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Abstract
The coronavirus (COVID-19) lockdown in China is thought to have reduced air pol-
lution emissions due to reduced human mobility and economic activities. Few stud-
ies have assessed the impacts of COVID-19 on community and indoor air quality in 
environments with diverse socioeconomic and household energy use patterns. The 
main goal of this study was to evaluate whether indoor and community air pollution 
differed before, during, and after the COVID-19 lockdown in homes with different en-
ergy use patterns. Using calibrated real-time PM2.5 sensors, we measured indoor and 
community air quality in 147 homes from 30 villages in Beijing over 4 months includ-
ing periods before, during, and after the COVID-19 lockdown. Community pollution 
was higher during the lockdown (61 ± 47 μg/m3) compared with before (45 ± 35 μg/
m3, p < 0.001) and after (47 ± 37 μg/m3, p < 0.001) the lockdown. However, we did not 
observe significantly increased indoor PM2.5 during the COVID-19 lockdown. Indoor-
generated PM2.5 in homes using clean energy for heating without smokers was the 
lowest compared with those using solid fuel with/without smokers, implying air pol-
lutant emissions are reduced in homes using clean energy. Indoor air quality may not 
have been impacted by the COVID-19 lockdown in rural settings in China and ap-
peared to be more impacted by the household energy choice and indoor smoking than 
the COVID-19 lockdown. As clean energy transitions occurred in rural households in 
northern China, our work highlights the importance of understanding multiple pos-
sible indoor sources to interpret the impacts of interventions, intended or otherwise.
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1  |  INTRODUC TION

The abrupt outbreak of COVID-19 initiated a global prevention re-
sponse that included closures of businesses, social distancing, and 
significant reductions in human mobility to curb the spread of the 
virus. These policies were associated with regional and local re-
ductions in outdoor air pollution throughout China and globally.1,2 
Higher indoor air pollution during the lockdown period was ob-
served in residential settings in China and the U.S., potentially attrib-
utable to longer periods spent inside homes and changes in in-home 
activities including increased cooking, space heating, and personal 
leisure activities in the home that contribute to indoor emissions of 
air pollutants.3-9

In rural areas, changes in community and indoor air pollution may 
have been less pronounced than in urban areas during the COVID-19 
lockdown due to fewer changes in local business, transport, and daily 
activities compared with urban areas.9 More thorough and action-
able understanding of the variability in indoor-generated pollutant 
concentrations associated with human behavior is needed to antic-
ipate potential changes to exposures in the home. The implemen-
tation of policies designed to reduce the transmission of COVID-19 
created an opportunity to evaluate how indoor and outdoor air qual-
ity trajectories differ in the wake of a large external system-level 
shock. Understanding this is helpful for future studies on policy and 
measures to control indoor air pollution and personal exposures.

In this study, we enrolled 147 homes from 30 villages in Beijing 
and monitored indoor and community (i.e., local outdoor) PM2.5 
during the heating (until March 15) and non-heating (after March 15) 
seasons in 2020. The purpose of this study was to (1) characterize 
patterns of indoor and community PM2.5 during the different peri-
ods of the COVID-19 lockdown; (2) quantify the contributions of in-
door sources and community PM2.5 to indoor PM2.5; and (3) evaluate 
the impact of the COVID-19 lockdown on indoor air quality in homes 
with different energy use patterns. This study is among the first to 
measure the impact of the COVID-19 lockdown on indoor air quality 
in homes with different energy use patterns and also provides some 
preliminary insight into the influence of household energy transi-
tions on indoor air quality.

2  |  METHODS

2.1  |  Study settings

Our study took place in 30 rural and peri-urban villages in Huairou 
and Miyun districts, which were between 70 and 100 km from 
the Beijing city center. Households in 10 out of 30 villages relied 

on electricity and liquefied petroleum gas (LPG) (clean energy) for 
space heating and cooking, and the others mainly used coal and bio-
mass (solid fuel). Most residents in these villages were farmer or did 
agriculture-related work.10

2.2  |  Study design and households

This study was ancillary to the Beijing Household Energy Transition 
(BHET) study, a longitudinal evaluation of the air pollution and human 
health impacts of household energy transition. Details on the BHET 
study design and household recruitment are described elsewhere.10 
Briefly, between December 2018 and January 2019, we recruited 
977 households in 50 villages from four districts across Beijing. 
Villages for the BHET study were those eligible to participate in the 
coal-to-clean energy program but were not currently participating. 
In each village, we enrolled 10–23 households (median recruitment 
rates: 13%) to participate in a household energy questionnaire. In a 
second winter field campaign (2019–2020), we revisited 865 house-
holds from the first campaign (89%) and recruited an additional 197 
households into the study. In total, we recruited 1062 households 
that completed a questionnaire. A random subsample of 300 house-
holds (6 in each village) was additionally selected for indoor air qual-
ity assessment in the second campaign. Written informed consent 
was obtained from all enrolled households. The study protocols 
were approved by research ethics boards at Peking University and 
McGill University.

