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Precise definition of PTEN C-terminal epitopes and its
implications in clinical oncology
Janire Mingo1, Sandra Luna1, Ayman Gaafar 2, Caroline E. Nunes-Xavier1,3, Leire Torices1, Lorena Mosteiro2, Rebeca Ruiz4,
Isabel Guerra4,5, Roberto Llarena6, Javier C. Angulo7,8, José I. López1,2,5 and Rafael Pulido1,9

Anti-PTEN monoclonal antibodies (mAb) are arising as important tools for immunohistochemistry (IHC) and protein quantification
routine analysis in clinical oncology. Although an effort has been made to document the reliability of tumor tissue section
immunostaining by anti-PTEN mAb, and to standardize their IHC use in research and in the clinical practice, the precise topological
and biochemical definition of the epitope recognized by each mAb has been conventionally overlooked. In this study, six
commercial anti-PTEN mAb have been validated and characterized for sensitivity and specificity by IHC and FISH, using a set of
prostate and urothelial bladder tumor specimens, and by immunoblot, using PTEN positive and PTEN negative human cell lines.
Immunoblot precise epitope mapping, performed using recombinant PTEN variants and mutations, revealed that all mAb
recognized linear epitopes of 6–11 amino acid length at the PTEN C-terminus. Tumor-associated or disease-associated mutations at
the PTEN C-terminus did not affect subcellular localization or PIP3 phosphatase activity of PTEN in cells, although resulted in specific
loss of reactivity for some mAb. Furthermore, specific mimicking-phosphorylation mutations at the PTEN C-terminal region also
abolished binding of specific mAb. Our study adds new evidence on the relevance of a precise epitope mapping in the validation of
anti-PTEN mAb for their use in the clinics. This will be substantial to provide a more accurate diagnosis in clinical oncology based on
PTEN protein expression in tumors and biological fluids.
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INTRODUCTION
Expression of biomarkers, as detected by standard immunohis-
tochemistry (IHC), together with classic histological parameters,
constitutes the first-line of diagnosis of most solid tumors.1,2 IHC
has also arisen as a universal prognostic technique to assist in
patient stratification and therapy decisions in oncology.3,4 It is
currently admitted that sensitivity, specificity, and reproducibility
are essential factors to validate monoclonal antibodies (mAb) as
IHC tools in research and in the clinical practice.5–8 However,
unless short defined synthetic peptides are used as immunogens
in the mAb obtention, the precise topological and biochemical
definition of the epitope recognized by the mAb is mostly
overlooked. This may be informative to define potential antigen
cross-reactivities, and may provide additional information to
generate improved rational-design mAb.9,10 More importantly,
precise epitope mapping is relevant when the biosynthesis of the
marker protein is influenced by mRNA alternative splicing or
alternative translation mechanisms, or when the mature marker
protein is targeted by dynamic post-translational modifications,
such as phosphorylation.11 In addition, many IHC marker proteins
are frequently targeted for mutations in tumors, which could
affect in several ways both the protein function and its recognition
by specific mAb, with important prognostic implications.12,13

The PTEN protein has emerged as one of the most important
tumor suppressors in human cancer, with a high potential as

prognostic and prediction-of-response marker in several human
cancers, including those with high prevalence such as breast or
prostate cancer.14–18 PTEN exerts its tumor suppressor functions
mainly through the negative regulation of the activity of the PI3K/
AKT pro-survival pathway, by dephosphorylating at cell mem-
branes the PI(3,4,5)P3 (PIP3) reaction product of the oncogenic
PI3K. In addition, PTEN plays PIP3-independent tumor suppressor
roles in the cytoplasm and in the nucleus, and the dynamic
partitioning of PTEN between membranes, cytoplasm, and
nucleus, is crucial in modulating PTEN physiologic activity.19–22

The PTEN gene behaves as a haploinsufficient gene, and partial
loss of expression or activity of PTEN protein confers tumor
growth advantages. As a consequence, the PTEN gene is
frequently targeted by deletions and mutations in tumors, and
heterozygous PTEN mutations are found in the germline from
patients with hamartomas and tumor predisposition (PHTS).16,23–25

