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Abstract
There has been an exponential rise in diabetes mellitus (DM) cases on a global scale. Diabetes affects almost
every system of the body, and the nervous system is no exception. Although the brain is dependent on
glucose, providing it with the energy required for optimal functionality, glucose also plays a key role in the
regulation of oxidative stress, cell death, among others, which furthermore contribute to the
pathophysiology of neurological disorders. The variety of biochemical processes engaged in this process is
only matched by the multitude of clinical consequences resulting from it. The wide-ranging effects on the
central and peripheral nervous system include, but are not limited to axonopathies, neurodegenerative
diseases, neurovascular diseases, and general cognitive impairment.

All language search was conducted on MEDLINE, COCHRANE, EMBASE, and GOOGLE SCHOLAR till
September 2021. The following search strings and Medical Subject Headings (MeSH terms) were used:
“Diabetes Mellitus,” “CNS,” “Diabetic Neuropathy,” and “Insulin.” We explored the literature on diabetic
neuropathy, covering its epidemiology, pathophysiology with the respective molecular pathways, clinical
consequences with a special focus on the central nervous system and finally, measures to prevent and treat
neuronal changes.

Diabetes is slowly becoming an epidemic, rapidly increasing the clinical burden on account of its wide-
ranging complications. This review focuses on the neuronal changes occurring in diabetes such as the impact
of hyperglycemia on brain function and structure, its association with various neurological disorders, and a
few diabetes-induced peripheral neuropathic changes. It is an attempt to summarize the relevant literature
about neuronal consequences of DM as treatment options available today are mostly focused on achieving
better glycemic control; further research on novel treatment options to prevent or delay the progression of
neuronal changes is still needed. 

Categories: Endocrinology/Diabetes/Metabolism, Internal Medicine, Neurology
Keywords: blood glucose control, diabetic neuropathy, cognition, diabetes complications, nervous system, “diabetes
mellitus”

Introduction And Background
Diabetes mellitus (DM) is a metabolic disease characterized by inadequate control of blood glucose levels,
mainly a chronic state of hyperglycemia, as well as frequent episodes of hypoglycemia, due to different
pathogenic processes, which determine the classification of this disease largely as type 1 and type 2, but
there are other specific types attributable to endocrinopathies, drugs, infections, immunologic, genetic, and
pancreatic causes. These metabolic dysregulations can lead to multiple complications affecting the heart,
kidneys, blood vessels, eyes, and nervous system impacting the quality of life and being the main reason for
mortality [1-5].

The brain comprises 2% of our total body weight, consumes 25% of oxygen and around 20% of the body's
glucose levels which are regulated primarily by the integration of the hypothalamus with multiple hormones
that modulate food intake, energy expenditure, insulin secretion, hepatic glucose production, and
glucose/fatty acid metabolism in adipose tissue and skeletal muscle [6-9]. Although the brain is dependent
on glucose for providing it with the energy required for optimal functionality from cellular maintenance to
neurotransmitter generation. Glucose plays a key role in the regulation of oxidative stress, cell death, and
pathways whose mechanisms are implicated in disrupted hypothalamic circuits and sensing of glucose and
insulin, which furthermore contribute to the pathophysiology of neurological disorders [10-13]. Therefore,
glucose regulation is critical.
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Nervous system complications of DM include axonopathies, neurodegenerative diseases, neurovascular
diseases, and general cognitive impairment. Not to mention that almost all patients with DM have multiple
vascular, metabolic, and other comorbidities that together with uncontrolled glucose levels accelerate
neurological complications [14]. Although these effects are well known, the cellular mechanisms, such as
increased advanced glycation end (AGE) products, enhanced polyol pathway, neuromodulatory,
neurotrophic, microvascular are among other molecular changes which have not been fully understood [15-
16].

In this review, we present how the nervous system can be modified by the consequences of DM from
molecular to anatomical changes through the central nervous system (CNS), peripheral nervous system
(PNS), and autonomic nervous system (ANS) and what clinical effects these changes could have along with
short- and long-term complications, risk factors, and a way to prevent or treat it in addition to maintaining
normal glucose levels. Our goal is to summarize how uncontrolled glucose levels can be detrimental to the
brain anatomically and physiologically and what consequences they may present along with how best to
prevent and treat them and hopefully open the door to further research.

Review
Epidemiology and risk factors
Diabetes mellitus is highly prevalent globally and has caused a significant number of deaths among the
population [17]. There has been an exponential rise in DM cases from 108 million to 422 million cases on a
global scale [18]. Greater than 8.5% of adults are suffering from diabetes globally causing more than 1.5
million deaths annually [19]. The highest burden of DM is in developing countries especially due to their
diets and sedentary lifestyles [20]. Studies have indicated a strong positive correlation between obesity and
DM at a global level and most obese individuals develop diabetes [21]. The factors attributable to DM are
usually determined by the type of diabetes that the individual is suffering from [22]. Type 1 DM has a strong
genetic predisposition and the genes implicated are transmitted down the family line [23]. It is usually
characterized by a reduced secretion of insulin eventually resulting in impaired glycemic control [24].
Additionally, type 2 DM is usually shaped by the individuals' lifestyle and diet. Individuals who live a
sedentary lifestyle end up becoming obese and eventually develop DM [25]. Understanding such factors and
screening the individuals at risk for prediabetic states help prevent the development and progression of
diabetes globally [26].

