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In recent years, a huge number of individuals all over the world, elderly people,

in particular, have been suffering from Alzheimer’s disease (AD), which has had a

significant negative impact on their quality of life. To intervene early in the

progression of the disease, accurate, convenient, and low-cost detection

technologies are gaining increased attention. As a result of their multiple

merits in the detection and assessment of AD, biosensors are being

frequently utilized in this field. Behavioral detection is a prospective way to

diagnose AD at an early stage, which is a more objective and quantitative

approach than conventional neuropsychological scales. Furthermore, it

provides a safer and more comfortable environment than those invasive

methods (such as blood and cerebrospinal fluid tests) and is more

economical than neuroimaging tests. Behavior detection is gaining

increasing attention in AD diagnosis. In this review, cutting-edge biosensor-

based devices for AD diagnosis together with their measurement parameters

and diagnostic effectiveness have been discussed in four application subtopics:

body movement behavior detection, eye movement behavior detection,

speech behavior detection, and multi-behavior detection. Finally, the

characteristics of behavior detection sensors in various application scenarios

are summarized and the prospects of their application in AD diagnostics are

presented as well.
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1 Introduction

By 2020, more than 50 million people suffer from dementia globally, and this number

will keep increasing at a high rate, rising to 82 million in 2030 and 152 million in 2050.

Among them, developing countries will account for the majority of the growth. By 2050,

71% of dementia patients would be residents of low- and middle-income nations, up from

the current 60% (Prince et al., 2015). Alzheimer’s disease, the most prevalent cause and
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well-known type of dementia, accounts for 60–80% of incidences

(Gauthier et al., 2021). Currently, there is no effective

pharmacological medication that can halt the progression of

the pathology, making early diagnosis and intervention

extremely crucial (Mancioppi et al., 2019). Therefore, the early

diagnosis of AD is becoming an important issue and is attracting

increasing attention worldwide. However, the existing main

techniques used to accurately diagnose AD include

Cerebrospinal fluid (CSF) testing and neuroimaging methods,

which are costly, time-consuming, and out of reach for the

majority of people. In this context, biosensors are considered

as potential substitutes for low-cost, quick, comfortable, and

straightforward method for AD diagnosis (Brazaca et al., 2019).

Biosensors are analysis tools that transform biological

responses into quantifiable signals (Amine et al., 2006;

Brazaca et al., 2019), they have significant potential to

revolutionize a wide range of industries, especially are

extensively utilized in the field of medical testing, such as

health monitoring, motion detection, activity identification,

etc. (Liu et al., 2016; Sprint et al., 2016; Petra et al., 2018).

Among them, the physiological biosensor is one of the most

common categories that are utilized to detect biochemical

indicators, e.g., pH, glucose, ions, sweat, skin interstitial fluid

in the human biofluids, and physical indicators, such as pulse,

heart rate, blood pressure, temperature, electrocardiogram

(ECG), etc. (Brazaca et al., 2019; Guo et al., 2020; Kodintsev

et al., 2020; Zhang et al., 2021a; Zhang et al., 2021b; Huang et al.,

2021; Sheng et al., 2022). For instance, the graphene FET sensors

has been developed by Bungon et al. to detect protein biomarker

clusterin of Alzheimer’s disease (Bungon et al., 2020). Besides,

due to the development of health monitoring technology,

behavior detection biosensors, such as motion sensors and

sound sensors are being widely used in this field to measure

various behavioral biomarkers of humans (Bouchard et al., 2014;

Chaccour et al., 2016; Vippalapalli and Ananthula, 2016; Stone

and Skubic, 2017; Wang et al., 2017; Nweke et al., 2018; Wang

et al., 2019 Lima et al., 2019; Fan et al., 2020; Yu andWang, 2020),

e.g., person’s movement and speech behavior, etc. (Yu andWang,

2020). Moreover, ambient biosensors play an essential role in

human activity detection and risk assessment by monitoring

environmental conditions, including humidity, radiation, gas,

pressure, temperature, etc. (Sunny et al., 2020; Karthikeyan et al.,

2021).

Among these three basic categories of biosensors, behavioral

detection sensors are gaining increasing attention because of

numerous demands in society, such as safety, comfort, natural

interaction, entertainment, assisted living, etc. (Yu and Wang,

2020). For instance, the aging problem urges the demand for

home-based health care for the elderly (Merilahti et al., 2015). In

order to promote the integration of smart homes with elderly

care, Donghwa Shon et al. investigated the possibility of

embedding healthcare services into smart homes in a non-

invasive manner, and propose medical scenarios that can be

applied to each smart home room (Choi et al., 2019). The

monitoring of activities of daily living (ADL) using the

household sensors and networks have been investigated

(Nathan et al., 2018). Fleury et al. propose a support vector

machine (SVM)-based ADL recognition mechanism. Lots of

sensors such as microphones, contact sensors, infrared (IR)

sensors, accelerometer and magnetometer are used to monitor

the activities of older persons (Fleury et al., 2010). There are

usually more than one member in a family, to identify each of the

dwellers, Wang et al. presented a multiuser activity recognition

system using wearable audio sensors, altimetry sensors and RFID

tags, and high accuracy was obtained (Wang et al., 2011). To

ensure they live in a safer environment, behavior monitoring,

such as anomalous behavior detection, is urgently needed for

elderly people, especially for those living alone (Alemdar and

Ersoy, 2010; Rashidi and Mihailidis, 2013; Hoque et al., 2015;

Chaccour et al., 2016; Stone and Skubic, 2017; Deep et al., 2020).

In addition, biosensor-based behavior detection approaches are

also commonly applied to identify behavioral disorders in certain

types of diseases, such as Parkinson’s disease (PD), Stroke,

Paralysis, etc. (Kang et al., 2010; Leclair-Visonneau et al.,

2017; Alvarez et al., 2018; Loopez-Larraz et al., 2018;

Migliaccio et al., 2020; Borzì et al., 2021; Diaconu et al.,

2021). Notably, many recent studies have revealed that

behavioral biomarkers might be vital indicators of Alzheimer’s

disease (AD) in its initial phases (de et al., 2014; Nardone et al.,

2022; Staal et al., 2021), symptoms like motor behavior alteration

occur before profound memory deficits (Tippett and Sergio,

2006; Casper et al., 2015). Thus, given the fact that motor

behavior deficits are generally regarded as a consequence of

aging (Tippett and Sergio, 2006), biosensor-based behavior

detection is vital for both the early diagnosis of AD, and for

assisting to explore the underlying causes of the daily activity

dysfunction of the elderly in a quantitative way. Therefore, this

objective and effective approach to detecting the behavior

biomarkers of potential AD patients by using biosensors is

becoming a promising diagnostic method for AD (Verheij

et al., 2012; Abe et al., 2013; Alam et al., 2017). As a result, a

variety of wearable and ambient non-invasive biosensors for AD

diagnosis are emerging (Wams et al., 2017; Mancioppi et al.,

2019). Especially, biosensors oriented to motion behavior

monitoring, physiological signal capturing, and environment

information detecting have drawn particular attention among

AD diagnosis and other behavior detection applications (Lara

and Labrador, 2013; Bulling et al., 2014; Liu et al., 2021).