Aberrant alterations in PTEN cytoplasmic/nuclear localization have
also been found in tumors and in the germline of PHTS
patients,26–32 making important for precise diagnosis not only
the detection of the protein in tumor samples, but also its location
in the cell. In this regard, recent studies have unveiled the
existence of alternatively translated PTEN isoforms, including
PTEN-L, which possesses a variable N-terminal extension that
targets the protein for secretion and to different cell compart-
ments.33–35 In addition, several PTEN splice variants have been
identified,36,37 among which PTEN-Δ, lacking the C-terminal PTEN
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residues encoded in exon 9, has been proposed to have similar
function as PTEN.38

PTEN protein is composed of two well-ordered structural
domains, a protein tyrosine phosphatase (PTP) catalytic N-
terminal domain (residues 8–185) and a membrane-binding C2
C-terminal domain (residues 186–352). In addition, PTEN possesses
several intrinsically disordered protein regions (IDPRs), including a
short N-terminal segment (residues 1–7), a regulatory C-terminal
tail (residues 353–403), and an internal loop (residues 286–309) at
the C2 domain.39 The N-terminal extension of PTEN-L (residues 1-L
to 173-L), which is not present in the more abundant canonical
PTEN, is also an IDPR.40 The PTEN C-terminal tail is targeted by
post-translational modifications, including phosphorylation, acet-
ylation, and caspase-3 cleavage,41–44 and plays a major role in
PTEN function by mediating inter- and intra-molecular
protein–protein interactions that regulate PTEN stability, subcel-
lular localization, and catalysis.45–50 Deletion of the PTEN C-
terminal tail generates a relatively unstable protein, which is
enriched in membranes and in the nucleus.51–54 Further trunca-
tions of PTEN into the C2 domain are deleterious for PTEN protein
stability and function,55 highlighting the pathological importance
of most of the premature termination codon mutations targeting
the PTEN gene.
Anti-PTEN mAb suitable to detect by IHC the expression of PTEN

in tumor tissues were generated and described soon after the
discovery of PTEN as a major tumor suppressor.56,57 Significant
efforts have been made since then to technically optimize,
validate, and standardize the available anti-PTEN mAb for their IHC
reliable use in research and diagnosis.58–70 However, precision
studies aiming to define the topological and molecular properties
of the epitopes recognized by these anti-PTEN mAb, which is
substantial to understand their immunostaining patterns, are still
lacking. Here, we have performed a sensitivity-validation and
specificity-validation analysis, and a precision epitope mapping of
six commercially available anti-PTEN mAb suitable for IHC
techniques. Our analysis has unveiled a major immunodominant
role for the distal PTEN disordered C-terminal tail, where linear
epitopes of 6–11 residues length were located. In addition, our
findings illustrate how post-translationally modified PTEN forms,
or specific PTEN variants associated to disease, may display altered
recognition by specific anti-PTEN mAb, which could have
important diagnostic implications.

RESULTS
Specificity and sensitivity of anti-PTEN mAb
Six commercial anti-PTEN mAb (6H2.1, SP218, 17.A, Y184, 138G6,
and D4.3) suitable for IHC were included in our study (Table 1).
Specificity was assessed by immunoblot using PTEN-positive (Caki-
1, MCF7) and PTEN-negative (LNCaP, U87MG) human cancer cell
lines. As shown, all mAb recognized specifically endogenous PTEN

in the PTEN-positive cell lines (Fig. 1a). In addition, all mAb
recognized by immunoblot recombinant PTEN (residues 1–403)
and PTEN-L translational isoform (residues 1-L-576-L) overex-
pressed in COS-7 cells. However, none of the mAb did react with a
recombinant form of the PTEN-Δ splice variant (residues 1–343
followed by an additional Ser residue) (Fig. 1b). IHC specificity of
the anti-PTEN mAb was assessed on a panel of 81 FFPE prostate
adenocarcinoma samples, in comparison with FISH analysis using
a PTEN gene-specific probe (Table 2). In addition, a panel of 49
FFPE urothelial bladder carcinoma samples was also analyzed
(Table S1). As shown, the 6H2.1 and SP218 mAb gave the best IHC
specificity scores in the prostate samples, without false positives
when correlated with the absence of PTEN gene by FISH analysis
(Table 2; Fig. S1). Negative immunostaining was detected with all
anti-PTEN mAb in a variable number of prostate or urothelial
bladder samples positive for FISH analysis (Table 2, Table S1),
suggesting the frequent loss of PTEN protein expression in these
tumor types without deletion of the PTEN gene, in agreement with
previous observations by others.17,71,72 Sensitivity of the anti-PTEN
mAb was tested by immunoblot using decreasing amounts of cell
lysates containing ectopically expressed recombinant PTEN from
transfected COS-7 cells. In these assays, the SP218, 6H2.1,
and Y184A mAb displayed the higher sensitivity to detect PTEN
(Fig. 1c).

