
Hindawi Publishing Corporation
Journal of Allergy
Volume 2012, Article ID 948901, 9 pages
doi:10.1155/2012/948901

Review Article

Regulatory T Cells and the Control of the Allergic Response

Ana Agua-Doce1, 2 and Luis Graca1, 2

1 Instituto de Medicina Molecular, Cellular Immunology Unit, Faculdade de Medicina da Universidade de Lisboa,
Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal

2 Instituto Gulbenkian de Ciência, Cellular Immunology Unit, 2781-901 Oeiras, Portugal

Correspondence should be addressed to Luis Graca, lgraca@fm.ul.pt

Received 16 June 2012; Accepted 28 August 2012

Academic Editor: Maria Leite-de-Moraes

Copyright © 2012 A. Agua-Doce and L. Graca. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The study of immune regulation and tolerance has been traditionally associated with self/nonself-discrimination. However, the
finding that dominant tolerance, a model that puts in evidence the active role of regulatory T cells, can develop to nonself-
antigens suggests that the imposition of tolerance can be context dependent. This paper reviews the emerging field of acquired
immune tolerance to non-self antigens, with an emphasis on the different subsets of induced regulatory T cells that appear to
specialize in specific functional niches. Such regulatory mechanisms are important in preventing the onset of allergic diseases in
healthy individuals. In addition, it may be possible to take advantage of these immune regulatory mechanisms for the induction
of tolerance in cases where pathological immune responses are generated to allergens occurring in nature, but also to other
immunogens such as biological drugs developed for medical therapies.

1. Introduction

For many decades the self/nonself-discrimination by the
immune system was assumed to be a consequence of clonal
selection of effector T cells. Compelling evidence has, how-
ever, imposed a revised view of self/nonself-discrimination:
dominant regulatory mechanisms, where regulatory T (Treg)
cells play a central role, are essential for maintenance of self-
tolerance [1]. But recently it is becoming apparent that the
importance of dominant regulation goes beyond the dis-
crimination of self and nonself: it also discriminates between
harmful and innocuous. In fact, cellular mechanisms, as
detailed below, persistently patrol the organism preventing
the onset of inflammation, namely, allergic inflammation.
The biological significance of this active tolerance-imposing
mechanism is well demonstrated by the severity of the
allergic and autoimmune syndrome that arises in individuals
that lack these ability to tolerate self- and harmless antigens.

Indeed, the organism is constantly exposed to non-
pathogenic antigens that, in healthy individuals, are toler-
ated. It is, however, common (and becoming increasingly
frequent) that an overzealous immune system will activate
and develop effector responses to such harmless antigens

developing allergy and other inflammatory diseases. Over
the last decades allergic diseases, including allergic asthma,
atopic dermatitis, and food allergy, have become a major
health problem in developed countries [2]. Despite the
advances in the understanding of the pathophysiology of
allergy and in its clinical management, allergic pathology
remains a significant burden on the quality of life and
economy of western society. Several strategies have been
devised to overcome the pathological immune response by
inducing immune tolerance. This paper reviews the impact
of dominant regulatory mechanisms in the maintenance of
tolerance to foreign antigens, including allergens.

A major cellular mechanism in maintaining immune
tolerance is the population of natural (or thymic-derived)
Foxp3+ Treg cells [3, 4]. Indeed these have been clearly
implicated as potent inducers of a nonresponsive state in
several immune-mediated pathologies like autoimmunity,
transplantation, graft-versus-host disease, and allergy [5–9].
It has been shown, in allergy, that regulatory T cells can
be transferred conferring specific tolerance to subsequent
challenges with the allergen [10, 11]. In addition, depletion of
the regulatory T cells can have a detrimental effect in allergic
airway hyperreactivity [12]. Importantly Foxp3 deficiency, in

mailto:lgraca@fm.ul.pt


2 Journal of Allergy

mice and human beings, leads to a severe immune disregu-
lation syndrome characterized by allergic and autoimmune
manifestations that are rapidly fatal [13]. In addition to
the important role of natural Foxp3+ Treg cells (nTreg) in
preventing autoimmunity, it has become established that
Foxp3 expression can be peripherally induced following T-
cell activation in presence of TGF-β [14]. These peripherally
induced Treg cells (iTreg) are believed to be important for
tolerance induction to nonselfantigens, including allergens
[14].