In this review, the most recent research into biosensors for

behavior detection in the diagnosis of Alzheimer’s disease is

discussed. An electronic database search was performed using the

Web of Science, PubMed, Elsevier Science Direct, Scopus R, and

Biomed Central databases to identify and select articles

concerning the early diagnosis of Alzheimer’s disease using

biosensors. The following key words are used: Alzheimer’s

disease, diagnosis, biosensor, Behavior. Repetitive articles are
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eliminated, articles published by the same author are compared,

and the articles most relevant to the theme of this article are

selected. The applications of behavior detection biosensors are

categorized into four groups: body motion behavior detection of

Alzheimer’s disease, eye movement behavior detection of

Alzheimer’s disease, speech and language behavior detection

of Alzheimer’s disease, and multimodal behavior detection of

Alzheimer’s disease. Body motion behavior sensors can detect

body motions, for example, gait, walking speed, walking stride,

balance, foot kicking, upper limb motion, and other activities of

daily living. Eye movement behavior sensors are employed to

measure gaze, fixation, saccade, eye blinks, and pupil response

metrics, etc. Speech and language behavior sensors are mainly

used to record and identify acoustic features. While multimodal

behavior sensors can sense multiple combined behavior

parameters, e.g., physiological indicators, eye movement,

sound, body motions, etc. Together with various

environmental information. Moreover, this review provides an

outlook on future research directions of biosensor-based

behavior detection technology and methodology for the

diagnosis of Alzheimer’s disease. Notably, the challenges of

data security, quality and privacy, and the regulatory

requirements are still exist. Therefore, ethical review must be

done prior to testing on patients, patient consent must be sought

before data collection can take place, and data involving privacy

cannot be published without patient consent.

2 Applications of biosensors toward
behavior detection of alzheimer’s
disease

2.1 Body motion behavior detection of
alzheimer’s disease

Body motion behavior has been widely studied in

detecting AD based on a range of sensors (Robben et al.,

2016). Those utilized biosensors are mainly wearable sensors,

including feet and waist-mounted inertial sensors, ankle-

mounted accelerometric sensors, wrist-mounted

accelerometers, leg-mounted force sensors, etc. In addition,

to realize real-time monitoring and data analysis (Catarinucci

et al., 2015; Jain et al., 2021), these biosensor devices tend to be

integrated into the internet of things (IoT) devices (Helen

et al., 2018; Yamini, 2020; Machado et al., 2021). Besides, with

the increasingly improved communication technology, the use

of a biosensor to detect body motion behavior in a VR

environment offers a more promising way to conduct

relevant experiments, which enables subjects to perform the

tasks more interactively and safely in a relatively ideal

immersive experimental environment (García-Betances

et al., 2015; Montenegro and Argyriou, 2017; Mohammadi

et al., 2018; Montenegro et al., 2020).

Wearable biosensors are widely employed in body motion

detection of AD patients, and most of them are used to detect

lower limbs’ motion parameters. Scholars collected body

movement data from normal and Alzheimer’s patients,

extracted the characteristics of the patient’s movement data

and the characteristics of the normal person’s body movement

data set to distinguish them with machine learning, and grouped

them to determine where the test target belonged. In particular,

gait analysis has received great attention in the study of cognitive

impairment (Laske et al., 2015). For instance, Hsu et al. suggested

a method to conduct objective quantitative measurement of foot

movement in AD. In their study, wearable inertial sensor-based

devices put on the feet and waist are employed to process gait and

balance metrics with the aid of gait and balance analyzing

algorithm. The outcomes of the trial demonstrate the

effectiveness of this wearable sensor system for early-stage

diagnosis of Alzheimer’s disease. It indicates that AD patients

present greater variability in gait parameters and worse balance

ability than healthy controls (Hsu et al., 2014). In addition, Kirste

et al. proposed ankle-mounted three-axes accelerometric sensors

to study motion behavior in AD patients’ daily life. All

participants are required to conduct a 50 continuous hours’

daily activity recording within 3 days wearing the

accelerometric sensor on their ankles. By analyzing the spatial

trajectories, subjects’ activity level has been detected. The

findings show that this method can discriminate between AD

and HC (healthy control) with an accuracy of 91%, and motion

behaviors data have a significant correlation with MMSE and

CMAI (Cohen-Mansfield Agitation Inventory) scores (Kirste

et al., 2014).

Varatharajan et al. presented a wearable internet of things

(IoT) device to detect early Alzheimer’s disease. As shown in

Figure 1I, the force sensor-based leg movement monitoring

system is used to collect AD patients’ walking patterns in

real-time, and with the help of the dynamic time warping

(DTW) algorithm the participants’ various foot movement

data, such as walking speed and gait are processed. Moreover,

the middle-level cross identification (MidCross) function is

applied to classify cognitively normal participants and AD

patients by comparing their gait signals. In this study only

foot movement is measured, it still proved the effectiveness of

this method to diagnose Alzheimer’s disease (Varatharajan et al.,

2017).

Moreover, in the work of Fiorini et al. an innovative method

of walking behavior detection to diagnose MCI is presented. In

this study, aerobic activities are combined with traditional

cognitive tools: the TAP test (Test for Attentional

Performances), to investigate the feasibility of classifying

between MCI and healthy controls. For this reason, the

SmartWalk test is adopted to integrate walking behavior and

auditory sustained attention by using a wearable 9-axis inertial

sensor (a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis

magnetometer), which is fixed on the dominant foot of subjects.
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As a result, the SmartWalk test shows a positive correlation with

the TAP test in cognitive assessment (Fiorini et al., 2017). In

another work by Fiorini et al., a similar combined cognitive-

physical SmartWalk tool (Sensor foot) is developed, which adds

aerobic activity to the traditional cognitive protocols, to explore

its correlation with a traditional test in measurement and

stimulate cognitive function. In this study, a wider range of

subjects has been recruited to participate in the test. Similarly, a

wearable 9-axis inertial sensor (a 3-axis accelerometer, a 3-axis

gyroscope, and a 3-axis magnetometer) is taped to subjects’

dominant foot to collect walking data. Consequently, the

findings suggest that the SmartWalk test is positively

associated with the traditional one, and could be useful in

cognitive decline intervention (Fiorini et al., 2019).

Besides, daily physical activity behavior has been investigated

in some studies. For instance, a wrist-mounted accelerometer is

developed in the study of Fleming et al. to record habitual

physical activity behavior in non-demented participants with

down syndrome (DS). Based on the measured data, the

correlation study between participants’ physical activity

behavior, cognitive functioning, and imaging biomarkers of

Alzheimer’s disease have been conducted. The experimental

results revealed that time spent in sedentary behavior is

negatively correlated with cognitive functioning, while time

spent in moderate-to-vigorous activity behavior correlates

with cognitive functioning positively (Fleming et al., 2021). In

a similar study by Lu et al., patterns of physical activity and

sedentary behavior are compared among participants with AD,

MCI, and normal control group in Hong Kong. To obtain these

biomarkers a wrist-worn accelerometer has been mounted on

every subject’s wrist for 7 days. The results show that AD subjects

have longer time sedentary behavior and more sedentary bout

than other groups during the day (Lu et al., 2018).