Definition of the epitopes recognized by anti-PTEN mAb at the
PTEN intrinsically disordered C-terminal tail
As shown in Table 1, most of the immunogens used to obtain the
anti-PTEN mAb under study are C-terminal PTEN fragments or
peptides, which is consistent with the lack of recognition by these
mAb of the PTEN-Δ splice variant (Fig. 1b). Furthermore, all the
mAb recognized by immunoblot a recombinant GST-PTEN fusion
protein encompassing the PTEN C-terminal tail (PTEN 351–403),
but not a GST-PTEN protein lacking this region (PTEN 1–350) (Fig.
1d). This demonstrates that the epitopes recognized by the
distinct anti-PTEN mAb reside at the 350–403 PTEN C-terminal
IDPR, and that the rest of PTEN protein is dispensable for mAb
recognition. To ascertain more precisely the minimal PTEN region
recognized by the distinct mAb, sequential deletion of individual
C-terminal PTEN residues was performed, and mAb reactivity was
monitored (Fig. 1e–g). Interestingly, this analysis disclosed several
differential patterns of anti-PTEN mAb reactivity, which are
summarized in Fig. 1h. Whereas the SP218 mAb was the more
sensitive to PTEN C-terminal deletion (diminished reactivity with
the PTEN 1–401 deletion), the 138G6 and D4.3 mAb were the
more resistant to PTEN C-terminal deletion (diminished reactivity
with the PTEN 1-392 deletion). These results suggest that the anti-
PTEN mAb analyzed recognize distinct linear epitopes at the PTEN
C-terminus. To delimit the minimal PTEN region recognized by the
mAb, we tested their reactivity with GST-PTEN fusion proteins with
an intact C-terminus but progressive N-terminal deletions. As

Table 1. Characteristics of the mAb used in this study

mAb Isotype Host Immunogena Referenceb

6H2.1 IgG Mouse PTEN 304-403 56

SP218 IgG Rabbit C-terminal synthetic PTEN peptide 60

17.A (Ab-4) IgM Mouse PTEN 2-403 57

Y184 IgG Rabbit C-terminal synthetic PTEN peptide 70

138G6 IgG Rabbit C-terminal synthetic PTEN peptide 81

D4.3 Rabbit C-terminal synthetic PTEN peptide 82

aAmino acid numbering is indicated, according to NP_000305.3. No information is available on the amino acid sequence of the synthetic peptides used as
immunogens
bThe reference where the mAb was first described (to the best of our knowledge) is indicated
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shown in Fig. 2a and summarized in Fig. 2e, a GST-PTEN 370-403
protein was recognized by all mAb, while a GST-PTEN 396-403
protein was not recognized by any of the mAb. Deletion of PTEN
residues in the region 370-396 distinguished the reactivity of two
groups of mAb: 6H.2, SP218, and 17.A mAb, recognizing a more C-
terminal epitope; and Y184, 138G6, and D4.3 mAb, recognizing a
more N-terminal epitope (Fig. 2a, b). Finally, additional PTEN-
deletion analysis was performed separately on the region

recognized by these two groups of mAb (Fig. 2c, d), and a
summary of the results is shown in Fig. 2e. Next, we performed an
in silico search for potential human antigens cross-reacting with
the analyzed anti-PTEN mAb. BLAST sequence homology searches
using the human PTEN amino acid sequences 385–395 [(385)
SDPENEPFDED(395)] and 391–402 [(391)PFDEDQHTQITK(402)]
rendered partial matches with non-PTEN human proteins. The
closest matches to the minimal epitopes defined for the anti-PTEN
mAb included sequences from SERPINB9 [peptide (389)NEPFDE
(394), numbering corresponds to PTEN amino acid sequence] and
from CAMK2 isoforms [peptide (393)DEDQH(397)]. However,
neither SERPINB9 nor CAMK2G were recognized by immunoblot
by the corresponding anti-PTEN mAb (Fig. 2f). Together, our
analyses demonstrate that the distinct anti-PTEN mAb studied
specifically recognize overlapping but different linear epitopes at
the very PTEN C-terminus.