2. Induction of Regulatory T Cells

The study of peripheral induction of Treg cells was greatly
facilitated with the use of Rag-insufficient TCR-transgenic
mice, with the TCR specific for a nonselfantigen. In these
mice nTregs cannot be formed in the thymus due to the
absence of a selecting thymic antigen. In 2003 it was shown
that conventional T cells can be converted into iTreg in
vitro when activated in presence of TGF-β [15]. In addition
those iTreg cells were fully capable of controlling airway
hyperreactivity (AHR) in previously sensitized mice [15–
19]. It was subsequently found that reducing or blocking
the available amount of TGF-β exacerbates AHR [20, 21],
while the local delivery of this cytokine or adoptive transfer
of T cells engineered to express latent TGF-β rescue mice
from antigen sensitization and therefore prevent AHR [22,
23]. Interestingly, suboptimal TCR signaling together with
TGF-β greatly enhances iTreg conversion [24], which is in
agreement with in vivo data showing that repeated low doses
of allergen exposure promotes the emergence of Foxp3+

iTregs expressing TGF-β on the membrane [25]. Under sub-
optimal TCR stimulation, which can be obtained by using
a low dose of plate bound anti-CD3 or DCs pulsed with
a low dose of agonist peptide or with downmodulation of
the TCR with nondepleting anti-CD4, iTreg conversion is
promoted in the absence of exogenous TGF-β [26]. Under
those conditions Foxp3 expression still requires TGF-β, but
the T cells can produce TGF-β and benefit from the presence
of this cytokine for conversion to Treg [26].

In addition to the importance of TGF-β for iTreg con-
version, some studies showed that TGF-β can directly inhibit
GATA3 expression thus impairing Th2 differentiation [27–
29]. Because the Th2 response is impaired, the production of
IL-4 is diminished, and this has a direct impact on B-cell class
switch preventing IgE and favoring IgA production [30].

It is also becoming apparent that the environment influ-
ences the outcome of T-cell activation and the decision to
induce Foxp3 and regulatory properties. Several reports have
shown that the mucosal surfaces have a role in establishing an
iTreg population: alveolar epithelial cells have been reported
to participate in iTreg induction in a mechanism dependent
of MHC class II expression and TGF-β [31]. Both alveolar
and gut epithelia have been shown to depend on retinoic acid
together with TGF-β to induce tolerance [32, 33]. It was also
found that retinoic acid in the presence of TGF-β impaired
STAT6 binding to the Foxp3 promoter therefore enhancing
histone acetylation and reverting the repressive effect of IL-4
on the Foxp3 promoter [34].

Despite the critical role of TGF-β in iTreg induction
and henceforth tolerance, this cytokine can also have some
adverse effects since it is instrumental in the differentiation
of Th17 and Th9 together with IL-6 and IL-4, respectively
[35, 36]. Note that although Treg cells can prevent allergic
autoimmune encephalomyelitis (EAE), mice with T cells
with a dominant negative receptor for TGF-β1 do not
develop EAE as Th17 cells are not induced [37]. Moreover,
TGF-β has also been implicated in tissue remodeling, by
induction of collagen expression in fibroblasts, as well as
goblet cell proliferation and mucus production [38].

3. Regulatory T Cells and IL-10

Although TGF-β is the major known driver of iTreg differen-
tiation, IL-10 has been shown to be another key player that
has been vastly described in protection from allergic diseases
[39].

Studies with bee venom-specific immunotherapy have
shown that tolerance to the allergen can be induced in a
process that is IL-10 mediated [40]. In addition, respiratory
exposure tolerance induction to OVA relied on antigen
specific CD4+ regulatory cells that produced IL-10 [41].
Tolerance was transferrable and abrogated when IL-10 or
ICOS ligand was blocked. Interestingly, those regulatory
cells shared some features with effector Th2 cells: both
populations expressed IL-4 and IL-10 although in different
amounts. While the regulatory cells primarily release IL-
10, the effectors rely on IL-4 as the main cytokine. It
has been suggested that different types of effector cells,
including Th2, produce IL-10 at the end of the immune
response in a mechanism that is important in limiting
their inflammatory behavior [42]. IL-10 producing T cells
has been described able to control the late response in
allergic asthma by reducing neutrophilia [43]. It has been
suggested that Foxp3-negative IL-10 producing T cells can
be induced following activation in presence of IL-10 and
constitute a population of regulatory cells different from
Foxp3+ Tregs that are named TR1 [44, 45]. TR1 cells
have been identified in mice and humans, and there are
currently clinical trials [9, 46]. There are several other lines
of evidence demonstrating the crucial role of IL-10 in the
prevention of airway inflammation: IL-10-deficient mice
have an exacerbated allergic airways response with high levels
of proinflammatory cytokines like IL-5 and IFN-γ in the BAL
[47]. Furthermore, intranasal administration of rmIL-10,
concurrently with OVA, inhibited both airway neutrophilia
and eosinophilia [48]. It was also shown that allergen-specific
CD4+CD25+ Tregs can suppress allergic airway disease in
vivo through an IL-10-dependent mechanism [18]. In this
study, adoptive transfer of Treg cells reduced AHR, Th2 and
eosinophil recruitment into the airways, and secretion of
Th2-type cytokines. The effect was IL-10 mediated, since
neutralizing anti-IL-10R abrogated suppression. In addition,
these effects were independent of IL-10 production by the
CD4+CD25+ regulatory cells themselves [18].