The wearable biosensor offers many advantages, such as

portability, comfort, convenience, and allowing for continuous

point-of-care testing (Zhang et al., 2021a). At the same time, it

FIGURE 1
i) (A) Leg movement. (B)Motion detection device (Varatharajan et al., 2017). ii) (A) The SmartTapestry hardware. (B) Sensing components in the
soft foundation layer (Left) and the SmartTapestry test set-up (Right). (Maselli et al., 2017). iii) (A) Side perspective displaying the layout of the
experimental set-up. (B) Perspective from above displaying the layout of the experimental set-up. (C) Virtual reality glasses (Oculus Rift DK2) and
depth sensor (Microsoft Kinect 2). (D) Early detection setup (Montenegro and Argyriou, 2017).
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has some drawbacks, for instance, some of them are bulky to

wear, distracting, and cause tension (Jonell et al., 2021). As a

result, in certain cases, some non-wearable biosensors are

introduced to create an experimental environment with

minimal interference to subjects and maintain the ecological

validity of the recorded data, such as ambient-based in-home

wireless sensors and Kinect (depth) sensors, etc. (Jonell et al.,

2021). For example, Maselli et al. designed a sensor-based

tapestry to assess and train cognitive functions by combining

the measurement of episodic memory and motor (upper limb

articulation movement) in the tasks. The SmartTapestry consists

of a sensitive base, interchangeable layers, a laptop and a mobile

support structure for the tapestry. Based on this device, subjects’

cognitive and motor functions are assessed and trained

simultaneously (Figure 1II ). Compared with the traditional

approach, this novel tool suggests that the SmartTapestry

plays an equivalent role in the assessment and rehabilitation

of physical and cognitive function (Maselli et al., 2017).

Furthermore, Urwyler et al. constructed an in-home wireless

sensor system, comprising ten unobtrusive senor boxes inside the

apartment to detect subjects’ activities of daily living (ADL).

These ten sensor boxes were installed in ten different places of the

apartment and used to capture light, temperature, humidity,

movement and acceleration values with his five ambient sensors.

The results show that the recognized ADL data is useful to

discriminate between dementia patients and healthy participants

with an accuracy of 95% (Urwyler et al., 2017).

Besides, in the study of Fernandez Montenegro et al. a depth

sensor is used to track the subjects’ bodymovements and animate

them to improve subjects’ interactivity in the VR environment

(Figure 1III). In this way, the subjects wearing the VR glasses can

perform the required cognitive tasks in the full-immersive VR

environment. In this work, although body behaviors were only

recorded and animated, not analyzed and used for diagnosis of

AD, it still presents a promising solution for behavior detection in

AD diagnosis (Montenegro and Argyriou, 2017).

2.2 Eye movement behavior detection of
Alzheimer’s disease

Eye movement parameters play a significant role in cognitive

function assessment, they can reflect human cognitive and

mental state more easily compared to other bio-signals

(Zhang et al., 2016), and abnormal viewing behavior has been

found among subjects with neurodegenerative conditions in eye

movement studies (Anderson and Macaskill, 2013). With the

advances in eye-tracking technologies, eye movement

parameters, such as gaze, saccade, blink etc. Have gained

growing interest in various medical fields, including

Alzheimer’s disease diagnosis (Crawford et al., 2013; Imaoka

et al., 2021). Studies have shown that the brain aggregates

information about the position of the eyes and hands in the

posterior parietal cortex (PPC), and that anatomical changes in

the brain regions of AD patients can lead to damage in the PPC

region, which can affect hand-eye coordination tasks. In

visuomotor tasks, detecting whether a target’s performance

has deficits that are not present relative to age-matched

controls provides a preliminary diagnosis of whether the

target is ill. On the other hand, specific indicators of the eye

and pupil can reflect to some extent the level of cognition, and the

analysis of indicators such as the number of gaze durations

during visual gaze can also be used to assist in the detection

of disease (Skaramagkas et al., 2021).

In many related studies, biosensor-based devices have been

constructed in an experimental setup to record eye movement

data of AD patients. These biosensors are mainly infrared

sensing devices, including wearable devices, e.g., eye-tracking

glasses, head-mounted VR eye trackers etc., and non-wearable

devices, e.g., desk-mounted eye trackers, handheld

pupillometer, infrared eye-tracking camera etc. For example,

in the work of Fraser et al. a desk-mounted eye tracker is

constructed for the measurement of eye-movement features in

reading tasks. By analyzing the recorded data, 13 gazes, saccade,

and fixation-related features are considered. Ultimately, with

the help of machine learning analysis, the healthy control and

AD subjects can be distinguished at an accuracy rate of 86%

(Fraser et al., 2017).

Nam et al. constructed a sensor-based experimental setup to

detect eye movement, head pose and their correlation (Figure 2I).

To measure gaze behavior naturally, a camera rather than a

wearable eye-tracker is equipped to record participants’ face

video data. The findings suggest that AD patients’ eyes move

with the head in the vertical orientation at the same time, whereas

the healthy control did not show such behavior features. In

conclusion, this eye and head movement behavior detection

could be significantly useful in screening for AD (Nam et al.,

2020).

In the work of Tadokoro et al. a novel infrared-based eye

tracking camera is constructed to capture gaze points in the eye

tracking test. Participants are asked to perform this 3-min image

task displayed on a computer monitor with an audio explanation,

the data recorded is used to analyze eye tracking scores and

classify NC (Normal Control), MCI (Mild Cognitive

Impairment), and AD subjects. As a result, it shows that eye

tracking scores are correlative with mini-mental state

examination (MMSE) scores and it is an effective and rapid

method to detect early cognitive impairment (Tadokoro et al.,

2021). In another work by Oyama et al., the very same eye-

tracking device is used to perform a rapid cognitive assessment

and show good diagnostic performance (Figure 2II) (Oyama

et al., 2019).

In the study of Granholm et al., a handheld infrared sensor-

based pupillometer is utilized to record pupil response evoked in

cognitive tasks to detect biomarkers of early mild cognitive

impairment (MCI) and AD risk prediction. By using these
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pupillometer devices MCI and cognitively normal (CN)

participants can be differentiated, whose results are correlative

with those in locus coeruleus examination (Granholm et al.,

2017).

Apart from the non-wearable eye-tracking sensors

mentioned above, various wearable eye trackers are applied in

some works. For instance, Sciarrone et al. present a wearable

sensor-based glasses to measure the Essential Tremor (ET) of the

head and the number of Eye Blinks (EBs) simultaneously for

early-stage AD patients (Figure 3I). These behavioral symptoms

can be precisely detected, with an accuracy of 97% for ET, and

Root Mean Square Error (RMSE) around 0.4 for EBs (Sciarrone

et al., 2020).