2.3  |  Data collection

This analysis used questionnaire and indoor air quality data col-
lected in 180 households from 30 villages in the Huairou and Miyun 
districts. We restricted our analysis to these two districts and the 
households in those districts that received an indoor air quality as-
sessment, because some villages in those two districts (10 of the 
30) had already transitioned from solid fuels to clean energy for 
space heating, while none of the villages from the other two districts 
had yet shifted to using clean energy for space heating. Indoor and 
community air pollution monitors were installed on various dates in 
November 2019–January 2020 and were programmed to continu-
ously measure PM2.5 through April 25, 2020.

We used the study measurements conducted between January 
15, 2020, and April 25, 2020, because this period included the 
COVID-19 lockdown period (January 25–February 25, 2020), the 
heating season (November 15–March 15, 2020), and the non-
heating season (after March 15, 2020) in Beijing. The start of the 
COVID-19 pandemic, which coincided with the Spring Festival 
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holiday, led to large restrictions on movement and activity within 
Beijing and across China. Stay-at-home orders were imposed for 
Beijing and other provinces' residents on January 25, 2020, and a 
two-week mandatory quarantine was implemented for those trav-
eling into Beijing. After February 25, 2020, Beijing and many other 
provinces shifted from a first to second of emergency response,1,11 
which included closures of schools and businesses and restrictions 
on travel between regions.

2.4  |  Indoor and community PM2.5 measurements

2.4.1  |  Sensor-based measurements of indoor and 
community PM2.5

Indoor PM2.5 was measured using a commercially available sensor 
(PMS7003 Plantower, Zefan, Inc.) that measured the PM2.5 concen-
tration every 1 min. This laser-based particle sensor has a counting 
efficiency of 98% for particles of diameter larger than 0.5 μm12 and 
was successfully deployed in several large field studies.5,13–15 The 
sensor was placed on an elevated surface (~0.8–1.2 m height) in 
the room where the participants reported spending most of their 
time when awake. We excluded from analysis at least one season of 
measurements from 54 households where the sensors sampled for 
less than 50% of the target sampling period (i.e., 59 and 41 days in 
the heating and non-heating seasons, respectively) due to failure of 
the power supply or sensors.

Two sensors were set up to measure community PM2.5 at differ-
ent locations in each village. One sensor was placed near the center 
of the village, and the other was placed no less than 500 m away 
from the centrally located sensor. Sensors were placed at least 1.5 m 
above the ground and in a location without a visible point source of 
air pollution.

2.4.2  |  Filter-based measurements of indoor and 
community PM2.5

We collected filter-based indoor and community PM2.5 samples 
to calibrate the sensor-based PM2.5 measurements. Ultrasonic 
Personal Aerosol Samplers (UPAS, Access Sensor Technologies) and 
Personal Exposure Monitors (PEMs, Apex Pro) were used to collect 
filter-based PM2.5 samples with the flowrate of 1.0 and 1.8 L/min, 
respectively.16 Both samplers housed 37 mm PTFE filters (VWR, 2.0-
μm pore size) and were equipped with a cyclone inlet with a 2.5 μm 
cut point designed to perform under the corresponding sampling 
flowrate.

A UPAS or PEM was co-located with a PM2.5 sensor in 50% 
of households with indoor PM2.5 measurement in each village to 
collect a concurrent time-integrated, 24-h PM2.5 filter sample. The 
filter-based PM2.5 sample collection coincided with the first 24-h 
of indoor PM2.5 sensor measurements. After the first 24-h, the 
filters were retrieved and the samplers were re-deployed with 

new filters in other study homes. For community measurements, 
a UPAS was co-located with each PM2.5 sensor in each village in 
rotation. Every week, the used filters were removed and replaced 
with a new filter. In total, 137 and 621 paired samples were col-
lected for indoor and community PM2.5, respectively. Field blank 
filters were collected at a rate of ~10%, subject to the same field 
conditions as samples.

Detailed information on filter analysis can be found in Li et al.10 
In brief, filters were conditioned for at least 24-h and weighed in an 
environmentally-controlled chamber (21–22°C, 30%–34% relative 
humidity) on a microbalance (Mettler Toledo Inc., XS3DU) with 1-μg 
resolution in the Automated Air Analysis Facility (AIRLIFT).17 Filters 
were weighed in triplicate or until the differences in at least three 
weights were less than 3 μg. Filter mass was blank-corrected and 
PM2.5 concentrations were calculated by dividing the mass by the 
sampled air volume.

