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Lignin peroxidase ligand access 
channel dysfunction in the presence 
of atrazine
János Ecker    & László Fülöp   

Studies have determined that the white-rot basidiomycete Phanerochaete chrysosporium is capable 
of biodegrading the atrazine herbicide with its broad-specificity enzymes, but the particular role 
of biocatalysts is still unclear. In the case of lignin peroxidase, a ligand access channel connected 
to the active heme cofactor provides access to the active site for potential small-sized substrates. 
Experimental results show that lignin peroxidase is unable to degrade atrazine, therefore, the 
primary goal was to determine whether there is any connection between the structural and dynamical 
properties of the enzyme and its incapability to degrade atrazine. The results of protein-ligand docking 
and molecular dynamics study correlate with relevant, published NMR and molecular dynamics data, 
and give the answer to the lack of atrazine degradation by lignin peroxidase which has already been 
established by numerous authors using experimental methods. Atrazine has no access to heme edge 
due to the electric charges of the delocalized s-triazine ring. The detected phenomenon suggests 
that the small size of the ligands only is not a sufficient condition to access the active site. Their 
physicochemical properties influence the structural behaviour of the channel.

In many countries with intensive agriculture, the photosystem II-inhibitor atrazine (1-chloro-3-ethylamino-5-
isopropylamino-2,4,6-triazine) is one of the most widely used herbicide by farmers, in combination with other 
active ingredients. More than fifty plant species are treated with atrazine including citrus, corn, soybeans, sugar 
cane, vines and forest species. Several environmental and ecological problems have been identified in relation to 
atrazine, so its biodegradation is an extensively researched subject. The decrease in atrazine concentration in the 
soils is the result of chemical, physical and biological processes. Atrazine may be bound to various (organic or 
inorganic) soil components according to a number of mechanisms, and some results suggest that bonds with var-
iable strengths are formed. Multiple binding sites exist, but these are different in their individual bond strengths. 
Atrazine, like other pesticides, can persist only in the high-energy sites (retention)1, otherwise, it desorbs and 
becomes biodegradable2.

Atrazine is a very weak base. It can be said that the atrazine adsorption in soils at an acidic pH is much more 
explicit than in neutral or alkaline pH3–7. Furthermore, hydrolysis of atrazine under acidic conditions is faster 
than under neutral conditions, and the reaction product is hydroxyatrazine8.

Many microorganisms were studied for their abilities to metabolize atrazine including members of the genera 
Pseudomonas, Acinetobacter, Agrobacterium, Arthrobacter, Rastonia and Nocardioides9–13. In some studies, soil 
fungi were found to be dominantly causing the dealkylation of atrazine while bacteria were responsible for its fur-
ther degradation and mineralization14. Many fungi belonging to genera such as Aspergillus, Rhizopus, Fusarium, 
Penicillium, Trichoderma and Phanerochaete have been found to be capable of degrading atrazine15,16.

The Phanerochaete chrysosporium (Basidiomycota) can degrade several polluting compounds (dioxins, poly-
chlorinated biphenyls) with its broad-specificity enzymes: lignin peroxidase, manganese-dependent peroxidase 
and laccase17–19. Lignin degradation is a widely researched subject20, and how these three enzymes interact with 
their ultimate substrate, lignin, has been intensely investigated. Lignin peroxidase may be involved in the oxida-
tion of the soluble, partially degraded lignin fragments, however, the possibility that lignin peroxidase can directly 
oxidize lignin in the partially degraded plant cell walls cannot be excluded21. Lignin peroxidase has a so-called 
ligand access channel which allows direct interaction between the substrate and the heme. Residues His82, Ile85, 
Glu146, Phe148, Asp183, Val184 and Gln222 are located in this channel. The channel is sterically restricted and 
does not allow access to large bulky (lignin) substrates21. Two conserved histidines, the proximal (His177), distal 
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(His48) and the distal side arginine (Arg44) residues are conserved for peroxidative catalytic function, similarly 
to the class I and class III heme peroxidases22. For the high-redox potential substrates, such as veratryl alcohol 
(3,4-dimethoxybenzylalcohol, veratrol), the oxidation site in lignin peroxidase is localized on the enzyme surface 
at a catalytically active tryptophan (Trp171)23. A second substrate oxidation site is located at the heme edge, near 
to a surface-exposed Glu14624.

The dynamic properties of lignin peroxidase show that the enzyme’s natural substrate, veratrol, can easily 
approach heme through the ligand access channel. The analysis of molecular dynamics (MD) results also showed 
significant fluctuations of the channel25, where the open and closed states of the ligand access channel are in con-
stant equilibrium in solution. This phenomenon is a characteristics of many enzymes (e.g. the structurally very 
similar cytochrome C peroxidase). NMR experiments confirm that the ligand can bind to the open conformer, 
and has access to the active site, then the process of binding shifts the equilibrium towards the open conformer26.