Unlike TGF-β, IL-10 does not directly influence B-cell
class switch [49]. However, it is possible that indirectly,
by inhibiting the inflammatory response, IL-10 shapes the
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humoral outcome. Indeed, it was proposed that IL-10 may
favor the ratio of IgG4/IgE ratio [50]. In fact immunotherapy
studies show that Th2 responses can be suppressed by IL-
10 secreting regulatory cells accompanied by an increase of
circulating IgG4 [51, 52].

4. Different Subsets of Regulatory T Cells

Foxp3+ Treg cells, despite an apparent phenotypic unifor-
mity and immunosuppressive function, can have different
subtypes with distinct genetic signatures. The first major
division was identified between nTreg and iTreg, where the
first are enriched in Helios, a transcription factor that is
primarily expressed in T-lineage cells and early precursors
[53, 54]. While nTreg cells have epigenetic mechanisms
that stabilize Foxp3 expression allowing them to be a
stable differentiated cell lineage, TGF-β induced Tregs lack
those mechanisms having incomplete demethylation [55].
Therefore, although iTreg cells have high levels of Foxp3,
the expression of Foxp3 is less stable [55–57]. In addition,
conserved noncoding DNA sequence (CNS) elements at the
Foxp3 locus encode information defining the size, compo-
sition, and stability of the Treg cell population [58]. CNS3,
which binds c-Rel, has a drastic effect on the frequency
of Treg cells generated in the thymus. Contrary to CNS3,
CNS1 has no effect on thymic generation of Treg cells but is
essential for induction of iTregs [58]. CNS1 contains a TGF-
β-NFAT response element, so these results could represent
the requirement of TGF-β and NFAT for Treg induction
in the periphery [58–60]. Although CNS2-deficient T cells
can acquire Foxp3 expression, they fail to maintain Foxp3
expression on their progeny due to the failure on recruitment
of Foxp3-Runx1-Cbf-β complexes to CNS2 after demethy-
lation of the CNS2 CpG island [58, 61]. Interestingly
CNS1 deficient mice had no lymphoproliferative disorder.
However, it can be argued that these animals kept in clean
facilities have a minimal exposure to foreign antigens and
thus nTreg may be sufficient to maintain homeostasis in such
conditions. In effector T cells, GATA-3 is a hallmark of the
Th2 cells, but Treg cells can also express GATA-3, that binds
both to the Th2 cell locus and to the CNS2 of Foxp3 locus
[62]. In fact, there is a dramatic increase of GATA-3 binding
to CNS2 compared to conventional T cells, suggesting that
GATA-3 regulates CNS2 activity in Treg cells [62].

There is strong evidence that the CCR7-dependent con-
tinuous migration of DC from the lung to its draining LNs is
required for the transport of inhaled Ag and thereby for the
proper composition of APCs in the LN. These processes are
essential to induce peripheral tolerance of T cells [63]. The
costimulation with ICOS, crucial for regulatory phenotype
polarization in allergy [64], promotes the downregulation
of CCR7 and CD62L after activation, leading to a reduced
return of activated CD4 T cells to the lymph nodes and
a more efficient entry into the lungs [65]. Regulatory T
cells express CCR4 and CD103 induced by antigen-driven
activation in the lymph nodes. In addition, the accumulation
of Tregs in the skin and lung airways is impaired in the
absence of CCR4 expression [66]. Mice without CCR4 in
the Treg compartment develop lymphocytic infiltration and

severe inflammatory disease in the skin and lungs [66]. Some
studies suggest that CCR4 has a prominent role in effector
Th2 homing [67]. Despite their differences it seems both
regulatory and effector T cells share the response to homing
factors [68, 69].

But GATA-3 is not the only transcription factor char-
acteristic of effector T-cell responses that can be expressed
by Foxp3+ Treg cells. Under the influence of IFN-γ, Foxp3+

Treg cells can express the Th1-defining transcription factor
T-bet [70]. T-bet expression by Foxp3+ Treg cells induces
the expression of the chemokine receptor CXCR3, necessary
for these Treg cells to accumulate at the site of type
1 inflammation. T-bet expression was thus required for
the homeostasis and function of Treg cells during type-1
inflammation [70].