The pathological effects of deranged glucose metabolism are evident in virtually all systems of the body.
Without exception, there are significant changes in neuronal bodies [27]. However, not all individuals who
have DM tend to develop complications. For instance, diabetic nephropathy tends to develop in individuals
with no intervention or management [28]. Thus, poor diabetic control results in glucotoxicity that
eventually leads to multiple organ systems complications seen in patients [29]. Therefore, the development
of complications is determined by the control of serum glucose levels so those with poorly controlled
diabetes are usually at a higher risk [30]. Moreover, age, height, obesity, diastolic blood pressure, smoking
status, chronic kidney disease, vascular disease, low HDL cholesterol level, high triglyceride, and
glycosylated hemoglobin (HbA1c) levels are associated with a higher risk of neurologic complications in
patients with DM especially polyneuropathy [31-34]. Understanding the key factors in pathogenesis allows
one to intervene easily and reduce the risk of developing the disease.

Molecular factors damaging neurons
Oxidative stress is a known cause for neuronal changes due to hyperglycemia. Several other molecular
factors in major biochemical pathways also have a role to play. Some pathways include the polyol pathway,
advanced glycation end (AGE) products pathway, protein kinase C signaling, poly adenosine phosphate
ribose polymerase (PARP) pathway, hexosamine pathway, mitogen-activated protein kinase (MAPK)
pathway, nuclear factor-κB (NF-kB) signaling, cyclooxygenase pathway, and the role of tumor necrosis
factor-α (TNF-α). The roles of the few above-mentioned biochemical pathways in neuronal changes are
discussed below [35].

Polyol Pathway
Aldose reductase (AR) and sorbitol dehydrogenase play a major role in the metabolism of glucose through
the polyol pathway. AR generally has a lower affinity for glucose. In DM, a hyperglycemic state causes excess
glucose to metabolize through the polyol pathway. The first step in the pathway is the reduction of glucose
to sorbitol by aldose reductase with the help of nicotinamide adenine dinucleotide phosphate (NADPH)
followed by oxidation of sorbitol to fructose by sorbitol dehydrogenase using nicotinamide adenine
dinucleotide (NAD)+ [36]. The reduction process leads to an increased sorbitol concentration and depletion
of NADPH stores [37]. NADPH is required to produce reduced glutathione (GSH). As the levels of NADPH are
depleted there is a downregulation of GSH leading to endothelial cell damage with subsequent loss of nitric
oxide-mediated vasodilation impacting negatively the nerve vasculature.

An experiment conducted in transgenic mice with a gain of function mutation in AR activity showed that
with increased levels of AR there is a decrease in GSH levels leading to depletion of NADPH which leads to
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oxidative stress hence correlating with polyol pathway [38]. An increase in sorbitol concentration leads to
osmotic stress and efflux of electrolytes in the Schwann cells of peripheral neurons leading to the
schwannopathy-related phenotype of diabetic peripheral neuropathy (DPN) [38-39]. The other effects of an
increase in intracellular concentration of sorbitol and fructose result in the decrease of myo-inositol and
taurine concentration, increase in intracellular Na+, inactivation of Na+/K+ adenosine triphosphatase pump,
swelling of axon, axon-glia dysfunction, and reduction of nerve conduction velocity [40]. Nervous tissue
differs from other tissues in that it is scarce in the activity of sorbitol dehydrogenase, hence excessive
accumulation of sorbitol cannot be managed in this specific tissue leading to the detrimental effects
described. This is also the mechanism that explains why specific tissues such as retina or renal tissue are
highly impacted by hyperglycemia. The transgenic mouse model showed a delay in motor nerve conduction
velocity and nerve fiber atrophy due to polyol accumulation in tissue independent of hyperglycemia [41].
Peripheral nerves with overexpressed AR in Schwann cells showed a greater reduction in motor nerve
conduction velocity in transgenic mice with diabetes [42].

Hexosamine Pathway
Due to hyperglycemia, there is an increased concentration of fructose-6-phosphate which proceeds to the
hexosamine pathway where it is converted into glucosamine-6-phosphate followed by the production of
uridine diphosphate N-acetyl glucosamine (UDPGlcNAc) by glucosamine-6-phosphate amidotransferase. N-
acetyl glucosamine (GlcNAc) induces oxidative stress leading to pancreatic beta (β)-cell functional deficit.
Overexpression of glutamine fructose-6 phosphate aminotransferase results in inhibition of glucose
transporter 2 (GLUT2), insulin leading to hyperglycemia, and increased hydrogen peroxide levels leading to
oxidative stress affecting the neuronal environment [43]. Sp1 controls the gene expression of plasminogen
activator inhibitor-1 (PAI-1) and transforming growth factor β 1 (TGF-β 1) [44]. Hyperglycemia increases
GlcNAc and activation of gene transcription factor Sp1 [45]. Up-regulation of PAI-1 increases vascular
smooth muscle cell division which is responsible for atherosclerosis [46].