Phosphorylation-mimicking and tumor-associated mutations at
the PTEN C-terminus differentially abrogate anti-PTEN mAb
reactivity
The definition of the PTEN residues specifically recognized by each
anti-PTEN mAb allowed us to test the possibility that anti-PTEN
mAb reactivity could be affected by single amino acid substitu-
tions of these residues. First, we performed an Ala-scanning
mutagenesis analysis of the residues configuring the different
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Fig. 1 Specificity, sensitivity, and reactivity of anti-PTEN mAb with PTEN C-terminus. a Specificity of anti-PTEN mAb. Detection of endogenous
PTEN protein by the different anti-PTEN mAb by immunoblot, using cell lysates from PTEN-positive (Caki-1 and MCF7) and PTEN-negative
(LNCaP and U87MG) cell lines. Low-exposure and high-exposure images of anti-GAPDH blots are shown as a control. Detection of
recombinant PTEN 1–403, from lysates from transfected COS-7 cells, is also shown. b Recognition of PTEN isoforms. In the left panel, detection
of recombinant PTEN 1–403 and PTEN-L 1-L-576-L by immunoblot from lysates from transfected COS-7 cells is shown, and detection of
GAPDH with anti-GAPDH antibody is shown as a control. In the right panel, detection of recombinant GST-PTEN 1-403 and GST-PTEN-Δ 1-343-
Ser is shown, and detection using anti-GST antibody is shown as a control. Ø, empty vector. c Sensitivity of anti-PTEN mAb. Reactivity of the
anti-PTEN mAb with decreasing amounts of recombinant PTEN from cell lysates from transfected COS-7 cells. Data are shown as relative mAb
reactivity by immunoblot (mean ± s.d. from three independent experiments), as determined by PTEN protein band quantification. d Reactivity
of anti-PTEN mAb with PTEN C-terminus. Detection of GST PTEN 1–403 (WT), GST PTEN 351–403, and GST PTEN 1–350 by the different anti-
PTEN mAb by immunoblot, as in b. Detection using anti-GST antibody is also shown as a control. GST, GST alone. e–g Reactivity of anti-PTEN
mAb with PTEN C-terminus. Detection of PTEN C-terminal truncations, as in b. Detection using a polyclonal antibody recognizing PTEN N-
terminus (anti-PTEN N-ter) is also shown as a control. WT, PTEN 1-403; Ø, empty vector. h Summary of the diminished reactivity of the different
anti-PTEN mAb with PTEN C-terminal truncations

Table 2. Comparative IHC and FISH analysis of anti-PTEN mAb using a
panel of FFPE prostate carcinomas

FISH− . FISH+ . FISH++a.

mAb neg/posb %neg neg pos neg pos neg pos

6H2.1 62/19 76.5 8 0 12 4 42 15

SP218 50/31 61.7 8 0 11 5 31 26

17.A 41/40 49.4 3 5 7 9 31 26

Y184 33/48 40.7 5 3 4 12 24 33

138G6 45/36 55.6 7 1 9 7 29 28

D4.3 42/39 51.8 6 2 8 8 27 30

aNo PTEN signal; +, 1 PTEN signal; ++, 2 PTEN signals
bNumber of negative/positive samples for IHC staining
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PTEN C-terminal epitopes. This analysis unveiled different
reactivity patterns for the distinct anti-PTEN mAb, and confirmed
the differential dependence for mAb recognition on the PTEN C-
terminal regions defined in the C-terminal deletion analysis.
Furthermore, the Ala-scanning analysis illustrated that the very C-
terminal PTEN residues were necessary, but not sufficient, to
configure the epitopes recognized by some of the anti-PTEN mAb
(Fig. 3a). Next, we tested the effect of physiologic post-
translational modifications targeting these residues in the
recognition by the different mAb. The Thr398 PTEN residue is
phosphorylated by the DNA damage-responsive ATM kinase.73

