RFE algorithm (Figure 5(c)), of which 4 were

also identified by LASSO (Figure 5(d)): TCF21, CDH19, XG,
and NNAT. The GSE64554 and GSE24425 dataset con-
firmed that TCF21 and CDH19 were upregulated in EAT
compared with SAT in CAD patients, whereas XG and
NNAT were downregulated (Figures 6(a)–6(h)). After this,
we performed ROC analysis to evaluate the diagnostic ability
of these four genes in the GSE64554 dataset and found that
the four feature genes have high diagnostic effectiveness in
discriminating EAT from the SAT samples, with an AUC
of 0.923 (95% CI = 0:812 − 1) in TCF21, 0.941 (95% CI =
0:852 − 1) in CDH19, 0.953 (95% CI = 0:878 − 1) in XG,
and 0.970 (95% CI = 0:919 − 1) in NNAT (Figures 7(a)–
7(d)).

3.4. Immune Cell Infiltration. Functional enrichment analy-
sis revealed that DEGs might be involved in immune
response, whereby we used the CIBERSORT algorithm to
explore immune cell infiltration between EAT and SAT in
CAD patients. The composition of immune cells in EAT
vs. SAT samples in CAD patients is shown in Figure 8(a),
which shows the proportions of plasma cells are notably
higher in the EAT compared to the SAT (p = 0:001). In con-
trast, the proportion of M0 macrophages (p = 0:024) and
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Figure 5: Identification of feature genes by LASSO regression and the SVM-RFE algorithm. (a) Coefficient profiles of the feature genes in
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mast cell resting (p = 0:036) are notably lower in the EAT
than in the SAT (Figure 8(b)).

3.5. Correlation Analysis between the Four Feature Genes
and Immune Cells. We found that TCF21 is positively corre-
lated with plasma cells (r = 0:824, p < 0:001), but negatively

correlated with M0 macrophages (r = −0:619, p = 0:008),
while CDH19 is positively correlated with plasma cells
(r = 0:618, p = 0:008), and negatively correlated with resting
mast cells (r = −0:716, p = 0:001). In addition, XG is posi-
tively correlated with M0 macrophages (r = 0:504, p =
0:039) and resting mast cells (r = 0:51, p = 0:037), and
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Figure 6: The validation of expression levels of the four feature genes in the GSE64554 (a–d) and GSE24425 (e–h) dataset. TCF21 and
CDH19 were upregulated in EAT compared with SAT in CAD patients, while XG and NNAT were downregulated. (a, d) TCF21; (b, e)
CDH19; (c, g) XG; (d, h) NNAT.

7BioMed Research International



negatively correlated with plasma cells (r = −0:765, p < 0:001
). Finally, NNAT is positively correlated with M0 macro-
phages (r = 0:56, p = 0:019) and resting mast cells
(r = 0:512, p = 0:036) and negatively correlated with plasma
cells (r = −0:667, p = 0:003) (Figures 9(a)–9(d)). Overall, we
found that the four feature genes are highly correlated with
immune cells.

4. Discussion

The EAT participates in the pathological process of athero-
sclerosis through the endocrine and paracrine pathways,
although the specific mechanisms remain unknown [14].
Here, we found 130 upregulated and 107 downregulated
genes from a microarray analysis. Functional enrichment
analysis indicated that these DEGs are involved in various
pathophysiological processes and that four feature genes

(TCF21, CDH19, XG, and NNAT) identified via LASSO
regression and the SVM-RFE algorithm are correlated with
immune cells, including plasma cells, M0 macrophages,
and resting mast cells, as shown by infiltration analysis.

Previous studies have revealed that adipokines secreted
by the EAT might affect myocardial cells and coronary arter-
ies [3, 19]. Hypoxic and dysfunction of EAT might lead to
lipolysis and inflammatory activities through the dysregu-
lated secretion of vasoactive and inflammatory factors,
which are involved in the process of atherosclerosis, includ-
ing vascular remodeling, endothelial dysfunction, the prolif-
eration and migration of smooth muscle cell (SMC), foam
cell formation, and plaque destabilization [28]. Intelectin 1
(ITLN1), which in our analysis had the highest expression
differences between the EAT and the SAT (Figure 2, Supple-
mental File-Figure 2A), is abundantly expressed in visceral
adipose tissue and known to regulate obesity-related
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Figure 8: The immune cell infiltration between EAT and SAT in CAD patients. (a) The composition of 22 types of immune cells. (b) The 22
immune cell subtypes were compared between the EAT and the SAT group. The blue and red colors represent the SAT and the EAT
samples, respectively.
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cardiometabolic disorders through its anti-inflammatory
activity [29]. Leptin is regarded as an independent risk factor
for atherosclerosis that exerts a variety of atherogenic effects.
However, the expression level of leptin was not significantly
higher in EAT compared with SAT in our analysis (Supple-
mental File–Figure 2(b)), and we hypothesize that the rea-
sons might be as follows: (1) the samples are not sufficient
to show significant differences; (2) leptin in EAT might
mainly derived from circulation. In contrast, chemerin,

which can bind to the G protein-coupled receptor
(CMKLR1), is associated with immune response and the
metabolism of glucose and lipids [30], and its expression
levels are reportedly positively associated with coronary ath-
erosclerosis [21].