In addition, Davis et al. reported a feasibility study of using

virtual reality (VR) and eye tracking techniques in Way-finding

tasks for Alzheimer’s disease research. In this study, wearable

sensor-based eye tracking glasses with two cameras were applied

to record video. One camera was used to record VR

environments, which were projected on a 12-foot screen.

Another one was used to capture subjects’ gaze data via the

optical sensor device. In this way, 60% of eye-tracking videos of

subjects who finished all trails were complete and usable, which

proved the feasibility of using projected VR and eye tracking in

large-scale wayfinding tasks for AD detection, but some

limitations should be taken into consideration, such as

joystick issues, simulation sickness, and calibration issues, etc.

FIGURE 2
i) (A) Facial and eye movement extraction OpenFace 2.0. (B) Coordinate axes: face and eye. (C) A pair of axes was used to obtain the correlation
coefficient: horizontal and vertical (Nam et al., 2020). ii) (A) Eye-tracking system. (B) Tasks for rapid cognitive assessment. (C) An example of a
working memory task and representative gaze plots (Oyama et al., 2019).
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(Davis, 2021). Besides, compared with the eye tracker

constructed in the projected VR environment mentioned in

the study of Davis et al., Yu et al. employed a more

immersive eye tracking device: a novel head-mounted VR

device, in which a sensor-based eye tracker is embedded

(Figure 3II). To be specific, biosensors installed in this VR

device include steam VR tracking, accelerometer, gyroscope,

proximity, interpupillary distance (IPD) sensor, near-infrared

LED, and infrared camera. In their work, this wearable VR device

is utilized to record saccade and other eye movement metrics in

FIGURE 3
i) The primary parts of the glasses and an illustration of the employed sensors (Sciarrone et al., 2020). ii) (A) VIVE Pro Eye’s coordinated eye
tracking system. (B)Coordinate system of pupil position data from the user’s perspective. (C) Coordinate system of gaze direction vector from user’s
perspective. (D) Experimental technology for measuring saccadic eye movement utilizing HTC VIVE Pro Eye (Yu et al., 2020).
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pro- and anti-saccade tasks. Consequently, the data analysis

results indicate that it is able to measure saccadic eye

movement parameters despite the technical limitations on

time-linked parameters assessment (Yu et al., 2020).

2.3 Speech behavior detection of
Alzheimer’s disease

Speech testing plays a critical part in the medical diagnosis

of several neurodegenerative diseases (Veronica et al., 2017).

Over the past years, studies have proved that a considerable

percentage of AD patients suffer from vocal communication

problems (Habash et al., 2012), and impairment in speech and

language possibly be a powerful predictor of MCI and AD

(Ammar and Ayed, 2020), some studies even suggested that

speech behavior changes might be one of the earliest indicators

of cognitive decline, frequently noticeable years before other

cognitive impairments become apparent (Beltrami et al., 2018).

The researchers analyzed a large number of language samples to

extract the features, quantified the language automatically and

combined it with machine learning classification methods to

distinguish healthy controls from AD patients by detecting

target language skills. Meanwhile, due to the non-invasive,

convenient, and low-cost properties of speech analysis

techniques (Pulido et al., 2020), various works have focused

FIGURE 4
i) (A) The pause encoding process. (B) AD patients pause more often (in all duration bins) (95). ii) Confusion matrices that include the top
outcomes from every experiment, as well as precision, recall, and total accuracy (93). iii) Accuracy and standard errors, divided by the N predictor
characteristics employed (91). iv) CER (%) for classes and selected classifiers, including convolutional neural network, k-nearest neighbors, support
vector machines, multilayer perceptron with L layers and N neurons (96).
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on conducting speech behavior analysis to obtain early

indicators for the diagnosis of early Alzheimer’s disease

(Samrah et al., 2013; Laske et al., 2015). For this purpose,

various acoustic sensors have been employed to capture

vocal signals from subjects’ speech.

For instance, López-de-Ipiña et al. proposed an automatic

spontaneous speech analysis (ASSA) method for early

Alzheimer’s disease diagnosis. Based on an automatic Voice

Activity Detection (VAD) the recorded spontaneous speech

and emotional speech analysis are conducted automatically

(Figure 4I). By processing these vocal parameters, including

duration, time domain, frequency domain, acoustic, and voice

quality features, AD patients’ vocal features are identified (López-

de-Ipia et al., 2013).

FIGURE 5
i) (A)Overview of the complete system architecture. (B) Low-level subsystem architecture for sensor-based health tracking (Alvarez et al., 2018).
ii) (A) Schematic of the M2M System. (B)M2M device gateway (Ishii et al., 2016). iii) Architecture of the smart homemonitoring system (Lazarou et al.,
2016). iv) Sensor-based HeTra subsystem architecture overview (Alvarez et al., 2017).

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Sun et al. 10.3389/fbioe.2022.1031833

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1031833


In another work by Fraser et al., with the help of sound

sensor short narrative samples are extracted by performing a

picture description task, and processed to form linguistic and

acoustic variables. Moreover, these variables are used to train

the machine learning classifier to classify AD and healthy

subjects. Based on experiments, four linguistic features

including semantic impairment, acoustic abnormality,

syntactic impairment, and information impairment are

proved to be useful in the recognition of AD, and the

accuracy of this method reaches up to 81% (Fraser et al.,

2015) (Figure 4III).

Laszlo et al. applied a dedicated automatic speech recognition

(ASR) tool in automatic MCI screening. By analyzing the

spontaneous speech of participants in two tasks, acoustic

parameters are extracted automatically. In addition, machine

learning algorithms are applied to assist distinguish MCI from

healthy subjects. The results demonstrate that the speech tempo

in the delayed recall task and the number of pauses in the

question-answering task are the most notable differences

between these two groups (Laszlo et al., 2018).

Haider et al. studied purely paralinguistic acoustic

features of subjects’ spontaneous speech using a

microphone and voice activity detection system. Based on

this, four feature sets, e.g., Emobase, ComParE, eGeMAPS,

and MRCG functionals are extracted and processed for AD

detection with Machine Learning and Active Data

Representation (ADR) methods. As a result, this work

shows that such comprehensive acoustic feature sets of

spontaneous speech are correlated with cognitive function,

and might contribute to AD screening and diagnosis (Haider

et al., 2020) (Figure 4II).