Advanced Glycation End-Products Pathway
The AGE products are formed by the non-enzymatic reaction of glucose, aldehydes, and other saccharides
with nucleotides, proteins, and lipids. Increased concentrations of fructose-lysine and AGE have been found
in peripheral nerves of streptozotocin-diabetic rats [47]. N(epsilon)-[carboxymethyl]-lysine an advanced
glycation end product is found in increasing concentrations in the sciatic nerves of diabetic rats in contrast
to their controls [48]. Schwann cells of peripheral nerves showed the existence of advanced glycation end
product receptors (RAGE) and an increase in their concentration in diabetic neuropathy [49]. Advanced
glycation end products may cause inflammation and apoptosis through their interaction with RAGE and it
also up-regulates NF-κB [50]. RAGE increases the expression of the p65 subunit of NF-κB in diabetic
neuropathy [51]. AGE products from glyceraldehyde and glycolaldehyde can cause irreversible death of
Schwann cells, decrease in cell replication and viability, up-regulation of NF-κB, mitochondrial membrane
potential decrease, and increase in inflammatory cytokines like TNF-α and interleukin-1 β in diabetic
rats [52]. The over-activation of NF-κB and its impact on the neuronal function or environment has been
explained briefly below.

Oxidative Stress
Oxidative stress occurs whenever there is an imbalance between the free radical scavengers and free radical
species (reactive nitrogen, oxygen species) and plays a key role in diabetic neuropathy [53]. Lipids of
myelinated structures of nerves may be damaged by reactive free radical species leading to damage of the
microvasculature environment of the nervous system [54]. Neuropathic pain occurs as a result of oxidative
stress on peripheral nerves leading to hyper-excitability in central neurons and afferent nociceptors causing
spontaneous impulses in axon and dorsal nerve ganglia [55]. Nitrosative stress has a key role in diabetic-
induced neuropathy [56]. The disparity between GSSG/GSH ratio leads to an increase in lipid peroxidation,
decrease in the following enzymes which play a key role in antioxidant cell response such as superoxide
dismutase level, ascorbate, and catalase generate oxidative stress in the peripheral nerves [57-58]. Moreover,
diabetes-induced oxidative stress can disturb the mitochondrial membrane potential leading to its swelling
and permeability [59-60]. 

A study in diabetic rats reported that B cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is downregulated
in dorsal root ganglia leading to disruption of membrane potential in mitochondria and transfer of
cytochrome c from the mitochondria to the cytoplasm causing apoptosis through the caspase-3 pathway.
Bcl-2 associated X (Bax or Bcl-xL) expression remained the same in diabetic neuropathy. Dynamin-related
protein 1 moves from cytosol to mitochondria starting fission and leading to mitoptosis and apoptosis [61].
Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) plays a vital role in
mitochondrial activity which seems to be downregulated in dorsal root ganglia of diabetic animals. Insulin
deficiency along with reactive oxygen species may decrease mitochondrial function in diabetes [62].

Protein Kinase C Pathway
Protein kinase C is a family of serine/threonine-related protein kinases. They affect signal transduction
pathways involved with cell differentiation, cell proliferation, and apoptosis. Diacylglycerol, calcium, and
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phosphatidylserine are required for activation of conventional isoforms (α, β I, β II, and γ) whereas novel
isoforms (η, δ, θ and ε) require diacylglycerol for activation and atypical isoforms (ι/λ, M ζ) require neither
diacylglycerol nor calcium [63]. Each of the above-mentioned isoforms shows a different activity,
distribution, and expression in diabetes. Protein kinase C isoforms α, β I, β II, γ, ε, and δ are detected in
nerves when an immunochemical analysis is done [64]. Aldose reductase overexpressing diabetic transgenic
mice reported activation of protein kinase c -II β isoform. This protein kinase C upregulates TGF- β 1,
vascular endothelial growth factor (VEGF), PAI-1, and NF-κB leading to a variety of diabetic
complications [65]. Protein kinase C inhibitor induced normalization of sciatic nerve blood flow and nerve
conduction velocity in diabetic neuropathy [66]. Insulin resistance is observed in several studies involving
upregulation of protein kinase C in diabetic subjects [67].

Poly Adenosine Phosphate Ribose Polymerase Pathway
Normally, the PARP plays a role in deoxyribonucleic Acid (DNA) repairing and apoptosis. In diabetes
subjects, it is observed that overexpression of PARP may cause tissue damage [68]. It has been previously
observed that hyperglycemia caused by diabetes leads to the generation of reactive free radicals followed by
single-strand DNA breaks and activation of PARP, but more recent studies show that both single-strand DNA
breakage and oxidative-nitrosative stress are not required for the activation of PARP rather it occurs due to
phosphorylation by extracellular regulated kinase (ERK) [69-70]. Hyperglycemia and nonesterified fatty acids
may activate PARP leading to damage of neurilemma through oxidative stress and retinal pericytes [71-72].