It is likely that the regulation of different types of
immune response requires the participation of specialized
subsets of regulatory cells. This way, iTreg cells induced in
an environment favorable to Th1 or Th2 type of immune
responses require the appropriate chemokine receptors to
give them access to the same locations as effector T cells
(Figure 1).

Th17 cells that have been implicated in autoimmunity
and allergy share with iTreg cells the need for TGF-β to
differentiate [71]. The decision of antigen-stimulated cells
to differentiate into either Th17 or iTreg depends on the
cytokine balance of IL-6, IL-21, and IL-23 that relieve
Foxp3-mediated inhibition of RORγt [72]. These results
indicate that Foxp3 and RORγt are transcription factors that
antagonize each other in the lineage differentiation.

Another subset of T cells, the follicular T helper cells
(Tfh), is mostly spatially confined to secondary lymphoid
organs, more precisely to the B-cell follicles [73]. Tfh cells
express high levels of the transcription factor Bcl-6, that
impairs the expression and function of other transcription
factors specific for other CD4 subsets: Tbet, GATA3, and
RORγt, thereby regulating cytokine production by Tfh cells
[74, 75]. Tfh cells differentiate under the influence of
ICOS:ICOSL and IL-21 but independently of any other
cytokine [76]. In addition, the characteristic anatomical
distribution of Tfh cells is dependent of CXCR5 that endows
access to the B-cell follicle [73, 77, 78]. We and others
have recently found that also this subset of effector T cells
has a specialized regulatory counterpart [69, 79, 80]. It was
found that Foxp3+ Treg cells can be found within the B-
cell follicle [81], sharing many characteristics of Tfh and
Treg cells [69, 79, 80]. Importantly, Bcl-6 can be coexpressed
with Foxp3 as it seems Foxp3 expression is not inhibited by
Bcl-6. These follicular regulatory T cells (Tfr) are immune-
suppressive and can control de magnitude of the germinal
center response [69, 79, 80]. In addition, they exhibit a
CTLA4hiGITRhiIL-10hi phenotype that is the characteristic
of activated Tregs [69, 79, 80]. However, the Tfr origin is
quite distinct from the other induced Treg cells previously
described. Tfr cells do not derive from the commitment
of conventional CD4 T cells, but result from acquisition of
“follicular” characteristics (viz. Bcl-6 expression) by natural
Foxp3+ Treg cells [69, 79, 80]. In fact sorted Tfh cells
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Figure 1: Functional specialization of effector and regulatory T cells. Different types of immune responses carry different cytokine
microenvironments that can influence both effector and regulatory T-cell differentiation. In the same way effector T cells when activated
in specific cytokine environment acquire specialized functions, induced regulatory cells (iTreg) can also activate the expression of different
transcription factors (italics) that endow them access to different anatomic compartments on the basis of the chemokine receptors they
express. Follicular regulatory cells (Tfr) represent an exception among peripherally induced Foxp3+ cells, as they are derived from natural
regulatory cells (nTreg) that acquire Bcl-6 expression, rather than from conventional CD4 T cells.

exposed to optimal conditions to induce Foxp3 expression
in conventional T cells (including TGF-β) resist conversion
to Tfr [79]. Given the importance of the germinal center
response for allergy, it is likely that Tfr cells can play an
important role in regulating IgE production.

Besides conventional T cells, also natural killer T (NKT)
cells are important players in defining the outcome of
immune responses. Notably, invariant NKT (iNKT) cells
were found able to help B-cell differentiation, germinal-
center formation, affinity maturation, and immunoglobulin
response that was uniquely dependent on iNKT cell-derived
IL-21, although the GCs maintain a small size throughout
the reaction [82, 83]. This contribution of iNKT cells for
humoral responses can be added to their ability to contribute
to allergic airways diseases by producing IL-4 and IL-13
[84, 85], or IL-17 [86, 87]. But iNKT cells can also have
a regulatory role, namely, in preventing EAE following
administration of its TCR agonist [88, 89]. We and others
recently described that activation of murine or human iNKT
cells in presence of TGF-β induces Foxp3 expression and
acquisition of suppressive function [88, 90].

5. Influencing Regulatory T Cells in Allergy

The understanding of the mechanisms involved in regulatory
T-cells generation and function may lead to novel strategies
to restore immune tolerance where it has been lost. As TGF-β
and IL-10 play a crucial role in tolerance induction, several
studies on immune tolerance induction took advantage of
environments rich in those anti-inflammatory cytokines. To
our advantage the mucosa itself is an anatomical location
rich in these immune mediators [91].

