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Abstract

Motivation: Understanding the occurrence and regulation of alternative splicing (AS) is a key task

towards explaining the regulatory processes that shape the complex transcriptomes of higher eu-

karyotes. With the advent of high-throughput sequencing of RNA (RNA-Seq), the diversity of AS

transcripts could be measured at an unprecedented depth. Although the catalog of known AS

events has grown ever since, novel transcripts are commonly observed when working with less

well annotated organisms, in the context of disease, or within large populations. Whereas an iden-

tification of complete transcripts is technically challenging and computationally expensive, focus-

ing on single splicing events as a proxy for transcriptome characteristics is fruitful and sufficient

for a wide range of analyses.

Results: We present SplAdder, an alternative splicing toolbox, that takes RNA-Seq alignments and

an annotation file as input to (i) augment the annotation based on RNA-Seq evidence, (ii) identify

alternative splicing events present in the augmented annotation graph, (iii) quantify and confirm

these events based on the RNA-Seq data and (iv) test for significant quantitative differences be-

tween samples. Thereby, our main focus lies on performance, accuracy and usability.

Availability: Source code and documentation are available for download at http://github.com/rats

chlab/spladder. Example data, introductory information and a small tutorial are accessible via

http://bioweb.me/spladder.

Contacts: andre.kahles@ratschlab.org or gunnar.ratsch@ratschlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative splicing (AS) is an mRNA processing mechanism that

cuts and re-joins maturing mRNA in a highly regulated manner,

thereby increasing transcriptome complexity. Depending on the or-

ganism, up to 95% of expressed genes are transcribed into multiple

transcript variants (Pan et al., 2008; Wang et al., 2008), where vari-

ous transcripts with differing exon composition can arise from the

same gene locus. (Throughout this text, we will use the term tran-

script to identify a variant of a gene that was generated through

transcriptional processing.) Although these transcripts might never

coexist at the same time and place, each one of them can be essential

for cell differentiation, development or play an important role

within signaling processes (Kornblihtt et al., 2013). Thus, the two

major challenges in computational transcriptome analysis are com-

plexity and completeness. In SplAdder, we leverage evidence from

RNA-Seq data to compute a more complete representation of the

splicing diversity within a sample and tackle the complexity with a

reduction to alternative splicing events instead of full transcripts.

We provide open source implementations for SplAdder in MATLAB

and Python that contain all features described below and produce
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the same results. However, future development will focus on the

Python implementation for reasons of accessibility. All inputs follow

the standardized formats for alignments and annotation such as

BAM and GFF. For complete examples, use cases and information

regarding the user interface, we provide a supplementary website.

User documentation is available in the wiki section of the source

code repository.

In Section 2 we will give a brief overview on related approaches

that also focus on the analysis and quantification of alternative splic-

ing based on RNA-Seq data. Our main focus will be on methods

that are able to characterize alternative splicing events. In the subse-

quent Section 3, we give an outline of the SplAdder methodology

and the algorithmic details of its main compute phases. To show

how SplAdder compares to other strategies for RNA-Seq based al-

ternative splicing analysis, we have compiled a set of different evalu-

ations and comparisons to existing methods. Our experimental

design will be described in Section 4 and the main results are dis-

cussed in Section 5. Lastly, Section 6 summarizes this work.

2 Related work

Prior to the advent of high throughput RNA-Seq, methods based on

expressed sequence tags (ESTs) were developed to elucidate the com-

plex patterns of alternative splicing in higher organisms (Modrek

and Lee, 2002). Although designed for a much lower data through-

put, the algorithmic ideas presented for ESTs have had a strong in-

fluence to the field in the following years. One central idea is the

representation of splicing variation at a gene locus as a graph that

encodes exon segments as nodes and the intron segments as connect-

ing edges (Eichner et al., 2011; Heber et al., 2002; Kianianmomeni

et al., 2014). Similar to SplAdder, numerous tools are based on such

splicing graph representations; however, none of the existing

approaches combines all aspects of the SplAdder workflow: the aug-

mentation of existing annotation information, the detection and

quantification of alternative splicing events, differential testing of

events between two given sets of samples and detailed visualization

of the splicing variation. There exist several approaches that cover

at least a subset of the steps in the SplAdder pipeline. The most not-

able ones are JuncBase (Brooks et al., 2011), rMATS (Shen et al.,

2014) and SpliceGrapher (Rogers et al., 2012). JuncBase utilizes

third party prediction tools such as Cufflinks (Trapnell et al., 2010)

to allow for the detection of novel exon nodes in the splicing graph.