2.5  |  PM2.5 sensor calibration

Given the importance of PM2.5 sensor calibration and quality con-
trol,12,15,18 all PM sensors were co-located with a reference-grade 
PM2.5 instrument (Model 5030 Synchronized Hybrid Ambient 
Realtime Particulate [SHARP] Monitor, Thermo Fisher Scientific) 
on the rooftop of a building at Peking University campus for 7 to 
10 days before and after the field campaign. Sensor-measured PM2.5 
concentrations were highly correlated with those measured by the 
SHARP (Spearman correlation coefficients (rho) of 0.95 and 0.82 in 
pre- and post-calibration, respectively (Figure S1)).

We established linear regression models between the filter-
based PM2.5 mass concentrations (i.e., the reference concentrations) 
and the sensor-based PM2.5 concentrations averaged over the same 
sampling period as the filter-based samples (Figure S2). The slopes 
of the models were used as the adjustment factors for the sensor-
based PM2.5 concentrations. Separate regression models were con-
ducted for indoor and outdoor sensors given the sensitivity of the 
sensors to relative humidity, temperature, particle sources,15 which 
likely differ for indoor versus outdoor conditions. The adjustment 
factors (95% confidence interval: 95% CI) for indoor and outdoor 
PM2.5 sensors are 1.11 (1.02, 1.20) and 0.95 (0.9, 1.00), respectively.

2.6  |  Outdoor temperature

Outdoor temperature data were obtained from meteorological 
stations in Beijing and its neighboring provinces from the National 
Oceanic and Atmospheric Administration (NOAA) Integrated 
Surface Data database. We estimated the outdoor temperature for 
each study home by inverse-distance weighting the hourly tem-
peratures recorded by government meteorological stations within a 
100 km radius of their homes (typically 2–4 monitors) and adjusted 
for altitude using the environmental lapse rate of −6.5°C per 1000 
meters for analysis. Detailed information on outdoor temperature 
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estimation can be found elsewhere (https://escho​larsh​ip.mcgill.ca/
conce​rn/these​s/1c18d​m543).

2.7  |  Household questionnaire

A questionnaire was completed for each household to assess house-
hold sociodemographic information; house condition, structure, and 
materials; stove and fuel use; and other in-home behaviors associ-
ated with the indoor emissions of PM2.5, including smoking status 
and room occupancy. Further details about questionnaires can be 
found in Li et al.10

2.8  |  Estimation of indoor-generated PM2.5 and 
indoor PM2.5 of outdoor origin

Indoor PM2.5 (Cin, μg/m3) is comprised of indoor-generated PM2.5 (Cig , 
μg/m3) and of indoor PM2.5 of outdoor origin (Coo, μg/m3). Indoor-
generated PM2.5 is emitted from indoor sources including solid 
fuel combustion, cooking, and cigarette smoking. Indoor PM2.5 of 
outdoor origin is PM2.5 that is first generated outdoors but passes 
through the building envelope via infiltration. Indoor PM2.5 is best 
described as the sum of indoor-generated PM2.5 and indoor PM2.5 of 
outdoor origin as follows:

 and Coo would be determined as the following:

 where Finf is an infiltration factor (dimensionless) that represents the 
proportion of outdoor PM2.5 that is transported across the residential 
building envelope and remains suspended indoors, and Cout is the out-
door PM2.5 concentration (μg/m3). Combining Equations (1) and (2), the 
indoor PM2.5 concentration can be expressed as

 In this way, the infiltration factor for PM2.5, Finf, can be obtained by the 
linear regression equation between Cin and Cout, which is also known as 
the random component superposition model (RCS).6,19,20

2.9  |  Data Analysis

We compared indoor and community PM2.5 concentrations in 
the heating and non-heating seasons. We also compared indoor 
and community PM2.5 concentrations in the different periods of 
the COVID-19 lockdown, including the periods before (January 
15–January 25, 2020), during and after (February 26–March 15, 
2020) the lockdown.5,7 We classified the recruited households into 

three heating fuel categories: solid fuel, clean energy, and solid fuel 
and clean energy (i.e., mixed fuel use). Here, we defined exclusive 
use of clean energy as LPG and electricity.21,22 We also compared 
indoor PM2.5 in households with/without indoor cigarette smoking.