In a classic liquid culture experiment, P. chrysosporium was able to degrade atrazine, through oxidative 
N-dealkylation. The fungus cleaved the ethyl group, but was not able to open the heterocyclic ring. However, 
the biotransformation rate of atrazine was not significant, and the experiment has also failed to demonstrate that 
lignin peroxidase contributed to the process in any way16. Another important experimental result showed that 
purified peroxidases alone were not at all able to degrade atrazine, as neither metabolites nor carbon dioxide were 
detected27. Significant amounts of Mn2+ ions repressed the production of lignin peroxidase, and stimulated the 
expression of manganese peroxidase nearly tenfold28.

The full sequence and structure of lignin peroxidase are known. The enzyme is a homodimer consisting of two 
subunits of 351 amino acids. Each subunit contains two Ca2+ ion binding sites, and the secondary structures are 
mostly α-helices29.

Methods
The three-dimensional model of atrazine and the energy minimization of the structure was made by Avogadro30 
(v1.1.1). The docking procedure was carried out with the DockingServer31 web-based application, and the results 
were analyzed with AutoDockTools32 (v1.5.6). The applied enzyme structure was obtained from the RCSB PDB 
database (PDB: 1B82) with a resolution of 1.8 Å. The structure contained a non-relevant R114A mutation29. MD 
simulations of lignin peroxidase were performed with NAMD software33 (v2.12) using the CHARMM36 force 
field34. The CHARMM-compatible parameters for atrazine were calculated with the Force Field Toolkit plugin35 
(v1.1) of VMD software36 (v1.9.3) adding previously generated parameters based on quantum chemical calcula-
tions37. The images were rendered with Tachyon Parallel/Multiprocessor Ray Tracer38 and AutoDockTools.

Histidines were protonated (HSD form; Histidine with hydrogen on the delta nitrogen), the enzyme structure 
(with heme and two Ca2+ ions) was solvated, neutralized, and the NaCl concentration was set to 0.15 mol dm−3. 
Each of the three minimizations were run for 30,000 steps with Conjugate Gradients method. The temperature 
was set to 288 K, 298 K and 308 K, respectively, to create three different conformers. Then MD analysis was per-
formed on every minimized structure for 10 ns. The NPT ensemble (constant number of atoms, pressure and 
temperature) was employed with Periodic Boundary Conditions and Particle Mesh Ewald electrostatics with a 
steady pressure of 1 bar. From each of the 10-ns-long trajectories, a structure with open state of the ligand access 
channel was chosen. These conformers were the input structures of the docking procedure.

Only chain A of the lignin peroxidase was used (the two chains are identical) without solvent. The centre of 
the simulation box was the His82 residue which is the entrance of the ligand access channel, and the size of the 
box was set to 20 * 20 * 20 Å. The partial atomic charges of lignin peroxidase and atrazine were calculated with the 
Gasteiger method39,40. For every lignin peroxidase conformer, the whole docking process contained 255 docking 
trajectories. During the process, the lignin peroxidase structure remained rigid; only the atrazine was flexible. The 
docking result with highest frequency value was chosen, and the lignin peroxidase-atrazine complex was solvated 
and minimized under the same conditions. The complex was refined with a 5-ns-long MD simulation with the 
same temperature value and settings used during the creation of the given conformer in order to study its stability. 
The binding free energies were calculated in solvated phase with NAMDEnergy plugin. The binding free energies 
contained van der Waals, electrostatic, polar and non-polar contributions41. Finally, a 100-ns-long MD simulation 
was performed in addition to the 5 ns refinement with NVT ensemble (constant number of atoms, volume and 
temperature) to collect more information about atrazine’s behaviour in a larger timescale.

Data availability.  The datasets generated during and/or analysed during the current study are available in the  
[Mendeley Data] repository, [https://data.mendeley.com/datasets/dvjms8448j/draft?a = 8086c15c-10e7–4f80- 
8d69-7004099ac95a] and [https://data.mendeley.com/datasets/b2wn6fdcj4/draft?a = 67f29979-7939-459e- 
a4a5-2a46f69466b6].

Equipment and settings. 