Our study identified four feature genes (TCF21, CDH19,
XG, and NNAT) associated with CAD using two machine-
learning algorithms. TCF21 is involved in cardiac fibrosis
and plays a critical role in the fate of smooth muscle cells
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Figure 9: Correlation between TCF21, CDH19, XG, NNAT, and immune cells. (a) TCF21; (b) CDH19; (c) XG; (d) NNAT.
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[31], promoting SMC dedifferentiation by inhibiting the
serum response factor-myocardin axis (SRF-MYOCD)
[32]. The specific effects of TCF21 on atherosclerosis
are complex. On the one hand, TCF21 suppresses the
progression of atherosclerosis by regulating the transition
from SMC to fibromyocytes and promoting the forma-
tion of antiatherosclerotic fibrous caps on the lesions
[33]. On the other hand, when compared with the con-
trol, the transfection of TCF21 siRNA (siTGF21) notably
decreases the level of reactive oxygen species (ROS) and
cell apoptosis-related protein Bax and leads to an
increase in the expression of active antiapoptotic protein
Bcl-2 in human umbilical vein cells (HUVECs) [34]. This
suggests that TCF21 might promote atherosclerosis via
increasing the apoptosis rate and ROS accumulation.
Cadherin 19 (CDH19) is a gene encoding calcium-
dependent cell adhesion proteins involved in vascular
remodeling and plays a critical role in the structural
integrity of blood vessels [35]. Recent studies have dem-
onstrated the involvement of classic cadherin in many
complex processes, such as angiogenesis, morphogenesis,
cellular communication, and cellular proliferation
[36–38]. Niu et al. [39] revealed that the expression
knockdown of CDH12 and CDH19 markedly inhibits
monocyte chemotactic protein-1-induced protein
(MCPIP) and suppresses the capillary-like tube formation
in HUVECs. Moreover, CDH19 might serve as a new
target of tumorigenesis and drug development for glio-
blastoma stem-like cells (GSC) and can be considered
an independent prognostic biomarker of lung adenocarci-
noma (LUAD) and breast cancer (BC) [36, 40, 41]. XG
was one of the blood group systems located at the pseu-
doautosomal boundary on the short arm of chromosome
X, composed of two X-borne alleles, Xg a and Xg [42].
Recent studies evaluating the biological functions of the
gene were limited to its association with red blood cells
(RBC). Meynet et al. showed that high XG protein
expression in Ewing’s sarcoma (EWS) is associated with
a worse prognosis. Furthermore, the overexpression of
XG increased the proliferation and migration of EWS
cells in vitro, while the knockdown of the gene with
short hairpin RNA led to the opposite effect [43]. How-
ever, the role played by XG in atherosclerosis remains
uncharacterized. Finally, NNAT is a paternally imprinted
gene, which is expressed in the developing brain, pitui-
tary, pancreas, and adipose tissue, and plays an impor-
tant role in the appetite behavior, energy balance,
adipogenesis, and inflammatory responses associated with
insulin resistance [44–46]. Gene set enrichment analysis
indicated a significantly negative correlation exists
between NNAT and energy metabolism, but uncovered
a positive correlation with inflammation [46]. It has been
reported that NNAT inhibits oxidative stress and inflam-
mation and promotes adipocyte differentiation by mediat-
ing the NF-κB signal pathway [45]. NNAT expression
levels are also closely associated with endothelial dysfunc-
tion and EAT secretion [45, 47]. Furthermore, it has
been found that increased NNAT expression levels are
associated with poor prognosis in myxoid liposarcoma,

lung cancer, and breast cancer [48–50]. However, very
few studies clarified the association of this gene with
atherosclerosis.

We calculated immune cell infiltration and estimated the
correlation between the four genes and immune cells. We
found that the four feature genes are correlated with
immune cells, including plasma cells, M0 macrophages,
and resting mast cells. To our knowledge, this is the first
study to calculate the infiltration of the immune cells in
EAT vs. SAT. Adipocytes not only serve as an energy storage
depot but also play a critical role in endocrine and immune.
Adipokines, such as leptin and adiponectin, are critical for
the development of B cells, activation, and antibody produc-
tion [51]. Hence, adipocytes play a crucial role in adaptive
immunity mediated by B cells.

Despite the associations described above, few studies
investigating the molecular mechanisms between these four
genes and immune cells have been published to date,
whereby further experiments are required to explore their
pathogenesis. Among the limitations to our study, we can
include (1) the choice of the SAT as control rather than
the EAT of healthy individuals (due to ethical restrictions).
Hence, the difference between the EAT and the SAT in
healthy groups remains unknown; (2) the three datasets
have limited sample sizes; (3) the association between the
feature genes and CAD and their interaction with immune
cells needs further investigation on larger sample sizes to
confirm our observations.

5. Conclusions

In this study, we identified the DEGs between the EAT and
the SAT in patients with CAD and explored the potential
biological processes and pathways involved. The identified
DEGs are mainly associated with the calcium signaling path-
way, complement and coagulation cascades, ferroptosis,
fluid shear stress and atherosclerosis, lipid and atherosclero-
sis, and regulation of lipolysis in adipocytes. In addition, the
four feature genes identified (TCF21, CDH19, XG, and
NNAT) might serve as feature genes for CAD, bringing
new insights into the pathogenesis of cardiovascular
diseases.
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