Hourly average PM2.5 concentrations were computed by av-
eraging the 1-minute calibrated sensor-based data described in 
Section  2.4.1. Indoor and community PM2.5 concentrations were 
described and summarized using arithmetic means and standard 
deviations (SD), as well as geometric means (GM) and 95%CI, given 
the tendency for air pollution data to be log-normally distributed. 
To describe the diurnal variation of indoor PM2.5, we clustered the 
hourly indoor PM2.5 into the periods of morning, noon, evening, and 
midnight, which are corresponding to 6 – 10 am, 11 am – 3 pm, 4 – 
8 pm, and 9 pm – 5 am on the next day, respectively. We applied the 
Student’s t-test to test the differences of indoor PM2.5 and indoor-
generated PM2.5 among smoking and non-smoking households that 
used different heating energy across the different COVID-19 lock-
down periods.

The detailed information on wealth index estimation is docu-
mented in detail in Li et al.10 Briefly, to measure relative SES of each 
household, we created a composite (wealth) index using principal 
component analysis (PCA) from owned household assets. The fol-
lowing assets were used as proxies of household wealth23: car, mo-
torbike, electric scooter, washer, fridge, freezer, TV, computer, air 
purifier, microwave, rice cooker, induction cooker, electric kettle, 
air conditioner, portable heater, electric blanket, fan, gas stove, coal 
stove, house area, number of rooms, agriculture land area, and forest 
land area owned by the participants and their households.

We used multivariable mixed-effects regression models with a 
random effect at the village level to estimate the effect of different 
COVID-19 lockdown periods (i.e., before, during, and after) on in-
door PM2.5. The covariates included in the model were ambient tem-
perature, community PM2.5 concentration, household wealth index, 
heating and cooking energy types, household smoking status, and 
the periods of before/during/after the COVID-19 lockdown.

All statistical analyses were performed in R version 3.5.2. The 
statistical code can be obtained on OSF (https://osf.io/ewunj/).

3  |  RESULTS

3.1  |  Characteristics of recruited households

Ten out of 30 villages had completed a household energy transi-
tion from coal heating stoves to electricity-powered heat pumps. 
Although households in these 10 villages replaced their coal stoves 
with electricity-powered heat pumps, some of them kept their kangs, 
which are traditional biomass-burning cooking and heating stoves 
commonly used indoors in northern China.10

Half of the study homes (57%) exclusively used solid fuels (coal, 
wood, and straw) for space heating in winter, and 26% used solid fuels 
in combination with clean energy (electricity) (Table 1). Less than 20% 
of homes exclusively used clean energy for space heating. In contrast, 

(1)Cin = Cig + Coo

(2)Coo = Finf × Cout

(3)Cin = Cig +

(

Finf × Cout

)

https://escholarship.mcgill.ca/concern/theses/1c18dm543
https://escholarship.mcgill.ca/concern/theses/1c18dm543
https://osf.io/ewunj/
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half of the study households exclusively used clean energy for cook-
ing, while the other half used clean energy in combination with solid 
fuels. Over half of the homes had one or more current smokers.

The mean (SD) number of people in the households was 2 (1). 
Residents reported spending an average of 18 (SD: 4) hours per 
day in their homes during the winter months before the COVID-19 
pandemic.

3.2  |  Indoor and community PM2.5

We obtained complete indoor PM2.5 data from 138 households in 
the heating season and 135 households in the non-heating sea-
son. Hourly-averaged indoor and community PM2.5 followed simi-
lar daily trends (Figures 1A and 2A). The mean (± SD) correlation 
coefficients (Spearman, rho) between indoor and community PM2.5 

N Percent

Totala 147 /

Heating fuel

Solid fuel only 83 56%

Solid fuel and clean energy 40 27%

Clean energy onlyb 24 16%

Cooking fuel

Solid fuel only 1 0%

Solid fuel and clean energy 73 50%

Clean energy only 73 50%

Smoking status

One or more smokers in the home 84 57%

No smokers in the home 63 43%

aThis includes 126 households with measurements in both the heating and non-heating season and 
21 households with only one season of measurements.
bClean energy defines as liquefied petroleum gas (LPG) and electricity.