Phosphorylation-mimicking substitution of PTEN Thr398 residue to
Glu or Asp (mutations T398E and T398D), but not substitution to
Ala, Gln, or Asn (mutations T398A, T398Q, and T398N), specifically
abrogated the recognition of PTEN by the SP218 mAb. On the
other hand, the reactivity of the 17.A mAb towards the T398Q,
T398E, T398D, and T398N mutations was lost, but not towards the
T398A mutation. Finally, the reactivity of the other anti-PTEN mAb
towards PTEN was not affected by the Thr398 substitutions (Fig.
3b, c). These results suggest that Thr398 phosphorylation could
affect negatively the reactivity of SP218 and 17.A mAb towards
PTEN. The Lys402 PTEN residue is acetylated by the CBP
acetyltransferase, which impacts PTEN binding to PDZ domains,42

but acetylation-mimicking substitution of Lys402 to Gln (mutation
K402Q) did not affect the recognition of PTEN by any of the mAb
(Fig. 3b, c).
Next, reactivity of the anti-PTEN mAb with tumor-associated or

disease-associated PTEN variants targeting residues at the PTEN

391–403 region was tested. As shown in Fig. 4a and summarized
in Fig. 4b, the reactivity of specific anti-PTEN mAb with selective
PTEN variants at this region was lost, in a manner which was
consistent with the precise epitope mapping assigned to each
mAb. Importantly, functional analysis of these PTEN variants
revealed that all the variants displayed PIP3 phosphatase activity
in cells and subcellular location equivalent to PTEN wild type, as
monitored by phospo-AKT content immunoblot and by immuno-
fluorescence analysis, respectively (Fig. 4c, d, respectively).
Together, these results illustrate that the recognition of functional
PTEN proteins by specific anti-PTEN mAb may be affected by
particular PTEN protein post-translational modifications or PTEN
gene mutations.

DISCUSSION
Precise epitope mapping of mAb recognizing cancer biomarkers is
substantial for the interpretation of IHC staining patterns in cancer
research and to provide an accurate IHC diagnosis in clinical
oncology. For instance, rationally designed anti-BRAF, anti-EGFR,
or anti-p53 mAb have been generated that recognize specifically
hotspot mutations in these cancer-relevant proteins, which could
be highly valuable for IHC-based precision diagnosis and for novel
potential precision therapies.74–76 In addition, the usage of mAb
for high-sensitivity biomarker quantification by other methods is
also dependent on their specific epitope recognition. However, it
is frequent that mAb used in research, or those under
standardization and validation for their routine use in the clinics,
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were not obtained against a rationally designed epitope, making
important the definition of the recognized epitope in the context
of the whole target protein. Here, we have performed a precision
epitope mapping of six commercial anti-PTEN mAb suitable for
IHC whose reactivity towards PTEN at a highly precision level was
unknown. Short overlapping linear epitopes (6–11 amino acids
length; PTEN residues 386–402) were identified at the PTEN C-
terminal IDPR for all the mAb (Fig. 5). Although in some cases
undisclosed PTEN C-terminal synthetic peptides were used as
immunogens in the obtaining of the mAb analyzed, in some
others the immunizations involved larger PTEN regions (Table 1),
highlighting the immunodominance of the very C-terminal amino
acid sequence of PTEN. This precludes the potential use of
combinations of the tested anti-PTEN mAb for standardization of
high-sensitivity sandwich immunodetection methods for PTEN
quantification. In addition, most of the available commercial anti-
PTEN mAb, including conjugated mAb suitable for other
techniques such as flow cytometry, have been obtained by
immunization with PTEN C-terminal peptides.77 IDPRs are
expected to be exposed to the solvent and are proposed to act
as adaptable sequence signals that dynamically regulate protein
interactions and function.78 Whether this could explain the
immunodominant effect of the PTEN C-terminal IDPR deserves
further study. PTEN protein is extremely conserved between
human and rodents, with an amino acid identity of 99–100%. The
only difference between human and mouse PTEN proteins reside
in the 398 residue (Thr in human; Ser in mouse), and the human
PTEN variant T398S (mimicking mouse PTEN) was recognized by
all the mAb analyzed.
Our precise mapping of PTEN C-terminal linear epitopes

allowed us to check in silico for potential human antigens cross-
reacting with the analyzed anti-PTEN mAb. We did not detect

cross-reactivity with SERPINB9 and CAMK2G, two potential
candidates with relevance in human cancer. Some of the mAb
analyzed in our study provided IHC staining results suggestive of
false positive staining, when compared with FISH results from the
same samples, although we cannot completely rule out the
existence in the tested samples of false negative results for PTEN
gene absence in our FISH analysis.
Regulation of PTEN function is exerted at multiple levels,