Mitogen-Activated Protein Kinase Pathway
The MAPKs relay signal transduction in response to a variety of stimuli. c-Jun N-terminal kinase (JNK),
extracellular signal-related kinase (ERK), and p38 are the three families of protein kinases in MAPKs [73]. An
ERK 1/2 regulates neural survival. Also, it may be involved in the development of neuropathic pain. JNK and
p38 are involved in neural apoptosis [74-76]. Spinal ganglia neurons of streptozotocin-diabetic rats showed
an increase in levels of p38, JNK, and ERK [77]. Sural nerves of type 1 and type 2 diabetic patients showed
up-regulation of JNK and p38 [78]. Diabetic rats showed improved regeneration in dorsal root ganglia (DRG)
neurons on inhibiting persistently activated JNK and p38 activation in DRG of streptozotocin-induced
diabetic rats [79-80].

Nuclear Factor-kB Pathway
Nuclear factor-kB (NF-kB) is a transcriptional factor that mediates inflammatory, immune responses, and
apoptosis. Inflammatory stimuli activate NF-kB. Dorsal root ganglia, sciatic and sural nerves in diabetic
transgenic mice showed increased NF-kB activity compared to normal control mice. Also, endoneurium,
epineural vessels, and perineurium in sural nerve biopsies of subjects with diabetes reported activated NF-
kB [81-82]. A study conducted on isolated Schwann cells concerning high glucose and low glucose media
reported up-regulation of NF-kB in the hyperglycemic medium [83]. The p65 subunit of NF-kB is observed to
be overexpressed in the case of acute and chronic inflammatory demyelinating polyneuropathies which
indicates that NF-kB plays an important role in inflammatory demyelination [84].

Tumor Necrosis Factor-α
Tumor necrosis factor-α (TNF-α) plays an important role in the regulation of immune cells. It is up-
regulated by different mediators such as lymphocytes (CD4+), activated macrophages, eosinophils, and
natural killer (NK) cells. An experiment conducted to detect TNF-α involvement in diabetic neuropathy
reported diabetic TNF-α (-/-) mice were protected from sensory nerve conduction velocity and motor nerve
conduction velocity compared to control mice. Diabetic patients with increased TNF-α, inducible nitric
oxide synthase levels have more probability to develop diabetic neuropathy [85-87]. In a study, an increase of
TNF-α and monocyte chemoattractant protein-1 (MCP-1) secretion, as well as their messenger ribonucleic
acid (mRNA) expression, is observed in rat microglia when treated with higher levels of glucose [88-89].

Cyclo-Oxygenase Pathway
Cyclo-oxygenase (COX) enzymes are an important part of prostaglandin synthesis and arachidonic acid
metabolism. They are of two forms namely, cyclo-oxygenase 1 (COX-1) maintains cellular homeostasis and
cyclo-oxygenase 2 (COX-2), upregulated by oxidative stress, protein kinase C activation, inflammatory
cytokines, tumor promoters, and growth factors [90-91]. Increased COX-2 expression in the neurons of
streptozotocin-induced diabetic rats has been reported. An immunity towards diabetes-induced nerve
conduction deficit and decreased blood flow around myelin sheath have been reported in COX-deficient
mice when compared to wild-type COX-2 (+/+) diabetic mice. This concludes that COX-2 has an important
role in nerve functioning [92-93].

Other molecules and their pathways that play a prominent role include the nerve growth factor [94],
lipoxygenase pathway [95-96], autophagy [97-99], wingless/integrated (Wnt) pathway [100-101], hedgehog
pathway [102], and interleukins [103-105].

Central nervous system changes in diabetes
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The changes seen in the brain are mainly attributed to chronic hyperglycemia and are referred to as diabetic
encephalopathy [106-107]. The alteration in brain structure and function is a major concern because it has
an impact on the overall quality of life. 

Brain function and structure can be affected by both acute and chronic disturbances in the vascular
systems [106-108]. Hyperglycemia causes both macrovascular and microvascular complications.
Cerebrovascular disease is a macrovascular complication with atherosclerosis being the main underlying
cause. Hyperglycemia leads to endothelial damage through increased oxidative stress and cytokine and
immune response (increased CRP, IL-6, IL-17). This leads to the formation of a thrombus that enters small
vessels of the brain causing cerebral infarction [108]. This can lead to vascular cognitive impairment. Recent
studies have shown plasma Kallikrein interferes with normal clotting processes in the brain following blood
vessel injury due to diabetes thus causing intracerebral hemorrhage [109-110].

Several cellular processes like growth, metabolism, and differentiation need insulin/insulin-like growth
factor 1 mediated activation. Insulin also plays a role in neurotransmission, synaptic plasticity and various
cognitive processes, apoptosis, and antioxidant defense. Therefore, any defect in the pathways of insulin
signaling can result in altered brain function [107]. T1DM causes insulin deficiency with effects on the
expression of neurotrophic factors, neurotransmission, loss of functional integrity, and defects in brain
connectivity. T2DM causes cognitive decline and dementia due to decreased insulin sensitivity [111-112].
Long-term diabetes has been shown to cause a decrease in insulin-like growth factors and their receptors
leading to apoptosis of neurons [113-114].