TA B L E  1 Household energy use 
patterns and smoking status of the study 
households (n = 147)

F I G U R E  1 Time series (A) and box plot (B) of indoor PM2.5 concentrations in households with different energy use patterns. Heating 
season (HS) defined as from January 15 to March 15, 2020. Non-heating season (NHS) defined as from March 16 to April 25, 2020. 
COVID-19 lockdown period (HS-during) is from January 25 to February 25, 2020. Before COVID-19 lockdown (HS-before) is from January 
15 to February 24, 2020. After COVID-19 lockdown (HS-after) is from February 26 to March 15, 2020. Box midline in the right panel 
indicates the median; the open square symbol in the box indicates the mean value; the borders of the box represent the upper and lower 
bounds of the interquartile range (IQR); the whiskers of the box extend from the borders of the box to the maximum/minimum data points 
within 1.5 × IQR; and the points are outliers which are beyond the end of the whiskers.
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in solid fuel, mixed fuel, and clean energy households during the 
heating season were 0.54 ± 0.21, 0.58 ± 0.24, and 0.54 ± 0.22, 
respectively. Indoor and community PM2.5 were lower in the 
non-heating season than the heating across (Figures 1A and 2A). 
Outdoor temperature went up from the heating to non-heating 
season (Figure 2A).

Overall, mean (±SD) indoor PM2.5 concentrations were 
96 ± 83, 98 ± 86, 80 ± 80 μg/m3 before, during, and after the 
COVID-19 lockdown, respectively. Indoor PM2.5 in homes with 
different heating energy did not increase during the COVID-19 
lockdown (Figure 1). Mean community PM2.5 (61 ± 47 μg/m3) was 
higher during the lockdown compared with the period before 
(45 ± 35 μg/m3, p < 0.001) and after (47 ± 37 μg/m3, p < 0.001) the 
lockdown (Figure 2).

The most prominent features of indoor PM2.5 time series are the 
strong daily peaks (Figure 1A), which corresponded with typical in-
door cooking times in the morning and late afternoon (Figure S3). 
An unexpected finding was that indoor PM2.5 was the highest (t-
test, p < 0.001) in homes using clean energy for heating compared 
with those still using solid fuel (Figure 1B), indicating the presence 
of other indoor emission sources in clean energy homes. Further, 
more homes using clean energy have double-pane windows (79%) 
compared to other homes (68%), and thus, were more airtight (to 
be more energy efficient and reduce loss of indoor heat to the out-
doors), which would increase the residence time of indoor-generated 
air pollutants.

3.3  |  Influence of covariates on indoor PM2.5

In the multivariable models, we did not find differences in indoor PM2.5 
across the different COVID-19 lockdown periods. However, higher 
community PM2.5, greater wealth, and the presence of smokers in the 
homes were positively associated with higher indoor PM2.5 (Table 2).

Indoor PM2.5 levels in homes with one or more tobacco smok-
ers were two to three times higher than in homes without a smoker 
(Table S1) and did not show apparent differences by household en-
ergy use or the periods of the COVID-19 lockdown.

3.4  |  Indoor PM2.5 of outdoor origin

Determining infiltration factors can be useful for estimating the fraction 
of measured indoor PM2.5 that is of outdoor origin. Ideally, infiltration fac-
tors are determined when the influence of indoor emission sources can 
be avoided.24 One approach to estimating infiltration of PM2.5 of outdoor 
origin Finf is to apply a physical model, which is based on several known 
quantities: air change rate, penetration coefficient of outdoor PM2.5, and 
deposition rate of indoor PM2.5. This approach has been widely used 
in the literature.24-27 However, these parameters are difficult to obtain 
for a large number of different households and communities in a large-
scale study like ours. The method we used in this study is empirical but 
could be specific for each household. We estimated infiltration of PM2.5 
of outdoor origin, Finf, for each household in the heating [mean (95%CI): 
0.55 (0.51, 0.59)] and non-heating [0.57 (0.51, 0.63)] seasons separately, 
when human activities on door- and window-opening behaviors may 
vary between seasons. Values for the PM2.5 Finf estimated in this study 
were within the range of values for PM2.5 Finf (0.32–0.69) in China.28

Unlike total indoor PM2.5 concentrations, which were not higher 
during the COVID-19 lockdown, estimated levels of indoor PM2.5 of 
outdoor origin were higher during the COVID-19 lockdown (t-test, 
p < 0.001, p < 0.05, and p < 0.01 for solid fuel, mixed fuels, and clean en-
ergy homes, respectively) (Table 3). In homes without smokers, indoor 
PM2.5 of outdoor origin was lower in clean energy homes compared 
with those using solid fuel stoves in the heating season, likely due to 
the less infiltration of outdoor air (i.e., more air tightness) in clean en-
ergy homes. In the non-heating season, indoor PM2.5 of outdoor origin 
did not differ by household heating energy or smoking status (Table S2).