including cell type- and extracellular cue-dependent post-transla-
tional modifications.20 Interestingly, PTEN variants T398E and
T398D (but not T398Q and T398N), which may mimic PTEN
phosphorylation at Thr398 by the DNA damage-responsive ATM
kinase,73 were not recognized by SP218 and 17.A anti-PTEN mAb.
Furthermore, PTEN variants found in tumors or in the germline of
patients were differentially recognized by the anti-PTEN mAb,
even though these PTEN variants did not show major functional
alterations. This is relevant for the interpretation of IHC results
from tumor specimens using these mAb, or for PTEN quantifica-
tion from human biopsies, which would be indicative of loss of
PTEN protein if the samples carry those PTEN alterations. PTEN
gene mutations generating premature termination codons are
relatively abundant in tumors and in patients, and give rise to
unstable truncated PTEN proteins.51 In addition, it has been
described a PTEN-Δ splice isoform, which lacks the PTEN residues
344-403 encoded in exon 9 as a result of incorporation of intron 8
into the PTEN mRNA.37,38 Finally, PTEN can be cleaved by caspase-
3 at residues Asp371, Asp375, and Asp384, generating
catalytically-competent PTEN truncated forms with altered stabi-
lity and subcellular localization, and with defective interaction
with protein partners44,53 (Fig. 5). Our epitope mapping indicates
that, regardless their functional properties, pathologic or physio-
logic PTEN C-terminal truncations lack the immunodominant
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epitopes recognized by the anti-PTEN mAb analyzed in our study.
Dedicated work is required to obtain, characterize, and standar-
dize anti-PTEN mAb recognizing epitopes at other PTEN defined
regions.79

METHODS
IHC and FISH
For IHC and FISH, tissue microarrays (TMA) histological sections from 81
retrospectively-obtained formalin fixed paraffin embedded (FFPE) prostate
adenocarcinoma tumors and 49 retrospectively-obtained urothelial blad-
der carcinoma tumors were used. For IHC, samples were classified as
positive or negative for staining. The antibodies and dilutions used for IHC
were: 6H2.1 (1/50 in Tris/EDTA pH 9; 04-035, Merck Millipore), SP218 (1/100
in Tris/EDTA pH 9; Spring Bioscience), 17.A (Ab-4) (1/1 in Citrate pH 6.1;
#MS-1601, Thermo Fisher Scientific), Y184 (1/100 in Citrate pH 6.1;
ab32199, Abcam), 138G6 (1/50 in Tris/EDTA pH 9; #9559, Cell Signaling
Technology), and D4.3 (1/20 in Tris/EDTA pH 9; #9188, Cell Signaling
Technology). Immunostaining was performed in automated immunostai-
ners (EnVision FLEX, Dako Autostainer Plus; Dako, Glostrup, Denmark)
following routine methods. Fluorescence in situ hybridization (FISH) was
performed using dual color probe containing a centromeric probe for
chromosome 10 (CEN10, orange spectrum) and PTEN probe at 10q23
(PTEN, green spectrum) (Zytolight, SPEC PTEN/CEN 10 Dual Color Probe, Z-
2078-200, ZytoVision, Germany). Briefly, the 5 μm TMA sections were
deparaffinized, air-dried and dehydrated in gradient ethanol, followed by
denaturation in 10mM citric acid buffer for 4 min using a pressure cooker.
After treatment with proteinase K during 20min at 37 °C and washing
twice in SSC Wash Buffer, probes were added and denaturation was
performed at 75 °C during 10min, followed by hybridization at 37 °C for
16 h, according to the manufacturer's directions. Slides were subsequently
washed and counterstained with DAPI (Sigma-Aldrich). Stained slides were
manually interpreted by fluorescence microscope, and the predominant

FISH signal numbers were recorded in each tissue spot. For each case, a
minimum of 50 non-overlapping interphase nuclei were evaluated. The
PTEN deletion was defined as ≥15% of tumor nuclei containing one or no
PTEN locus signal and two CEP10 signals. This study is approved by the
corresponding institutional Ethical Committees (CEIC E16/51 and FIU-AEU-
2016).