The neurocognitive changes seen in diabetic patients have been associated with changes in the white and
gray matter volume. These changes are particularly seen in those with long-standing hyperglycemia, early-
onset disease, or recurrent episodes of severe hyperglycemia. Studies have shown a decreased volume of
gray matter in the thalamus, temporal lobes, parahippocampal gyrus, insular cortex, and angular gyrus.
These regions are associated with memory, attention, and language processing [14, 113]. These patients
were shown to have high levels of HbA1C as well. Some structures like the cerebellum and occipital gyrus
showed increased gray matter density possibly to compensate for the early retinal changes seen in diabetic
patients [113, 115].

Diabetes mellitus impairs hippocampus-dependent memory through changes in hippocampal
neuroplasticity. This impairs the brain’s ability to adapt and reorganize important behavioral and emotional
functions [113, 116]. The hippocampus is the first region of the brain to be affected due to any kind of stress,
whether it be in response to any diet, environmental factors, endocrine changes, or metabolic changes.
Neuronal loss in the hippocampus is related to oxidative stress. Within the hippocampus, the most affected
areas are the dentate gyrus and cornu ammunis (CA3). There is reduced dendritic spine density, synaptic
proteins, and also an increase in the apoptotic markers as a result of DM. It also affects hippocampal
neurogenesis (generation of new neuronal cells). Imaging shows a decreased volume of the hippocampus
and electrophysiological studies reveal a reduction in long-term potentiation. This causes a decline in
learning, memory, and affective expression [112, 114].

On the other hand, cognitive decline and dementia seen in diabetes are also attributed to white matter
disease. Patients with T2DM are more prone to dementia than T1DM due to associated metabolic risk factors
like hypertension, obesity, and hyperlipidemia [107, 117]. The white matter disease appears as
hyperintensities on MRI and is due to microvascular changes in the cerebral vessels. These white matter
hyperintensities were found to be larger in patients with T2DM, HbA1C >7%, and in those presenting with
pre-diabetes [118]. They also cause lacunar infarcts and a decrease in white matter volume due to brain
atrophy. Imagining studies have shown that DM alters the connectivity and function of white matter tracts
as well. Both prediabetes and T2DM have shown a decrease in the number of white matter connections.
These changes lead to poor performance in memory, attention, and executive functions [118-120]. As
patients with pre-diabetes already present changes, it is important to intervene and prevent complications. 

Alzheimer’s disease (AD) due to DM is known as type 3 DM according to recent studies [116]. It has been
shown that people with DM have a 65% higher chance of developing AD [121]. The cause of this is insulin
resistance, imbalance in insulin growth factors, and damage to blood vessels. The accumulation of AGE
products has also been implicated in the development of AD. Mitochondrial dysfunction is characterized by
disruption of the electron transport chain, oxidative phosphorylation, and axonal transport which leads to
synaptic dysfunction and also contributes to dementia. High levels of serum glucose have also been linked to
higher beta-amyloid blocking nerve signals. Studies have shown increased beta-amyloid and neurofibrillary
tangles in a diabetic brain. The brain here has a decreased ability to use and metabolize glucose [122]. It has
been found that a decline in glucose processing leads to cognitive impairment, word-finding difficulty, and
behavioral changes [116]. Decreased glutamate levels and N acetyl aspartate which causes loss of neuronal
integrity and gliosis were also found in the brain of AD [123]. Positron emission tomography (PET) scans in
AD patients demonstrated a reduction in glucose metabolism in the parietal and frontal lobes [124].

The effects on the motor system are less compared to the sensory system in DM. The motor cortex carries
information of the motor commands to the brainstem nuclei and spinal motor neurons to bring a voluntary
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movement. Patients with long-term DM show a decrease in excitability of the motor cortex. Morphological
changes of the dendritic length in the corticospinal tract and spine density have also been observed. These
changes lead to decreased function of the corticospinal tract in DM due to a decrease in conduction
velocities [112]. 

Effects on central nervous system, peripheral nervous system, and
autonomic nervous system
Studies have recently shown that DM causes critical functional impairments notably from CNS
complications [125]. Vascular and metabolic consequences of DM are significant contributors affecting the
CNS and further research should conjecture the mechanism behind the CNS complications that validate
these effects. Several studies have conveyed that DM is a nonpartisan risk factor for cognitive
impairment [126].