In the work of Calzà et al., linguistic feature modifications

caused by cognitive decline have been studied to detect Mild

Cognitive Impairment (MCI) and dementia via Natural

Language Processing (NLP) techniques. To this aim, an

Olympus-Linear PCM Recorder LS-5 is employed to record

speech data of subjects during the implementation of three

spontaneous speech tasks. In addition, acoustical, rhythmical,

lexical, morpho-syntactic features and readability domains are

extracted automatically by means of created algorithms, and

FIGURE 6
i) (A) Schematic diagram of lateral reaching task. (B) Schematic diagram of radial reaching task (Mitchell, Rossit, Pal, Hornberger, Warman,
Kenning, Williamson, Shapland,McIntosh). ii) (A) Schematic diagram illustrating the four experimental conditions. (B) Trial timing (Hawkins and Sergio,
2014). iii) Setup of the circle-tracing task (Kirsty et al., 2017).
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then automatic classifiers are trained to discriminate between

healthy control and MCI subjects (Figure 4III). The findings

suggest that this automatic diagnosis system is able to

distinguish healthy subjects from MCI (high F1 score,

approximately 75%) (Calzà et al., 2021). The same recorder

(Olympus-Linear PCM Recorder LS-5) has been applied by

Beltrami et al. to record spontaneous speech during three tasks

designed for 96 participants. As a result, many speech features,

such as acoustic lexical and syntactic parameters are

transcribed and analyzed by Natural Language Processing

(NLP) to discriminate between healthy controls and

cognitively impaired participants. The results indicate that

this method might be a promising tool to recognize early-stage

cognitive deficits (Beltrami et al., 2018).

Besides, several researchers studied disfluencies and pauses in

speech to detect cognitive impairment (Yuan et al., 2021)

(Figure 4I). López-de-Ipiña proposed an automatic analysis

method of speech and disfluencies to assist MCI diagnosis.

For this purpose, 40 speech samples from the MCI group and

60 from the control group are recorded by a sensor-based sound

recorder, and automatically segmented into disfluencies via the

VAD algorithm. Employing non-linear multi-feature modeling

and deep learning approaches, the experiment shows hopeful

results and provides a novel research direction (Lopez-De-Ipina

et al., 2017) (Figure 4IV). Similarly, Yuan et al. studied

disfluencies and language problems in Alzheimer’s Disease as

well, by using fine-tuning Transformer-based pre-trained

language models, e.g., BERT and ERNIE. In this work,

TABLE 1 List of sensor-based body motion behavior detection toward AD diagnosis.

Devices
used

Sensor Type
of sensor

Parameter
detected

Environment Effectiveness Subjects Ref

Body
motion
behavior
detection

Feet and waist-
mounted devices

Inertial sensor
(accelerometer,
gyroscope)

Wearable,
non-
invasive

Gait, balance Indoor
experimental
environment

Promising
indicator for early
diagnosis of AD

70 (21 AD,
50 HCs)

Hsu et al.
(2014)

Ankle-mounted
device

Three-axes
accelerometer

Wearable,
non-
invasive

Spatial trajectory Indoor
experimental
environment

Classification
accuracy: 91%

46 (23 AD,
23 HCs)

Kirste et al.
(2014)

Leg movement
IoT device

Force sensor Wearable,
non-
invasive

Walking speed,
gait

Indoor
experimental
environment

Sensitivity: 95.9%
Specificity: 94%

173 AD,
150 HCs

Varatharajan
et al. (2017)

SensorFoot
(Foot-mounted
sensor device)

9-axis inertial
sensor (3-axis
accelerometer, 3-
axis gyroscope, 3-
axis magnetometer)

Wearable,
non-
invasive

Kick Indoor
experimental
environment

Good correlation
with traditional
approaches

15 (4 MCI,
11 HCs)

Fiorini et al.
(2017)

SensorFoot V2
(Foot-mounted
sensor device)

9-axis inertial
sensor (3-axis
accelerometer, 3-
axis gyroscope, 3-
axis magnetometer)

Wearable,
non-
invasive

Kick Indoor
experimental
environment

Good correlation
with traditional
approaches

49 (20 MCI,
29 HCs)

Fiorini et al.
(2019)

Wrist-mounted
sensor-based
device

Actigraph
accelerometer

Wearable,
non-
invasive

Sedentary
behavior,
moderate-to-
vigorous activity
behavior

Indoor free-living
environment

Good correlation
with cognitive
functioning

66 non-
demented
adults with
down
syndrome

Fleming et al.
(2021)

Wrist-mounted
sensor-based
device

Accelerometer Wearable,
non-
invasive

Sedentary
behavior

Indoor free-living
environment

Good
differentiation
between AD, MCI
and HCs

671 Lu et al. (2018)

SmartTapestry
(sensor-based
tapestry)

Sensing units non-
wearable,
non-
invasive

upper limb
articulation
movement

Indoor
experimental
environment

Good correlation
with traditional
tool

- Maselli et al.
(2017)

In-home wireless
sensor system

Ambient sensors non-
wearable,
non-
invasive

Activities of daily
living (ADL)

Indoor free-living
environment

Differentiation
accuracy:95%

10 dementia
patients,
10 HCs

Urwyler et al.
(2017)

Head-mounted
VR glasses,
Kinect sensor
device

Depth sensor non-
wearable,
non-
invasive

Body movement Virtual
environment

A promising
solution for AD
diagnosis

20 Montenegro
and Argyriou,
(2017)
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108 speakers’ speech samples in the training set and 48 speakers’

speech samples in the test set are recorded by recorders. As a

result, 89.6% accuracy on the test set of the Alzheimer’s

Dementia Recognition through Spontaneous Speech has been

achieved and the conclusion is drawn: AD patients speak uh

more frequently than speak um (Yuan et al., 2020).

2.4 Multimodal detection of Alzheimer’s
disease

In the studies mentioned above, most of the sensors have

been used in isolation to detect behavior parameters. However,

every single sensor has its merits as well as demerits, they cannot

measure all the metrics needed alone (Alberdi et al., 2016).

Therefore, a technology that can fuse all sensors is getting

more attention in this field (Yang et al., 2022). Recently, the

multi-sensor detection model is gaining more popularity in

behavior detection (Hoque et al., 2015; Alberdi et al., 2016).

Many studies have revealed that it is feasible to obtain

comprehensive information on patients’ activity behavior in

an indoor or experimental environment, based on the dense

sensing system and sensor fusion technology (Abe et al., 2015;

Stavropoulos et al., 2015; Chen et al., 2019). Thus, this strategy

greatly improves the efficiency of patients’ behavior detection

and has a more effective analyzing mechanism in assessing

patients’ activity behavior with variable intensities compared

to the conventional method (Deep et al., 2020).

As a result, in various indoor environments, multimodal

detection sensors have been deployed to record and assess

multiple behavioral signals of AD patients. For example,

Jonell et al. proposed a multimodal capture method to detect

AD patients’ behavior in a real clinical environment by using

nine sensors, which include three smartphone cameras, a tablet,

an eye tracker, a microphone array, a health wristband, a

thermal camera, and an overview camera. To minimize

distraction to the subjects and ensure the ecological validity

of the recorded data, most of the installed sensors except for the

health wristband are non-wearable. With their help,

multimodal behavioral data are collected, such as facial

gestures recorded by the patient camera (Smartphone

Camera), gaze and pupil dilation by Eye Tracker, voice

quality (breathiness, vocal strength), pauses, speech rate by

Microphone Array, pen movement and pen pressure by Tablet,

thermal emission data by Thermal Emission Camera, heart rate,

galvanic skin response and acceleration by Health Wristband in

TABLE 2 List of sensor-based eye movement behavior detection toward AD diagnosis.