Cell lines, cell culture, and transfections
Simian kidney COS-7 cells and human breast adenocarcinoma MCF7 cells
were grown in DMEM containing high glucose supplemented with 5 and
10% heat-inactivated fetal bovine serum (FBS), respectively, 1 mM L-
glutamine, 100 U/ml penicillin, and 0.1 mg/ml streptomycin. Human
prostate adenocarcinoma LNCaP cells and human renal carcinoma Caki-1
cells were grown in RPMI, containing 10% heat-inactivated FBS, 1 mM L-
glutamine, 100 U/ml penicillin, and 0.1 mg/ml streptomycin. Human
glioblastoma U87MG cells were grown in DMEM containing high glucose
supplemented with 10% heat-inactivated FBS, 1 mM L-glutamine, 1 mM
sodium pyruvate, 1% nonessential amino acids, 100 U/ml penicillin, and
0.1 mg/ml streptomycin. Cells were grown at 37 °C and 5% CO2. Cells were
transfected by the DEAE-dextran method (COS-7 cells) or using
Lipofectamine (Thermo Fisher Scientific, USA) (MCF7, LNCaP, Caki-1, and
U87MG cells), and processed after 48 h.

Plasmids and mutagenesis
pRK5 PTEN, pRK5 GST-PTEN, pRK5 Flag-PTEN, and pSG5 AKT1 plasmids
have been previously described.52,55,57 pRK5 PTEN-L (residues 1-576) was
generated by subcloning from the plasmid pGEX 6P1 PTEN-L (provided by
N. Leslie) and adding the first 20 N-terminal PTEN-L amino acids by PCR.
pRK5 PTEN-Δ (residues 1-343-Ser), as well as the PTEN and GST-PTEN
amino acid substitution variants, were made from the plasmids pRK5 PTEN
and pRK5 GST-PTEN by PCR oligonucleotide site-directed mutagenesis, as
described.80 pCDNA3.1 SERPINB9-Flag (NP_004146.1) and pReceiver
CAMK2G-Flag (NP_751911.1) plasmids were purchased from GenScript
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and GeneCopoeia, respectively. All mutations were confirmed by restric-
tion digestion and DNA sequencing (Fig. S2). Nucleotide and amino acid
numbering for PTEN variants correspond to reference sequences from
accession numbers NM_000314.4 and NP_000305.3, respectively.

Immunoblotting
Whole-cell protein extracts from cell lines were prepared by cell lysis in ice-
cold M-PERTM lysis buffer (Thermo Fisher Scientific) supplemented with
PhosSTOP phosphatase inhibitor and cOmplete protease inhibitor cocktails
(Roche, Switzerland), followed by centrifugation at 15,200 × g for 10 min
and collection of the supernatant. Cell lysates were subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (10% SDS-PAGE).
Proteins (50–100 μg) were resolved under reducing conditions and
transferred to PVDF membranes (Immobilon-FL, Millipore). Immunoblot-
ting was performed using the anti-PTEN antibodies indicated above, at the
following dilutions: 6H2.1 (1/1000), SP218 (1:400), 17.A (1:1), Y184 (1/5000),
138G6 (1/1000), D4.3 (1/1000). Other antibodies used in immunoblotting
were: polyclonal anti-GST,57 polyclonal anti-PTEN N-terminal,52 anti-
phospho-Ser473-AKT and anti-AKT (both from Cell Signaling Technologies),
anti-GAPDH (Santa Cruz Biotechnology), and anti-Flag (Sigma-Aldrich).
Secondary antibodies conjugated with fluorochrome were anti-rabbit or
anti-mouse IgG-IRDyeR 800CW (or IgG-Alexa FluoR 680) (LI-COR Bios-
ciences). For determination of phospho-AKT content and the relative
amount of PTEN protein detected by the different antibodies, bands were
quantified using an Image studioTM software with Odyssey® CLx Imaging
System (LI-COR, USA). For all comparative results shown, blots derive from
the same experiment and were processed in parallel.

Immunofluorescence
PTEN subcellular distribution in COS-7 cells was determined by immuno-
fluorescence using mouse monoclonal anti-PTEN 425.A79 and fluorescein-
conjugated anti-mouse antibody (Thermo Fisher Scientific). For quantita-
tion of PTEN subcellular distribution, at least 50 positive cells were scored
for each experiment. Cells were rated as nuclear staining (N), cytoplasmic
staining (C), or staining within both the nucleus and the cytoplasm (N/C).
Nuclei were identified by DAPI staining.

Reporting Summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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