•	 Rendering: Tachyon Parallel/Multiprocessor Ray Tracer (VMD software plugin)
•	 Final format: GIMP 2.8, compression: LZW

Results and Discussion
Evaluation of docking results.  The energetics data of three lignin peroxidase-atrazine complexes are sum-
marized in Table 1. Negative values indicate energy release which is thermodynamically favourable in that the 
atrazine incorporated into the environment of His82 (Fig. 1). For every conformer, the binding of the atrazine to 
the target site of lignin peroxidase is thermodynamically favourable, but the frequency value is only 16% and 10% 
at temperatures of 288 K and 308 K, respectively. The possibility of the formation of these complexes is very low. 

https://data.mendeley.com/datasets/dvjms8448j/draft?a=8086c15c-10e7-4f80-8d69-7004099ac95a
https://data.mendeley.com/datasets/dvjms8448j/draft?a=8086c15c-10e7-4f80-8d69-7004099ac95a
https://data.mendeley.com/datasets/b2wn6fdcj4/draft?a=67f29979-7939-459e-a4a5-2a46f69466b6
https://data.mendeley.com/datasets/b2wn6fdcj4/draft?a=67f29979-7939-459e-a4a5-2a46f69466b6
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The frequency is 53% in the case of the lignin peroxidase conformer created at 298 K, therefore, this was the input 
structure of the 5 ns refinement process, to study the stability of the complex and the atrazine’s interactions with 
the ligand channel residues.

Protein-ligand interactions between atrazine and the amino acids of the interacting side chains of lignin per-
oxidase fall into the following categories: hydrogen bond, polar, hydrophobic, pi-pi and other (Table 2). The Cα 
carbonyl group of Asp183 come into contact through H-bonds with the isopropylamine nitrogen of atrazine. 
There is also an undefined contact between the oxygen of the Cα carbonyl group and the number 1 nitrogen of 
the s-triazine ring. The distance between these two atoms is only 2.68 Å. Since there is no direct contact between 
the nitrogen and oxygen, and both atoms have negative partial atomic charges, therefore, this state is energetically 
unfavourable, and in a fully dynamic system, it cannot emerge.

Structural stability of the docking complex.  The Cα root mean square deviation (RMSD) of the ligand 
channel residues and the atrazine minimization showed that the initial structure, the [298 K] docking complex, 
was not in an optimal state. The 30,000 steps were enough for the complex to reach a relaxed state. The minimum 
RMSD value was 0.040 Å, the maximum was 1.490 Å. The system reached the maximum value in 29.55 ps, and 
after approximately 20 ps, the system was in a relaxed state. Since the lignin peroxidase was completely rigid 
during the docking procedure, the structural difference between the docking and the minimized complex (Fig. 2) 
indicates that in a fully dynamic system the t0 state is unfavourable. The t1 state is a relaxed one, but since the 
t1 complex is a result of energy minimization where the atoms have no kinetic energy, conclusions can only be 
drawn from the MD results.

Behaviour of the ligand access channel in the presence of atrazine.  The fluctuation and deforma-
tions of the lignin peroxidase ligand channel residues in aqueous solution is a known phenomenon described by 
Gerini and her colleagues (2003)25. The access channel shows remarkable distortions from the crystal structure 

Temperature
Est. Free Energy 
of Binding

vdW + Hbond +  
desolv. Energy

Electrostatic 
Energy

Total Intermolec. 
Energy Frequency

Interact. 
Surface

288 −5.55 −6.30 +0.02 −6.29 16% 552.103

298 −5.54 −6.07 −0.05 −6.12 53% 575.72

308 −5.40 −5.93 −0.03 −5.96 10% 541.415

Table 1.  Summarized data of the best ranked atrazine-lignin peroxidase docking result. Temperatures are 
in K, energies in kcal mol−1. Frequency is a ratio of the dockings resulting in the same geometry and can be 
considered as a probability of the given result. High frequency suggests reliable result and specific binding.

Figure 1.  The structure of the [298 K] lignin peroxidase-atrazine complex after the docking procedure. 
Complex (A) is visualized by the molecular surface of its components. Partial charges of the lignin peroxidase 
residues are highlighted in red (negative) and blue (positive), the incorporated atrazine is highlighted in green. 
The interacting side chains (B) are represented by stick models; wireframe spheres mark the residue atoms 
involved in the interaction. The size of the spheres is determined by their distance from the reader’s eyes.