Airborne antigens can be transferred from the mother
to the newborn through milk [92]. Breastfeeding-induced
tolerance was found to be mediated by induced Foxp3+ Treg
cells and dependent on TGF-β [92]. It has been proposed that
metallomatrix proteases, derived from commensal bacteria
in the gut, can facilitate the conversion of latent TGF-β to
its active form, thus favoring iTreg differentiation [93]. In
addition, CD103+ dendritic cells in the mucosa-draining
lymph nodes have been shown effective in promoting
conversion of iTregs in the gut, mediated by TGF-β and
the synthesis of retinoic acid, a powerful inducer of Foxp3
expression [32, 94, 95]. Furthermore, vitamin D receptor
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deficient mice were associated with a reduction in tolerogenic
CD103+ dendritic cells favoring the development of effector
type T cells [96]. Vitamin D3 can be used to induce human
and mouse naive CD4+ T cells to differentiate in vitro into
regulatory cells that produced only IL-10, but no IL-5 and
IFN-γ, and furthermore retain strong proliferative capacity
[97]. Several other studies put vitamin D3 in relevance as
acting directly on T cells to induce IL-10+ regulatory cells
and also influencing levels of TGF-β [98–100]. These data
suggest that the mucosa, in particular the gut, has several
mechanisms that can favor immune tolerance. Sublingual
immunotherapy (SLIT) and oral immunotherapy (OIT)
are becoming more relevant as effective tolerance-inducing
strategies to treat inhalant as well as food allergies [101].

Allergen specific immunotherapy (SIT) which compre-
hends SLIT, OIT, and subcutaneous immunotherapy (SCIT)
has been in clinical use for around 100 years [102] and
consists on the administration of increasing doses of an
allergen [103]. It has been shown that both Foxp3+ and IL-10
positive regulatory T cells can be induced during the course
of SIT protocols [104, 105]. Furthermore, allergen-specific
TR1 cells, in healthy individuals, have been suggested to play
a key role in preventing pathologic responses [52, 102, 106].
While the presence of IL-10 leads B cells to produce IgG4 in
detriment of IgE [107, 108], TGF-β drives B cells to switch
to IgA production [106]. Another approach to direct the
organism towards a tolerant state arises from the results that
suggest that reduced TCR stimulation favors the induction
of a regulatory phenotype on the T cells [26, 109, 110].
Blockade of molecules involved in the immune synapse
has been suggested as an approach to achieve suboptimal
TCR activation [26, 110]. Blockade of CD4 was shown
a robust approach to achieve Treg-mediated dominant
tolerance in transplantation [111–113]. We recently showed
that a nondepleting anti-CD4 monoclonal antibody can
induce in mice robust, antigen-specific tolerance to house
dust mite, even in presensitized animals [16]. In addition,
a similar strategy was effective to prevent peanut-induced
anaphylaxis in mice [114]. Costimulation blockade was also
shown effective in preventing allergic sensitization in mice
[115]. Based on previous studies of tolerance induction to
alloantigens following costimulation blockade, it is likely the
mechanism also relies on Treg cells [116, 117]. Regarding the
different modalities for costimulation blockade, on one hand
CTLA4Ig was shown able to greatly reduce the secretion of
IL-4 but not enough to impair Th2 response [118]. On the
other hand, treatment with OX40L-blocking mAbs inhibited
to some extent allergic immune responses induced by TSLP
in the lung and skin, preventing Th2 inflammatory cell
infiltration, cytokine secretion, and IgE production in mice
and nonhuman primate models of asthma [119].

6. Final Remarks

The realization that active regulatory mechanisms, such as
the ones mediated by Treg cells, can prevent pathological
immune responses to harmless antigens is changing the
way immunotherapy is perceived. In very diverse fields
of immunology, ranging from cancer immunotherapy to

autoimmunity and allergy, regulatory mechanisms need to
be considered when therapeutic interventions are designed
to boost or dampen the immune response. The realization
that different subsets of regulatory T cells exist may offer the
possibility to fine tune such interventions in order to achieve
optimal therapeutic benefit with limited immunosuppressive
consequences in unrelated immune responses.

At a time when therapeutic interventions rely increas-
ingly on potentially immunogenic drugs, such as recom-
binant proteins to correct genetic diseases or monoclonal
antibodies, where even the human antibodies can be immu-
nogenic due to their unique idiotypes [120, 121], the issue of
tolerance induction to nonselfantigens will not be restricted
to allergy and transplantation, but a growing concern for
drug efficacy.
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