The risk of cognitive impairment and microstructural alterations in white matter tracts is very high with
persistently elevated blood glucose level. In adults with T2DM, cognitive dysfunction is defined as poor
attention implicating work, executive function, mental processing, and recalling memory. In contrast,
performances of less demanding tasks such as immediate memory and simple reaction time are not
significantly altered. Additionally, lower scores on intelligence, academic accomplishments, attention,
mental processing, and executive functions are observed in diabetic children and adults of T1DM. However,
the mechanism behind cognitive dysfunction in T1DM is not fully understood [127]. The prevalence of both
T2DM and dementia increases with age. T2DM is a significant influencing factor for dementia, especially
those related to AD and there is ample evidence to support that hypothesis [128]. A recent meta-analysis
revealed that T2DM has the most considerable effects on information processing speed, planning, mental
efficiency, and verbal learning [129]. Brain atrophy has been illustrated in cognitively dysfunctional T2DM
patients in the hippocampus and various cortical areas. High fasting blood glucose and HbA1c is associated
with lower score on the Mini-Mental State Examination [130]. This report conveys the utmost importance of
proper glycemic control. Epidemiological studies demonstrated that correcting metabolic factors might
lessen the rate of cognitive decline and implementation of behavioral strategies is needed to increase
adherence to medical regimens. Compared to the general population, a high prevalence of DM is observed
in patients with involuntary movement disorders including Huntington's disease (HD), tardive dyskinesia,
tremor, Parkinson's disease, and neuroleptic-induced Parkinsonism [131-133]. A research study stated that
people with Parkinson's disease alone have a lower prevalence of insulin resistance than people with
Parkinson’s disease with dementia [134]. Patients with HD are seven times more likely to have diabetes than
the proband's non-HD relatives [135]. Amyotrophic lateral sclerosis linked copper/zinc-superoxide
dismutase mutation patients have high free fatty acid levels. This is considered a significant determinant of
insulin resistance predisposing neural cells to excitotoxicity.

Diabetes is responsible for 7% of deaths caused by stroke and is an established risk factor for thrombotic
brain infractions of all ages [136]. The high blood glucose level at the event of cerebral ischemia exacerbates
neurologic injury and even mild hyperglycemia heightens further neurologic injury and late salvage [137].
Two other lethal hyperglycemic catastrophes that transpire as acute complexities of T1DM and T2DM are
conceivably diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS), mostly affecting the
CNS [138]. Disseminated intravascular coagulation and a prothrombotic state are believed to be substantial
pathophysiologic contributors in DKA patients with CNS complications [139]. DKA and HHS are most likely
to develop in the outpatient setting prompting hospital admission, whereas hypoglycemia is a frequent
complication of glucose-lowering therapy in outpatient and inpatient. The presence of DKA, HHS, and
hypoglycemia all require identifying the precipitating cause, tailoring glycemic goals, and individualizing
glucose-lowering treatments according to age to prevent these potentially life-threatening diabetic
complications from recurring.

Distal symmetrical sensory polyneuropathy is the most common entity of diabetic peripheral neuropathy
(DPN). DPN only manifests if hyperglycemia has been present for a long-time duration. This is a length-
dependent sensory-predominant process that most often rises insidiously and advances gradually.
Numbness, paresthesia, or both starts in the feet and progressively ascends and dysesthetic pain is an
uncommon presentation in some cases. Physical exam reveals large fiber (joint position sense, vibration
sense) and small fiber (pain, temperature) sensory deficits in the feet, ankles, and hands in advanced cases.
Ankle and knee reflexes might be sluggish or absent in more critical patients. Muscle atrophy and weakness
are the motor symptoms, but are not present as commonly as sensory symptoms. Moreover, intrinsic muscle
atrophy is mostly seen in the feet. Weakness is frequently displayed on dorsiflexion and plantarflexion of the
foot with a history of balance difficulties, nighttime falls, and antalgic gait. The instability experienced by
these neuropathic patients can show poor display on the tandem gait, Romberg test or one-foot stand [140].
Moreover, these people are vulnerable to infection, ulceration, burn, gangrene, Charcot foot, and foot drop
due to severe peripheral nerve involvement [141]. On the other hand, vasculopathy and higher susceptibility
to compressive injury both contribute to diabetic mononeuropathies. Mononeuropathies can involve cranial
nerves, nerve roots, or peripheral nerves. Peripheral mononeuropathies can occur in the arms and legs and
acute diabetic femoral mononeuropathy is an archetypal diabetic mononeuropathy. Carpal tunnel syndrome
can cause severe, intractable pain, debilitating hand weakness and is documented in over 30% of the
diabetic population [142]. Other neuropathies include cubital tunnel syndrome and peroneal neuropathy at
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the fibular head. Findings such as Dupuytren’s contracture, palmar flexor tenosynovitis, and limited joint
mobility are often recognized in the hands of DM patients and may add to mononeuropathy of the
wrist [143]. Diabetes can also selectively damage a group of nerves in a specific region.

Chronic inflammatory demyelinating polyneuropathy (CIDP) is remarkably similar to radiculoplexus
neuropathies except that radiculoplexus neuropathies are painful, whereas the former is painless. Any solid
evidence that CIDP is comparatively more prevalent in the diabetic population is currently lacking. The
radiculoplexus neuropathies of DM can be divided into three types: diabetic cervical radiculoplexus
neuropathy (DCRPN), diabetic thoracic radicular neuropathy (DTRN), and diabetic lumbosacral
radiculoplexus neuropathy (DLRPN) [144]. DLRPN (also known as diabetic amyotrophy) is known as the most
prevalent type. DLRPN is commonly unilateral, asymmetric, and has a sudden onset that involves the
proximal segments that quickly spread to involve the unaffected segments and the contralateral side. The
most common is aching pain in the hip, buttock, thigh, leg, or foot. Although pain is the most prominent
initial symptom, weakness soon follows the pain. The weakness becomes so severe that many patients start
using wheelchairs at some point during their illness. Conversely, patients with DLRPN often have a better
prognosis than those with diabetic sensorimotor polyneuropathy [145]. Patients who develop DCRPN
acknowledge excruciating neuropathic pain, numbness, and paresthesia in the chest or abdomen followed
by weakness, numbness, and atrophy in one arm [146]. It is generally considered that cranial neuropathies
are higher in patients with DM when compared with the nondiabetic population and isolated thoracic
radiculopathy may be confused with the prodrome of herpes zoster [147]. Patients with DM can advance to
cranial neuropathy that affects the third, fourth, sixth, or seventh cranial nerve, the oculomotor nerve being
the commonly affected one. Patients have unilateral ptosis, difficulty in elevation, depression, and
adduction with the pupillary disturbances including the pupillomotor function damage such as the reduced
diameter of the dark-adapted pupil and the Argyll-Robertson pupil. Seventh nerve palsy is another deficit
with abnormal impaired glucose tolerance (IGT) test being observed in 6%-66% of cases [148]. A good
number of patients who undertake quick glycemic control experience a treatment-induced sensory
neuropathy (also known as insulin neuritis) which is acute and painful [149]. Patients primarily report distal
sensory problems in the lower extremity.