Hydrogen bonds Polar Hydrophobic Otherb

GLN222a (−1.1768) HIS82a (−0.6902) PRO147 (−0.7052) ASN221 (−0.8759)

VAL184a (−1.1032) ILE85a (−0.1785) PHE148a (−0.2982)

ASP183a (1.8798)

Table 2.  Decomposed interaction energies of the [298 K] atrazine-lignin peroxidase docking in kcal mol−1. 
aThe residue is part of the ligand access channel. bThe type of the interactions is undefined.



www.nature.com/scientificreports/

4Scientific REporTS |  (2018) 8:5989  | DOI:10.1038/s41598-018-24478-w

(Supplementary Fig. S1) even during a 150-ps-long MD simulation. These rapid conformational changes of the 
ligand channel residues are typical of lignin peroxidase when a potential substrate or a small molecule is not pres-
ent in the environment of the channel. In the presence of certain molecules (e.g. veratrol which is a natural sub-
strate of the lignin peroxidase enzyme), the observed phenomena may be different according to the established 
interactions between the ligand and the ligand channel residues25.

In the presence of atrazine, the channel fluctuation decreases in a short time, and the last 150 ps of the refining 
(5 ns) MD simulation shows significantly lower RMSD values compared to the data obtained from various times-
cales (Fig. 3). Since the conformational changes of the ligand channel residues in the absence of atrazine were 
clearly detected (Supplementary Fig. S1), the first 150 ps of the MD simulation without atrazine was used as a 
reference. In the presence of atrazine, the first 150 ps of the refinement shows little differences, and the 151–300 ps 
interval values are clearly lower than the reference in the whole range. After approximately 80 ps, those changes 
remain mostly under the values of the first 150 ps (Supplementary Table S2). The visualization of the lignin 
peroxidase-atrazine complex final state (Fig. 4) confirms that the atrazine molecule does not reach the active site 
through the channel because the ligand is surrounded by the mildly fluctuating ligand channel residues (Fig. 4A). 
This causes steric hindrance of the active site from the ligand. The shrinkage of the ligand channel residues occurs 
in a short time (ps scale) in the presence of atrazine, and this mild fluctuation is stably maintained over 4–5 ns 
(Supplementary video). The relative position of atrazine and the heme group (Fig. 4B) indicates that only the 
hydrophobic isopropylamine group of atrazine and some of the heme side chains are oriented towards each other.

Substrates can be oxidized via an electron transfer mediated by the lignin peroxidase surface residue Trp171, a 
hypothesis based on the observation that the mutation of this residue led to the loss of enzymatic activity toward 
veratrol oxidation. But mutants were still able to perform the oxidation of two dye substrates, 2,2′-azinobis(3-e
thylbenzothiazoline-6-sulfonate) and 4-[(3,5-difluoro-4-hydroxyphenyl)azo]benzenesulfonic acid that had a 
lower redox potential compared to veratrol such as atrazine23,24,29. In the absence of Trp171, lignin peroxidase is 
still able to catalyze reactions, but a direct contact between heme edge and ligand through the ligand channel is 

Figure 2.  State of the docking structure (A) and the structure of the [298 K] complex after a minimization of 
30,000 steps without the solvent (B). The residues forming the access channel and the atrazine are coloured in 
red and green with QuickSurf representation. The rest of the enzyme is represented with a NewCartoon drawing 
method and the coloring method based on secondary structure. α-helices are coloured in purple, β-strands 
in yellow, 3–10 helices in blue, turns in cyan and coils in white. The resolution of the ligand channel residues-
atrazine segment was intentionally reduced to emphasize the structural difference between the t0 and t1 state, 
and the residues have not been labeled for clarity.

Figure 3.  Fluctuation of the ligand channel in the presence of atrazine on various timescales. The reference 
(blue) was the 150-ps-long MD simulation of lignin peroxidase without atrazine. The fluctuation was clearly 
detectable during 150 ps MD. The other structure which contained atrazine shows less significant fluctuations 
even during the first 150 ps and only mild fluctuations during the rest of the 5 ns MD. The 0–150 (red) and 
the 151–300 (green) ps intervals show only a minimal decrease in channel fluctuation. The significantly lower 
values of the last 4.85–5 ns (purple) of the process, however, clearly indicate that in the presence of atrazine, the 
fluctuation of the residues varies between states with little structural differences.
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essential. The exact function of Trp171 is not fully understood since this is a rigid area of lignin peroxidase, and 
a W171A mutation does not produce any relevant structural change25. Based on its rigid character, it is unlikely 
that the Trp171 area can function as a competitive ligand access channel.

The energy data (Supplementary Fig. S3) suggests that the reduced fluctuation of the ligand channel residues 
in the presence of atrazine is a result of favourable interactions and stable contact between the residues and the 
ligand. The energy results of the last 150 ps of the 5 ns long simulation (Supplementary Fig. S3) show that the 
complex is in equilibrium state, energy values are negative in the whole range (Supplementary Table S4).