Devices
used

Sensor Type
of sensor

Parameter
detected

Environment Effectiveness Subjects Ref

Eye
movement
behavior
detection

Desk-mounted
eye tracker

Infrared sensor Non-
wearable,
non-
invasive

Gaze, saccade,
fixation

Lab experimental
environment

Differentiation
accuracy: 86%

- Fraser et al.
(2017)

Camera Imaging sensor Non-
wearable,
non-
invasive

Gaze, head pose Lab experimental
environment

Good differentiation 34 (17 mild
AD,
17 HCs)

Nam et al.
(2020)

Eye tracking
camera,
computer
monitor

Infrared sensor Non-
wearable,
non-
invasive

Gaze Indoor
experimental
environment

Good correlation with
MMSE

174
(52MCI,
70AD,
52 HCs)

Tadokoro
et al. (2021)

Handheld
pupillometer
device

Infrared sensor Non-
wearable,
non-
invasive

Pupil diameter Indoor
experimental
environment

Good differentiation,
good correlation with
locus coeruleus
examination

918 Granholm
et al. (2017)

Eye-tracking
glasses

Image sensor,
magnetometer, EOG

Wearable,
non-
invasive

Eye blink (EB),
essential tremor
of the head (ET)

Indoor
experimental
environment

accuracy of 97% for
ET, and Root Mean
Square Error (RMSE)
around 0.4 for EBs

5 Sciarrone
et al. (2020)

Eye-tracking
glasses

Optical sensor Wearable,
non-
invasive

Gaze Projected virtual
environment

Relatively well-
tolerated in older
adults and AD
patients

88 (38 AD,
50 HCs)

Davis,
(2021)

Head-mounted
VR device

SteamVR tracking
sensor, accelerometer,
gyroscope, proximity,
interpupillary distance
sensor, infrared sensor

Wearable,
non-
invasive

Saccade, pupil
diameter

Full-virtual
environment

Effective assessment
tool

7 Yu et al.
(2020)

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Sun et al. 10.3389/fbioe.2022.1031833

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1031833


clinical condition. In this way, the clinical feasibility of this

sensor system is demonstrated by relating these digital

biomarkers to traditional clinical assessment methods and

established biomarkers (Jonell et al., 2021).

In addition, Alvarez et al. developed a novel multimodal

sensing system to capture and analyze AD patients’ physical

abnormal behavior in daily motion. In this system various

sensors are employed, including multisensory smart bands to

offer blood pressure and skin temperature, an accelerometer,

gyroscope, and magnetometer to capture motion data, a

Binary sensor to detect whether doors and drawers are

open, an RGB-D camera (Kinect) to collect deep motion

data, a Zenith camera to record 360-degree panoramic view

and Wireless sensor network (WSN) anchor or beacons to

extract radio signals from wearable devices (Figure 5I).

Therefore, based on these technical approaches, this system

integrated with Internet of things devices and user

interactions is able to provide automatic, distant

monitoring of AD patients (Alvarez et al., 2018). In

another work by Alvarez et al., the very same sensor-based

devices were integrated into an ICT4LIFE platform to capture

visual, motion and depth data of AD patients’ abnormal

behavior (Figure 5IV ). Based on these data, behavior

patterns are recognized and reported to the interested party

to take appropriate actions (Alvarez et al., 2017).

Ishii et al. proposed a sensor network system toward the early

detection of dementia for elderly people living alone. Inside their

house, various sensors were installed to identify behaviors

indicating initial symptoms of dementia. With the help of the

M2M (Machine-to-Machine)/IoT (Internet of Things) platform

TABLE 3 List of sensor-based speech behavior detection toward AD diagnosis.

Devices
used

Sensor Type
of sensor

Parameter
detected

Environment Effectiveness Subjects Ref

Speech
behavior
detection

Microphone Sound
sensor

Non-
wearable,
non-
invasive

Vocal feature：duration,
time domain, frequency
domain, acoustic and
voice quality features

Lab experimental
environment

Satisfactory results, a
promising approach
for early diagnosis
and discrimination
of AD

70 (20 AD,
50 HCs)

López-de-Ipia
et al. (2013)

Voice recorder Sound
sensor

Non-
wearable,
non-
invasive

Acoustic abnormality,
semantic impairment,
syntactic impairment,
and information
impairment

Lab experimental
environment

Classification
accuracy: 81%

264 (167AD,
97 H C)

Fraser et al.
(2015)

Digital voice
recorder, tie
clip
microphone

Sound
sensor

Non-
wearable
and
wearable,
non-
invasive

Hesitation ratio, speech
tempo, articulation rate,
length and number of
silent and filled pauses,
length of utterance,
pause-per-utterance ratio

Lab experimental
environment

Classification
accuracy: 78.8%

84 (36HCs,
48 MCI)

Laszlo et al.
(2018)

Microphone,
voice activity
detection
system

Sound
sensor

Non-
wearable,
non-
invasive

Emobase, ComParE,
eGeMAPS and MRCG
functionals

Lab experimental
environment

Classification
accuracy: 78.7%

— Haider et al.
(2020)

Voice recorder Sound
sensor

Non-
wearable,
non-
invasive

Acoustical, rhythmical,
lexical, morpho-syntactic
features and readability
domains

Lab experimental
environment

Classification
accuracy: 75%

96 (48HCs,
48 impaired
subjects)

Calzà et al.
(2021)

Voice recorder Sound
sensor

Non-
wearable,
non-
invasive

Acoustic, rhythmic,
lexical and syntactic
parameters etc.

Lab experimental
environment

A promising tool to
recognize cognitive
deficits in early stage

96 (48HCs,
48 cognitively
impaired
participants)

Beltrami et al.
(2018)

Voice recorder Sound
sensor

Non-
wearable,
non-
invasive

alse starts, repeated or re-
started phrases, repeated
or extended syllables,
grunts or non-lexical
utterances and instances
of speakers correcting
their slips of the tongue
or mispronunciations

Lab experimental
environment

Hopeful approach for
automatic detection
of MCI

100 (40MCI,
60HCs)

Lopez-De-Ipina
et al. (2017)

Voice recorder Sound
sensor

Non-
wearable,
non-
invasive

Word frequency and uh/
um, unfilled pauses

Lab experimental
environment

Recognition
accuracy: 89.6%

156 (78AD,
78HCs)

Yuan et al. (2020)
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TABLE 4 List of sensor-based multi-behavior detection toward AD diagnosis.