Diabetic autonomic neuropathy (DAN) is a broader entity affecting all organs and systems in the body and
presents a diverse clinical scenario. Its derivation is from endocrine factors, but it directly affects the
nervous system, whose symptoms incorporate many differential diagnoses that acquaints the entire internal
medicine. Clinical or laboratory characteristics of DAN are not often present when the diagnosis of DM is
made because the symptoms of DAN increase with age in addition to the duration and severity of peripheral
neuropathy. Subclinical autonomic dysfunction can arise within one year of diagnosis in T2DM patients and
within two years in T1DM patients [150]. The prevalence of autonomic impairment is up to 54% in T1DM
and 73% in T2DM patients [151]. Cardiovascular autonomic neuropathy (CAN) is the most explored and
clinically crucial form of DAN with a high mortality rate. The prevalence varies from 2.5% to 50%, depending
on the age period of diabetes and diagnostic criteria [152]. There is a composite association between diabetic
autonomic neuropathy and hypoglycemia unawareness. A vicious cycle of hypoglycemia unawareness
induces a further decline in counterregulatory hormone responses to hypoglycemia by autonomic
disruption. This event occurs commonly in persons with diabetes who are in rigorous glycemic control. The
malfunctioning responses can be somewhat restored by comprehensively avoiding hypoglycemia in
extensively treated patients with short- and long-period diabetes [153].

The up-to-date evidence implies a range of alterable functional defects in gastrointestinal neuropathy [154].
Any section of the gastrointestinal tract could be affected with the most prevalent type being esophageal
enteropathy, fecal incontinence, gastroparesis, diarrhea, and constipation. Moreover, acute onset
hyperglycemia decelerates gastric emptying. Diabetic erectile dysfunction in men has a prevalence varying
from 20% to >70% depending on various means [155]. According to studies, the prevalence of hypogonadism
in men with T2DM varies from 20% to 60% [156]. On the contrary, female sexual dysfunction (FSD) is
commonly seen in patients with T1DM [157]. Women with FSD reported a loss of libido, vaginitis, problems
with orgasm, pain, decreased lubrication, and arousal. The urinary bladder is another organ affected that
demonstrates dysuria, frequency, urgency, incomplete bladder emptying, nocturia, stress incontinence, and
recurrent cystitis. Furthermore, there is a strong link between diabetic cystopathy and peripheral
neuropathy [157]. An exclusion must be made because urological disorders such as benign prostatic
hyperplasia in men and gynecological diseases in women share similar symptoms with diabetic cystopathy.
Sudomotor autonomic neuropathy may result in hypo- or anhidrosis, mainly causing dryness of the foot skin
that helps to form fissures, infection, and ulceration. Proper balanced glycemic control remains the
foundation stone of the prevention, progression, and hindrance of DAN. In nearly all cases, symptomatic
drugs such as non-steroidal anti-inflammatory drugs (NSAIDs) are the treatment of choice, although an
efficient, wide-ranging pathogenetic treatment of neural decline remains to be established.

Measures to prevent and treat neuronal changes in diabetes
Considering all the above-mentioned manifestations, it is important to screen patients with DM for
neurologic complications, to prevent, and to treat them. To prevent neurological alterations, the goal is
strict control of serum glucose levels. There is a difference between T1DM and T2DM; in the former, there
are details that improved glycemic index to prevent the development of neuronal alterations at an early
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stage of the disease, in contrast, there is not much evidence that this can be of benefit in T2DM [158].