The calculated binding free energies (ΔGbin) confirm atrazine can integrate into the environment of the ligand 
channel, however, the last 150 ps of MD show the slowly rising trend of binding free energies. Besides, the ΔGbin 
between atrazine and heme have a positive value at certain times; these results indicate unfavourable and tempo-
rary contacts (Supplementary Fig. S5).

The additional 100-ns-long MD simulaton shows that after 5.6–5.7 ns the contacts between atrazine and the 
ligand channel start to break up. The visualization and RMSD values of the simulation clearly indicate that the 
integration of the ligand is only a temporary phenomenon. The partial atomic charges of atrazine create a tem-
porary ligand-access channel complex but the kinetic energy of the enzyme along with unfavourable interactions 
coming from some heme side chain atoms interacting with the isopropylamine group of atrazine can overcome 
these effects in a short time, therefore, atrazine cannot reach the heme edge. Atrazine can be displaced from the 
ligand access channel, and the enzyme returns to its original state with fluctuating ligand channel residues, and 
periodic changes of open and closed states (Supplementary Fig. S6). During 100 ns, secondary structure of the 
enzyme has not been changed significantly.

Three of the ligand channel residues have the most significant impact on atrazine’s inaccessibility: Phe148, 
Asp183 and Gln222. The Phe148’s phenyl group interacts with the s-triazine group’s delocalized electron system. 
The carbon atom of Asp183’s carboxyl group has a partial charge of 0.62, and interacts with s-triazine’s N1 atom 
with a partial charge of −0.759. The hydrogens on Gln222’s amino group have a partial charge of 0.32 and 0.30, 
respectively. These atoms interact with s-triazine ring’s N1, N2, N3 and Cl atoms with partial charge of −0.759, 
−0.244, −0.19 and −0.26, respectively.

It is important to note that the previously calculated partial atomic charges of the carbons and nitrogen num-
ber 1 in the delocalized s-triazine ring of atrazine have significantly higher absolute values compared to the other 
atoms of the compound (C1: 0.405, C2: 0.401, C3: 0.483, N1: −0.759)37. The position of the incorporated atrazine 
(Fig. 4) suggests that these partial charges generated by the delocalized electron system are possible limiting fac-
tors, and could be responsible for the inaccessibility of the ligand.

Conclusions of the results.  This work reports the MD study of the interactions between the ligand channel 
residues of lignin peroxidase exoenzyme and atrazine herbicide. The enzyme is capable of degrading various 
xenobiotics, but the enzyme-substrate contacts necessary for catalysis are not fully understood. Since lignin per-
oxidase cannot degrade atrazine, a description of the interactions at the molecular level can give a better under-
standing of the structure-function relations of the ligand access channel and the factors that define or restrict the 
accessibility of certain ligands. Based on the results of protein-ligand docking, atrazine can find an energetically 
favourable position in the environment of the ligand channel residues, although, the mathematical probability 
of the formation of these complexes is not significant (10%, 16% and 53% frequency values at three different 
temperatures). During the 5 ns MD simulation of the atrazine-lignin peroxidase complex with the best docking 
result (53% rate at 298 K temperature), atrazine integrated into the residues and was not able to reach through 
the channel. This phenomenon is somewhat contradictory to that small substrates have clear access towards the 
heme25 when the channel is in an open state conformation26. The partial atomic charges of the delocalized heter-
ocyclic s-triazine ring of atrazine can create a stable protein-ligand complex, and this could be the explanation of 
the inaccessibility of atrazine.

Figure 4.  The final state of the [298 K] lignin peroxidase-atrazine complex after a 5 ns MD simulation. (A) The 
atrazine is stably integrated into the ligand channel residues, therefore, it cannot get through the channel. The 
residues forming the access channel are highlighted with QuickSurf representation. The resolution of the ligand 
channel residues was intentionally reduced to emphasize the position of the ligand between the residues. (B) 
The isopropylamine side chain of atrazine is the only group of the ligand which reaches through the channel, so 
atrazine cannot interact with the heme. The atrazine and heme are shown in Licorice representation. Coloring is 
based on atom types. The seven ligand channel residues are represented with coloured lines.
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Since atrazine can bind to the residues that should give access for substrates towards the active site, it is an 
important question whether this binding has a temporary impact on enzyme activity. If atrazine can act as an 
inhibitor for individual substrates, such experimental results would prove that our theoretical approach describes 
the phenomenon correctly, therefore, this is our scope for further studies. Our results suggest that kinetic energy 
of the atoms can even expel atrazine from the channel, this possible phenomenon could be a scope of an other 
study. Besides, the exact function of the ligand access channel could be explained. Note that lignin peroxidase has 
two oxidation sites23,24, but the connection between them is still unclear.
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