Devices
used

Sensors Type
of
sensor

Parameter
detected

Environment Effectiveness Subjects Ref

Multi-
behavior
detection

Three smartphone
cameras, a tablet,
eye tracker,
microphone array,
health wristband,
thermal camera,
and an overview
camera

Image sensor,
touch sensor,
infrared sensor,
sound sensor,
heart rate sensor,
accelerometer,
skin electric
transducer,
thermal sensor

Non-
wearable
and
wearable,
non-
invasive

Facial gestures,
gaze and pupil
dilation, voice
quality
(breathiness,
vocal strength),
pauses, speech
rate, pen
movement and
pen pressure,
thermal emission
data, heart rate,
galvanic skin
response and
acceleration

Real clinical
environment

Good feasibility and
effectiveness to
improve the clinical
assessment of early
dementia

25 patients Jonell et al.
(2021)

Multisensory
smart bands,
Binary sensor,
RGB-D camera
(Kinect), Zenith
camera, Wireless
sensor network
(WSN) anchor or
beacons

Blood pressure
sensor
temperature
sensor,
accelerometer,
gyroscope and
magnetometer,
image sensor,
ambient sensor,
motion sensor

Non-
wearable
and
wearable,
non-
invasive

Blood pressure
and skin
temperature,
motion data,
radio signals,
ambient
information

Indoor living
environment

Good performance
in discrimination
between normal and
abnormal behavior

700 sample
trajectories

Alvarez et al.
(2017)

M2M(Machine-to-
Machine)/IoT
(Internet of
Things) platform

Sound sensor,
pressure sensor
and motion sensor

Non-
wearable,
non-
invasive

Abnormal
behavior, ambient
information

Indoor living
environment

Good adequacy of
detection and
usability in
detecting AD risk

Pseudo
patients

Ishii et al.
(2016)

IoT sensors Five room sensors Non-
wearable,
non-
invasive

Sleeping patterns,
excess active
levels and
repetitive actions

Indoor living
environment

A potential early
diagnosis of AD and
potential benefits of
IoT sensors in
studying the
behavior of elderly

20 elderly
people living
alone

Zhi et al.
(2017)

Multi-sensor-
based intelligent
home monitoring
system: camera,
bracelet, wireless
tag sensor, aura,
plug

Image sensor,
motion sensor

Non-
wearable
and
wearable,
non-
invasive

Sleep behavior
and physical
behavior of daily
living

Indoor living
environment

A necessary tool for
clinicians to
efficiently assess
participants’
abnormalities

4 subjects Lazarou et al.
(2016)

A head-mounted
eye-tracking
system, a motion
capture system

Infrared sensor,
motion sensor

Wearable,
non-
invasive

Eye movements,
hand movements,
visuomotor
feature

Lab experimental
environment

Potential
biomarkers to
predict MCI and
AD, discrimination
accuracy is
equivalent to the
existing CSF and
MRI biomarkers

96 subjects Staal et al.
(2021)

Camera, index
fingernails taped
infrared-emitting
diodes (IREDs)

Infrared sensor,
motion sensor

Non-
wearable
and
wearable,
non-
invasive

3D position hand
movement, eye
movement

Lab experimental
environment

Prolonged visually
guided movements
indicate subtle
visuomotor
impairment in AD

51 (10MCI,
17AD, 24HCs)

(Mitchell,
Rossit, Pal,
Hornberger,
Warman,
Kenning,
Williamson,
Shapland,
McIntosh)

(Continued on following page)
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these sensors’ data are recorded and analyzed for diagnosis of

dementia. In this system, sensors such as sound sensor, pressure

sensor, and motion sensor are applied to determine whether

forgetting to close a faucet or turn off the TV, wandering in the

middle of the night, going to the restroommany times, forgetting

to take a shower and taking a shower many times (Figure 5II)

(Ishii et al., 2016).

Zhi et al. studied the elderly’s behavior to predict the risk of

Alzheimer’s disease by using IoT room sensors for location

capture. Based on this, behavioral analysis models are

developed to detect the three main variables of elderly

behavior: sleeping patterns, excess active levels, and repetitive

actions. In this work, 20 elderly people living independently

participated in this 6-months-period experiment, and their

accommodations five sensors are deployed. The experimental

results show these behavior variables detected by IoT sensors are

useful in predicting the early symptoms of potential Alzheimer’s

disease (Zhi et al., 2017).

Lazarou et al. developed a multi-sensor-based intelligent

home monitoring system for the elderly with cognitive deficits

(Figure 5III). Data on sleep behavior and physical behavior of

daily living have been collected and visualized. The results

suggest that REM sleep in sleep quality is a key indicator to

assess cognitive status among the detected abnormalities

(Lazarou et al., 2016).

Apart from indoor living environments, multi-sensors have

been utilized in specific experimental tasks. For instance, Staal

et al. introduced a novel non-invasive, and time-saving method

to predict Mild Cognitive Impairment (MCI) and Alzheimer’s

Disease (AD) by detecting visuomotor network dysfunctions as

potential biomarkers. In this study, three eye tasks and five eye-

hand tasks were executed with the help of a touchscreen to

display the stimulus, a head-mounted infrared eye-tracking

system to record eye movement data, and an infrared motion

capture system to record hand movements data. The data

processed suggest that eye-hand tasks perform better in

accuracy, sensitivity, and specificity than eye tasks to classify

control, MCI, and AD. In addition, visuomotor features are

potential biomarkers to predict MCI and AD (Staal et al.,

2021). Moreover, visuomotor behavior has also been shown to

be impaired in the early stage of Alzheimer’s Disease by Hawkins

et al. by employing a touchscreen to perform four visuomotor

tasks (Figure 6II) (Hawkins and Sergio, 2014).

Mitchell et al. reported a novel research on peripheral

reaching movements in AD and MCI. In the peripheral

reaching tasks, participants are required to reach stimuli

displayed in their peripheral vision. Meanwhile, the reaching

movements data were tracked by using an infrared motion-

tracking camera, which sampled the 3D position of infrared-

emitting diodes (IREDs) taped to subjects’ fingernails (Figure 6I).

The results show that movement features observed in these

peripheral reaching tasks are not common behavior markers of

AD. However, the prolonged reaching time is possibly correlated

with visuomotor impairments and may indicate a potential risk of

AD andMCI (Mitchell, Rossit, Pal, Hornberger, Warman, Kenning,

Williamson, Shapland, McIntosh).

Kirsty et al. established a sensor-based setup to explore whether

the deficits in visuomotor integration behavior are early-stage

symptoms of cognitive impairment of autosomal dominant

familial AD (FAD). In this work, a sensor-based tablet screen

and a stylus are employed in 12 circle-tracing tasks, which

include six direct tracing tasks and six indirect tracing tasks

(Figure 6III). As a result, the analyzed data suggest that

measurement of visuomotor integration deficits could be a

promising approach to predict FAD (Kirsty et al., 2017).

Additionally, in the work of Shinkawa et al., the combination

of speech and gait behavioral data has been studied with the help

of three microphones (a throat microphone, a lavalier

microphone, and the iPad’s internal microphone) and a

motion capture system. Based on the collected multimodal

behavior data: voice and body position data, healthy control

and MCI group have been discriminated with an accuracy of

82.4%, increased by 5.9% than in single modality condition

(Shinkawa et al., 2019).

TABLE 4 (Continued) List of sensor-based multi-behavior detection toward AD diagnosis.