F I G U R E  2 Time series (A) of community PM2.5 and temperature and box plots (B) of community PM2.5 concentrations over the heating 
season and the non-heating season (NHS), with before-, during-, and after COVID-19 periods also designated. Boxplot features are 
calculated as described for Figure 1. Outdoor temperature was from the National Oceanic and Atmospheric Administration (NOAA) of the 
United States (https://www.ncdc.noaa.gov).
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3.5  |  Indoor-generated PM2.5

After accounting for the contribution of community PM2.5 to in-
door PM2.5, the daily peaks in indoor-generated PM2.5 associated 
with indoor cooking and heating emissions were more pronounced 
(Figure  3). In smoking homes, indoor-generated PM2.5 did not in-
crease during the COVID-19 lockdown compared with other peri-
ods (i.e., before/after) (Figures 3A, 4A and Table S3), and it was the 

lowest in solid fuel homes than the other homes with clean energy 
for space heating (Figure 4A and Table S3).

Non-smoking and clean energy homes generated the least PM2.5 
during the heating season, with estimated indoor-generated PM2.5 
concentrations of 17 ± 23, 17 ± 16, and 13 ± 14 μg/m3 before, during, 
and after the lockdown, respectively (Figure 4B). From before the 
COVID-19 lockdown to after, indoor-generated PM2.5 decreased 
by 11 ± 22 μg/m3 in solid fuel homes without smokers as outdoor 

Estimate (�) 95%CI p-value

ln-transformed community PM2.5 0.48 0.05, 0.91 0.04*

Outdoor temperature −0.08 −0.28, 0.12 0.46

Heating energy

Clean energy ref.

Solid fuel −0.01 −0.24, 0.22 0.92

Solid fuel and clean energy 0.004 −0.21, 0.22 0.97

Cooking energy

Clean energy ref.

Solid fuel −0.14 −0.93, 0.63 0.73

Solid fuel and clean energy 0.08 −0.07, 0.23 0.28

Wealth index −0.02 −0.04, −0.002 0.037*

Smoking

No ref.

Yes 0.91 0.77, 1.05 <0.001***

COVID-19 period

During ref.

Before −0.16 −0.69, 0.38 0.57

After 0.24 −0.79, 1.27 0.66

Marginal R2 0.31

Conditional R2 0.44

Note: *p-value < 0.10; **p-value < 0.05; ***p-value < 0.001.

TA B L E  2 Multivariable mixed-
effects model of ln-transformed mean 
indoor PM2.5 in different periods of the 
COVID-19 lockdown

TA B L E  3 Estimated concentrations of indoor PM2.5 of outdoor origin (μg/m3) in the heating season

Smoking Status
Period relative to 
lockdown

Solid fuel Solid fuel and clean energy Clean energy

Mean (SD) GM (95%CI) Mean (SD) GM (95%CI) Mean (SD) GM (95%CI)

Overall Whole period 30 (23) 21 (20, 22) 33 (22) 24 (23, 26) 30 (23) 21 (20, 22)

Beforea 28 (16) 24 (22, 25) 33 (19) 28 (26, 30) 29 (17) 24 (23, 26)

Duringb 33 (25) 23 (21, 25) 36 (25) 27 (26, 29) 33 (25) 23 (21, 25)

Afterc 26 (20) 17 (15, 18) 27 (19) 19 (18, 21) 25 (20) 17 (15, 18)

Smoking Before 29 (16) 25 (23, 26) 41 (25) 35 (32, 37) 31 (18) 27 (25, 29)

During 34 (26) 23 (22, 25) 46 (29) 35 (33, 37) 36 (28) 25 (24, 27)

After 27 (21) 17 (16, 19) 35 (23) 26 (24, 28) 28 (22) 18 (17, 20)

Non-smoking Before 27 (16) 23 (22, 25) 25 (15) 21 (19, 23) 21 (14) 17 (16, 19)

During 32 (24) 22 (21, 24) 28 (21) 19 (18, 21) 24 (19) 16 (15, 18)

After 24 (19) 16 (15, 18) 21 (16) 14 (12, 15) 19 (15) 12 (11, 13)

Abbreviations: 95%CI, 95% confidence interval for geometric mean; GM, geometric mean; SD, standard deviation.
aBefore, Before COVID-19 lockdown is from January 15 to January 24, 2020.
bDuring, COVID-19 lockdown period is from January 25 to February 25, 2020.
cAfter, After COVID-19 lockdown is from February 26 to March 15, 2020.
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temperature increased (Figure 2A), while it remained stable in clean 
energy homes and increased by 1 ± 11 μg/m3 in mixed fuel homes. 
These results supported our expectations that solid fuel combus-
tion contributed substantially to indoor PM2.5 and the contribution 
reduced as outdoor temperature increased, and that homes using 
clean energy should experience lower indoor PM2.5 concentrations 
because solid fuel, as a source of indoor pollutant emissions, is re-
moved from the homes.