A better understanding of DM and its pathophysiology are critical for patient management and prevention
of further complications, which leads to better treatment adherence [159-160]. Providing education on
exercise and dietary management improves glycemic levels. For meal planning, switching to a low
carbohydrate diet, low-fat products, and a high fiber diet could control glucose levels. Therefore, this would
slow down the progression of the disease. Some studies show that eating patterns such as the Mediterranean
diet could affect glycemic levels and cardiovascular outcomes [161-162]. The ketogenic diet (KD) and caloric
restriction (CR) also play a role in oxidative stress, autophagy, and signaling pathways leading to an
increased insulin level, fat oxidation, decreasing adipose tissue, reducing inflammation, and improving
different molecular pathways [163]. Both diets have proven benefits in epilepsy, AD, cancer, autism
spectrum disorder, metabolic syndrome, vascular diseases, and other neurodegenerative disorders such as
HD and PD. The KD provides ketone bodies as a brain energy source instead of glucose, stabilizing synapses
and improving brain energy reserve which leads to a neuronal function enhancement. The CR also decreases
glucose sensitivity, but without producing ketone bodies [163-164]. The KD should be recommended with
caution, more evidence is needed to support this type of therapy, there is a concern in patients with T1DM
because of the lipid profile provided by the diet, as well as in patients with T2DM with increased
cardiovascular risk, therefore, each diet should be tailored for each patient [165].

Along with glycemic control, certain risk factors, such as elevated low-density lipoprotein (LDL) and
cholesterol, obesity, and hypertension involved in the development of neurological alterations need to be
monitored [166]. Once the neuronal alterations have started, the therapies vary depending on the
progression of the disease. Therapies can target the underlying pathology or focus on relieving the
symptoms [167-168]. Nevertheless, some studies show that treatments that target the underlying
mechanisms have better results [169]. 

Cognitive dysfunction as a consequence of DM, should have a multidisciplinary approach considering factors
such as the extent of memory impairment, age, and previous medication, with this in mind, each regimen
should be tailored to each individual [170-171]. Screening for cognitive impairment should usually start at
the age of 65 [172]. Management includes education to the patient and the caregiver along with care on
pharmacological treatment, not to use any intensive treatment for glucose control which can lead to severe
hypoglycemia and can lead to further complications [173].

Diabetic peripheral neuropathy is the most common neurologic complication seen in long-standing patients
with poor control over their glucose levels. Symptomatic patients with DPN may present with foot ulcers,
diabetic foot, and sometimes require amputation [167]. Nowadays, DPN is mainly treated by
anticonvulsants, such as gabapentin with or without opioids, for a better effect on modulating pain [174]. In
contrast, lamotrigine and sodium valproate are considered ineffective by the European Federation of
Neurological Science (EFNS) [175-176]. Tricyclic antidepressants (amitriptyline is most preferred) and
tetracyclic antidepressants are primarily used for neuropathic pain. Topical agents such as capsaicin
(0.075%) which is a capsicum pepper extract helps to decrease mean pain intensity [177]. Some upcoming
treatments target glucose metabolic pathways, such as sorbinil, an aldolase reductase inhibitor involved in
the polyol pathway, is an example, but not used due to its adverse effects [178]. As aforementioned,
oxidative stress plays a role in peripheral neuropathy in patients with uncontrolled DM. Nutraceutical
therapies such as vitamin E can help to decrease oxidative stress as well as some dietary products such as
cruciferous vegetables and red grapes [179].

However, not all therapies depend on drugs for pain relief; there is percutaneous and transcutaneous
electrical nerve stimulation (PENS, TENS), and acupuncture which has a significant effect on increasing
arterial circulation in patients with T2DM [180-181].

Diabetic autonomic neuropathy (DAN) affects almost all major organ systems, the treatment still relies
mainly on strict glycemic control but varies depending on the system involved. In the case of cardiovascular
autonomic neuropathy (CAN), alpha-lipoic acid showed some promising results in alleviating the
symptoms [174]. In the case of orthostatic hypertension, management involves fluid and salt monitoring,
along with physical activity [182] and if needed, pharmacologic treatment involves midodrine and
droxidopa [183]. In diabetic diarrhea drugs such as loperamide are used to control the extra active bowel
movements and tetracyclines are helpful to tamper the unnecessary bacterial growth [184-185]. In the case
of bladder disturbance, there are no drugs that can help to alleviate symptoms, but some medications such
as oxybutynin, an antimuscarinic drug, for detrusor hyperreflexia, and interventions such as intermittent
self-catheterization is useful in relieving the symptoms [186]. Whereas in erectile dysfunction, statins, 5-
phosphodiesterase inhibitors, and transurethral prostaglandins can be used in mild cases, however in severe
cases, penile implants are preferred [187-188]. 

There are some specific treatments for T1DM such as islet transplantation which showed significant changes
in the neuronal symptoms, but studies have shown that this is effective for DPN, but not quite on DAN [189].
Although the presentation of symptomatic neuronal changes in T1DM are not so obvious, spotting the sub-
clinical impairment may give us the edge to prevent the progression of the disease [190].
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Conclusions
This review was aimed at understanding the various interactions between hyperglycemia and its effects on
the nervous system and we have thus summarized most of the relevant literature regarding the same. The
clinical burden of diabetes and diabetes-related complications is ever increasing, with risk factors like
obesity witnessing an explosion globally. However, progress has been made on the therapeutic end, with a
whole host of novel drugs being developed to treat the disease. Better treatment protocols, novel drugs, and
recombinant insulin all help in achieving better glycemic control and thus prevent and delay the progression
of neuronal changes in DM. However, there is still scope for further research regarding the same, specifically
related to drugs that halt and reverse the neurological complications of DM. 
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