It then extracts and quantifies splicing events of the most common

AS types and reports them in a custom format. Further, JuncBase

provides basic differential analyses and basic visualizations of the

test results. However, the pipeline consists of 10 different steps,

including building a Cufflinks output based database, which is quite

laborious to generate, has a long running-time and is thus not ideal

for larger scale studies. SpliceGrapher directly integrates informa-

tion from RNA-Seq or EST data into a splicing graph and can dis-

play splicing events in the graph visualizations. Unfortunately, it

does not provide an easy method to explicitly generate and quantify

alternative splicing events and does not allow for differential ana-

lysis. rMATs focuses on the differential analysis of splicing between

RNA-Seq samples. It can detect the most common AS events from

either RNA-Seq alignments or from a set of reads by applying a

third party mapping algorithm. Based on the RNA-Seq evidence, it

will also fill in some missing information to call events not present

in the provided annotation but has a limited capacity to do so.

Other methods, such as Scripture (Guttman et al., 2010),

Cufflinks (Trapnell et al., 2010) or MISO (Katz et al., 2010) also

use graphs internally and allow for novel splice variants based on

RNA-Seq evidence but focus on the prediction of full transcripts in-

stead of single events. These tools aim to solve a much harder problem

and thereby miss potential local variability for AS studies. These tools

are also computationally more expensive, limiting their applicability

in the context of thousands of samples. Another popular tool that is

focused on the extraction of alternative splicing events from a given

annotated locus is the Astalavista toolbox (Foissac and Sammeth,

2007). Although many splicing events are covered in the detection

phase, the tool relies on a complete annotation as input and does not

provide any quantification values for the events However, the authors

introduce a logical representation of splice events (the splicing code)

that we will utilize later on. The software SpliceTrap (Wu et al.,

2011) is able to generate quantification values for the most common

AS types, but recognizes much fewer transcripts than Astalavista. For

both tools no novel splice variants are considered.

In our evaluation on simulated data, we will show that SplAdder

is more accurate in detecting novel events and shows better perform-

ance in differential analysis than any of the tested competitors. We

have chosen to compare SplAdder against JuncBase, rMATS and

SpliceGrapher as these methods are closest to the presented

SplAdder pipeline. We discuss further details regarding the compari-

sons in Section 4 and Suppl. Section D.

3 Approach

The SplAdder algorithm consists of multiple steps that convert a

given annotation into a splicing graph, enrich that graph with splic-

ing evidence from RNA-Seq samples, identify splicing events from

the augmented graph and use the given RNA-Seq data to quantify

the single events (Fig. 1). Optionally, the quantifications can then be

used for differential analysis. We find this distinction important, as

differential analysis between samples is only one of many possible

applications of AS event phenotypes. Other examples may include

generating of sample specific splicing profiles or using AS pheno-

types in genome-wide association studies.

3.1 Preliminaries
Here, we will introduce our notation and make definitions that will

be used throughout the following descriptions of the algorithm.

3.1.1 Coordinates

All positions used in the following descriptions are in a genomic co-

ordinate system. We begin by defining the genome G as a string of

consecutive positions G ¼ g1g2 . . . gn. When addressing any range x

within these positions, e.g. to define a gene x, we describe this as the

pair of the first and the last position of x : ðgx;start; gx;endÞ. When ad-

dressing a specific entity xi, we will write ðgxi ;start; gxi ;endÞ. For simpli-

city, we ignore chromosomes and assume the genome to be one

continuous string.