Indoor-generated PM2.5 tended to increase during the day 
(Figure 5). In smoking homes, the daily peaks of indoor-generated 
PM2.5 concentrations (Evening: dinner time) did not change before, 
during, or after the COVID-19 lockdown (Table  S4 and Figure  5). 
However, in non-smoking and solid fuel-using homes, indoor-
generated PM2.5 decreased during the lockdown period and right 
after, coinciding with seasonal reductions in solid fuel heating.

4  |  DISCUSSION

In this study, we deployed indoor and community PM2.5 monitoring 
sensors in 147 homes from 30 villages in rural Beijing from January 
to April, 2020. To our knowledge, this is the first large-scale study to 

investigate the influence of the COVID-19 lockdown on indoor and 
community air quality in homes with different energy use patterns. 
We did not find that the COVID-19 lockdown affected indoor PM2.5, 
especially in homes using solid fuel or with smokers. This is likely be-
cause daily travel and behaviors in rural Beijing were not as impacted 
by the different COVID-19 restrictions as in urban areas.

Previous studies based on satellite data have observed large de-
creases in ambient PM2.5 during the COVID-19 lockdown in cities 
around the world as the lockdown measures on social activities re-
sulting in the cutoff of several air pollution emission sources, including 
industrial activities, construction activities, and road and air trans-
port.2,29 In our rural Beijing study, we observed higher community 
PM2.5 during the COVID-19 lockdown, which is consistent with recent 
studies of air pollution in Beijing.30-32 This trend was likely attributable 
to the meteorological conditions that were unfavorable for air quality 
during the lockdown, including a low planetary boundary layer, low 
wind speed, and high temperature and relative humidity.31

Indoor PM2.5 did not change significantly during the COVID-19 
lockdown after accounting for community PM2.5, temperature, smok-
ing, and other covariates. This is likely because the residents of our 
study homes were old people and the restrictions on movement and 
activity during the COVID-19 lockdown did not make huge changes 

F I G U R E  3 Time series of indoor-generated PM2.5 in smoking (A) and non-smoking (B) households. “Before” indicates before COVID-19 
lockdown, which is from January 15 to January 24, 2020. “During” indicates during COVID-19 lockdown, which is from January 25 to 
February 25, 2020. “After” indicates after COVID-19 lockdown, which is from February 26 to March 15, 2020.

(A) (B)

Heating season Non-heating season

Before During
COVID-19

After

Heating season Non-heating season

Before During
COVID-19

After
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on their lifestyles. Our finding conflicts with several previous studies in 
rural China that reported increased indoor PM2.5 due to more fuel con-
sumption for cooking and heating caused by larger family sizes during 
the lockdown than those during the normal days.4,5

To isolate the contributions of indoor versus outdoor sources 
to PM2.5, we implemented a simple approach to estimate indoor-
generated PM2.5 concentrations, which is straightforward and easy 
to be applied in studies with real-time indoor and community PM2.5 
measurements. Across all energy use groups, we did not observe 
indoor-generated PM2.5 increased significantly during the lockdown 
compared with before the lockdown. A likely explanation is that 
most of our participants are retired and usually stay at home during 
the winter. Thus, the COVID-19 lockdown did not have as large of an 
impact on their behaviors.

Indoor PM2.5 did not differ by household energy use patterns re-
gardless of smoking status, not consistent with what we known from 
other studies33 and what we expected.34 Indoor PM2.5 and indoor-
generated PM2.5 in homes with smokers were much higher than in 
homes without smokers. Many other studies in rural China reported 
large contributions of cigarette smoking to indoor PM2.5 and personal 
exposures.22,35,36,37 A recent study in urban China also emphasized 
the significant contributions of indoor cigarette smoking to human 
exposures in residences, even in those without solid fuel combus-
tion.38 These authors found that besides cooking, smoking was the 
second important indoor source of PM2.5 to the air people breathe in 
urban residences, especially when a residence was poorly ventilated, 
which was similar to what we reported for the contribution of smok-
ing to indoor PM in this study. Our results further demonstrated the 

F I G U R E  4 Boxplots of indoor-
generated PM2.5 by household energy use 
patterns. Boxplots features are calculated 
as described for Figure 1. “Before” 
indicates before COVID-19 lockdown, 
which is from January 15 to January 24, 
2020. “During” indicates during COVID-19 
lockdown, which is from January 25 to 
February 25, 2020. “After” indicates 
after COVID-19 lockdown, which is from 
February 26 to March 15, 2020.