Devices
used

Sensors Type
of
sensor

Parameter
detected

Environment Effectiveness Subjects Ref

Tablet screen and a
stylus

Touch sensor Non-
wearable,
non-
invasive

Tracing speed
(number of
rotations) and
error rate
(number of
deviations outside
the annulus per
rotation

Lab experimental
environment

A promising
approach to
predict FAD

31 participants Kirsty et al.
(2017)

Throat and lavalier
microphones, a
motion capture
system

Sound sensor,
motion sensor

Wearable,
non-
invasive

Speech and gait
behavior

Lab experimental
environment

Discrimination
accuracy: 82.4%

34 (15 MCI,
19 HCs

Shinkawa et al.
(2019)
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3 Conclusion and future perspectives

In this review, the state-of-the-art applications of sensors

toward behavior detection in the diagnosis of Alzheimer’s disease

have been overviewed from four different perspectives: body

motion behavior detection, eye movement behavior detection,

speech behavior detection, and multi-behavior detection. The

specific examples of these applications have been tabulated in

Tables 1–4 in detail. As can be seen from the above table, the

results of the multimodal integrated test is the most accurate

method in the diagnosis of Alzheimer’s disease and is usually able

to distinguish between normal and abnormal behaviours with

good adaptability, the eye-movement behavioural tracking

approach requires an experimental environment and has high

requirements for the testing environment, but has a good future

as it can reach an accuracy of up to 97%. Lastly, physical

behavioural monitoring, with its good correlation between

experimental results and those of traditional tools and low

requirements for the diagnostic environment, is a good

diagnostic tool for Alzheimer’s disease.

At this stage, there are three main methods to detect

Alzheimer’s disease: 1. The neurologist assesses the target’s

cognitive status using a special assessment form.; 2. Through

puncture sampling to check for two typical biomarkers in the

cerebrospinal fluid such as TAU protein and beta amyloid

(Hyman et al., 2012) 3. Through magnetic resonance plus

angiography of the head to detect neurodegeneration, atrophy,

etc (Braak and Braak, 1994). All of these methods require

specialist personnel or specialist instruments, even for the

working environment, and some of the results can be

subjective to the level of expertise of the assessor, making the

development of a variety of wearable, portable, small, non-

intrusive sensing devices an urgent challenge.

For the detection of physical behaviour, the sensors can often

be worn for longer periods of time and observed for longer

periods of time, but the relationship between prolonged physical

activity and cognitive function still requires further research, as

there are relatively more factors that can affect physical activity

and more interfering factors that cannot be accurately ruled out

(Fleming et al., 2021).

Traditional screen-based eye-tracking technology usually

requires the head to be immobilised in order to obtain

information about eye movements and visual attention, which

restricts the subject’s movement and reduces the experience of

using the device. The new VR-style device is relatively more

tolerable for testing equipment, so that the subject’s movement is

no longer restricted and can better cooperate with the test (Davis,

2021).

Language impairment is present in a wide range of

neurodegenerative diseases and can be assessed by natural

language tests or by detecting speech signals in conversations

etc. The two can be cross-checked and for the extraction of

speech signals it is even possible to differentiate between

differences caused by the primary disease, ageing and

dementia, making the assessment results more accurate, but

the level of speech is influenced by the speaker’s prior or

unconscious, while environmental sounds can also influence

speech Acoustic detection (Yang et al., 2022) (Coupland,

2007) (Chen et al., 2019). For people with different cultural

and educational backgrounds, picture description tasks are not

fully applicable and can affect the accuracy of clinical

applications.

In general, non-invasive biosensors are favored in most

recent behavior detection related studies of AD diagnosis,

considering the safety and comfort factors. Besides, both

wearable and non-wearable biosensors have been extensively

applied in different research settings, respectively. Specifically,

biosensors employed in body motion detection are mainly

wearable biosensors, such as foot-mounted sensors (e.g.,

SmartWalk) and wrist-mounted sensors (wrist-mounted

accelerometer), which allow subjects to move their body at

different positions as required in an experiment, and record

their physical behavior data in real-time. Meanwhile, the

biosensors used for eye movement behavior detection include

both wearable (e.g., eye-tracking glasses) and non-wearable (e.g.,

desk-mounted eye-tracker), because in some motionless

experiment settings, to obtain more natural eye movement

behavior data non-wearable sensors are favored (Nam et al.,

2020), while some body motion required tasks or virtual

experimental environments wearable sensors are preferred

devices (Yu et al., 2020; Davis, 2021). However, when it

comes to speech behavior and multi-behavior detection, the

majority of biosensors introduced are non-wearable categories,

to reduce interference with the subjects, which may include, for

instance, desk-placed voice recorders, Kinect (depth) sensors,

smartphone cameras, and microphone, etc. (Jonell et al., 2021).

Therefore, they are mostly unobtrusively installed in the

surrounding environment.

In the future, several more prominent trends will emerge in

the use of behavior detection sensors in AD diagnostics. Firstly,

more sensor-based behavior detection experiments will be

integrated into the Internet of Things (IoT) platform.

Significant advances in IoT technology have been achieved in

medical detection, and it will be more widely used in behavior

detection due to its great advantages (Javdani and Kashanian,

2017). IoT systems can generate and transmit signals to

professionals, which allows them to gather behavior data in

real-time and to continuously monitor and assess patients’

behavior remotely 24/7. Based on this technology, AD

patients, especially those elderly patients living alone can be

monitored continuously, their abnormal behavior can also be

detected at any time. In this way, it provides a possibility to detect

potential risks of disease among them at an early stage.

Secondly, multi-behavior sensing technology will be favored

in various detection and monitoring experiment. Compare to the

single modality approach, multimodal sensing has higher
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accuracy in AD assessment (Shinkawa et al., 2019). In the future,

the development trend of behavior detection in AD diagnosis is

to sense large-scale multimodal information based on dense-

sensing system and sensor fusion technology (Gravina et al.,

2016) and capture various digital markers from physiological

signals, environmental information, and body motion data

simultaneously. By collecting and analyzing such

comprehensive data, behavior detection is a more promising

method in AD diagnosis at an early stage.

Finally, Virtual Environments (VEs) and Virtual Reality

(VR) technology will gain more popularity in medical

diagnosis and rehabilitation therapies owing to the advance in

state-of-the-art technology in computer and communication

science (Konstantinidis et al., 2017). As a result, based on

immersive technology and Human-Computer Interaction

(HCI), novel Alzheimer’s screening tests in virtual

environments has been introduced and is drawing more

attention to AD diagnosis (Montenegro and Argyriou, 2016).

This is because VR technology makes it possible to provide an

alternative solution to the traditional cognitive testing approach

in AD, due to its safe, immersive experimental scenarios and the

possibility of manipulating reality (Montenegro et al., 2020). Up

to now, the virtual environment applied in AD assessment is

mainly classified into two categories: full-immersive (Yu et al.,

2020) and semi-immersive (Davis, 2021). Among them, the most

commonly used sensor-based device is head-mounted VR, which

can be embedded in an eye-tracking module to detect eye

movement and connected with a Kinect (depth) sensor to

detect body motion behavior. In the future, more multi-

sensors will be added to it to capture a greater variety of

behavioral signals, such as sound and physiological

information, etc.
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