Smoking Non-smoking
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F I G U R E  5 Diurnal variation of indoor-
generated PM2.5. Boxplots features are 
calculated as described for Figure 1. 
“Before” indicates before COVID-19 
lockdown, which is from January 15 to 
January 24, 2020. “During” indicates 
during COVID-19 lockdown, which is from 
January 25 to February 25, 2020. “After” 
indicates after COVID-19 lockdown, 
which is from February 26 to March 15, 
2020. “Morning” refers to 6 – 10 am; 
“Noon” refers to 11 am - 3 pm; “Evening” 
refers to 4 – 8 pm; and “Midnight” refers 
to 9 pm – 5 am on the next day.
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importance of accounting for smoking behaviors in studies of indoor 
air quality and personal exposures, especially those evaluating indoor 
air quality interventions like improved ventilation or household stoves.

In non-smoking households, total indoor PM2.5, indoor PM2.5 of 
outdoor origin, and indoor-generated PM2.5 were all the lowest in 
clean energy homes in the heating season. These results indicate the 
contribution of indoor solid fuel combustion to indoor PM2.5 and the 
potential to achieve better indoor air quality in clean energy homes 
in the heating season. Notably, we observed different impacts of the 
COVID-19 lockdown on indoor-generated PM2.5 in households with 
different energy use patterns. Indoor PM2.5 emissions are already 
decoupled from household energy use patterns in clean energy 
households, thus the indoor air quality impact of an external shock 
like the COVID-19 pandemic was minimal.

While many previous studies focused on the regional air qual-
ity impacts of the lockdown and other measures to control the 
COVID-19 pandemic, this study is the first to empirically evaluate 
indoor air quality before, during, and after the COVID-19 lockdown 
in homes with a range of energy use patterns. We conducted our 
study in rural Beijing, China, where our detailed indoor and commu-
nity measurements and household survey data enabled us to gain 
more holistic insight on the variation of indoor PM2.5. Importantly, 
our measurements included continuous indoor and community 
PM2.5 concentrations in 30 villages over four months. These mea-
surements constitute a major strength of our study, allowing us to 
understand the trends of indoor and community PM2.5 across the 
Beijing region. As well, they afforded us the opportunity to estimate 
the relative contributions of indoor-generated PM2.5, and indoor 
PM2.5 of outdoor origin. As a result, we found that indoor air qual-
ity in rural Beijing households did not change during the COVID-19 
lockdown, and household energy transition from solid fuels to clean 
energy could improve indoor air quality, especially in homes without 
smokers.

Our study does have several limitations to bear in mind. Our 
method for developing infiltration factors to differentiate between 
indoor versus outdoor sources of PM2.5 measured indoors provides 
useful estimates; however, the method is imperfect as it can only 
identify the contributions of the bulk indoor and outdoor sources and 
cannot quantify the contributions of specific sources. As well, the Finf 
is determined empirically, and therefore, may be larger than 1.0, due 
to the statistical and empirical nature of the method, even though 
that value would be physically inaccurate (i.e., it is not possible for 
the proportion of outdoor originated indoor PM2.5 to be greater than 
100% of outdoor PM2.5). In this study, only two (nine in non-heating 
season) out of 138 (135) Finf estimates (1.4% and 6.7% in the heating 
and non-heating seasons, respectively) were > 1.0, and overall, the 
distribution of Finf estimates was in line with those in other studies 
in similar settings. In future studies, more intensive methods, such 
as tracer-based methods, could be applied to calculate the Finf more 
accurately,36,39 and applied in conjunction with information on PM2.5 
chemical composition to apportion source contributions of indoor 
and outdoor sources to indoor PM2.5 more precisely. In this study, 
we classified household heating energy into three categories, which 

did not separate the categories of solid fuels and did not consider the 
impacts of cooking energy use patterns. These considerations could 
be incorporated into future studies, as both cooking and heating fuel 
use patterns together have an influence on indoor air quality.

5  |  CONCLUSION

In early 2020, the COVID-19 broke out globally and reduced air 
pollution was observed in many cities in the world. This study 
monitored indoor and community air quality in rural settings with 
different household energy use patterns in Beijing and assessed the 
variation of indoor and community PM2.5 under the influence of the 
COVID-19. Our results revealed that indoor PM2.5 did not increase 
overall during the lockdown. After accounting for cigarette smok-
ing, indoor air quality in homes using clean energy for heating was 
much better than those using solid fuel. Our study also indicated 
that indoor air quality may be unchanged if only outdoor air qual-
ity improved but indoor emission sources remained uncontrolled. 
Collectively, our findings support a broader recommendation to ac-
count for indoor cigarette smoking in indoor air quality intervention 
studies.
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