3.1.2 Representation of genes as transcript graphs

A given gene annotation can be represented as a set of linear directed

graphs. Assume gene G as given, that has k different transcripts

j1; . . . ; jk 2 JG, where JG is the set of all transcripts of gene G. As we

consider each gene G independently, we will omit the index G wher-

ever possible in order to keep the notation uncluttered. Each tran-

script consists of a set of exons that are connected by introns. Each

exon can be uniquely identified by its start and end. We thus
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represent all exons as coordinate pairs of their genomic start and

end position:

v ¼ ðstart; endÞ ¼ ðgv;start; gv;endÞ 2 N2;

where gv;start and gv;end are the first and last position of exon v in

genomic coordinates, respectively. Although further coordinate infor-

mation like chromosome and strand are used in the program imple-

mentation, we will limit this description to an identification by start

and end for simplicity. The exons of each transcript ji can then be rep-

resented as a node set Vi :¼ fvi;1; . . . ; vi;mi
g with 1 � i � k and mi as

the number of exons in transcript ji. As transcripts have a direction (the

exons within a transcript follow a strict order), we require, that the

index of the nodes reflects the order of the exons in the transcript. As

no two exons in a transcript overlap by definition, this order is implied

by gv;start and gv;end. We then define the edge set of transcript ji as

Ei:¼
[

1� s<mi

fðvi;s; vi;sþ1Þjvi;s; vi;sþ1 2 Vig � Vi � Vi

with 1 � i � k. The pair ðVi;EiÞ forms the directed transcript

graph of transcript ji.

3.1.3 Definition of Splicing Graphs

We define the set of exons occurring in any transcript ji as V. As the

single exons are uniquely identified by their coordinates, we can

write V :¼ [
k

i¼1
Vi. Hence, we define the set of all edges as

E :¼
[k
i¼1

Ei � V � V:

Note that only already existing edges are merged, preserving the

preexisting order of nodes. The pair G ¼ ðV;EÞ is a directed acyclic

graph and is called the splicing graph representation of a gene.

Supplemental Figure S2 illustrates how a set of five transcripts is col-

lapsed into a splicing graph. The key concept is, that when multiple

transcripts contain the same exon, this will be represented by a sin-

gle node in the splicing graph.

We define the in-degree and the out-degree of a node as the number

of its incoming and outgoing edges, respectively. We further define

a node to be start-terminal, if its in-degree is zero and end-terminal

if its out-degree is zero. Each transcript can now be represented as a

path through the splicing graph, beginning at a start-terminal node and

ending at an end-terminal node.

Note that although the splicing graph representation re-

solves many redundancies and efficiently stores large numbers of

different but mostly overlapping transcripts, this comes at the

cost of information loss. Long range dependencies between single

exons are not preserved. An example of this is provided in

Supplemental Figure S2. Although exon T2E1/T3E1 exclusively

occurs in transcripts that end in exon T2E3/T3E3, this relation-

ship is lost in the graph, where E2 can connect to both E6 and E7.

Our approach is not severely affected by this limitation as we

only extract local information about alternative exon- or intron-

usage.

3.1.4 Definition of Segment Graphs

Following the splicing graph definition, two or more nodes in the

graph may overlap. Thus, when collecting expression information

for each node from a given alignment, the same genomic positions

may be queried multiple times. To overcome this inefficiency, we

use the concept of breaking down each node into non-overlapping

exon segments, similarly used in (Behr et al., 2013; Reyes et al.,

2012).

The same principle that is applied when collapsing different tran-

scripts that share the same exons into a graph structure can also be

applied to collapse exon segments that are shared by several nodes

of the splicing graph. Following this idea, we divide each exon into

non-overlapping segments. Analogous to an exon, a segment is

uniquely identified by its genomic coordinate pair and the same

order as on exons can be applied: s ¼ ðgs;start; gs;endÞ. We say an exon

vi is composed from segments si;q through si;r, if vi ¼ si;q � si;r, with

q< r and where ��� denotes the concatenation of segment positions.

Thus, the set of all segments can be defined as

S ¼ [
vi2V
ðsi;q; . . . ; si;rjsi;q � si;r ¼ viÞ:

To explicitly define the set of all segments, first we define the set

VS of all node-starts in V and the set VT of all node ends in V. The

set of all segments S can then be defined as

S ¼ [
gs;start ;gs;end2VST

fðgs;start; gs;endÞj9v 2 V :

gv;start � gs;start < gs;end � gv;endg;

where VST ¼ VS [ VT. The computation of S from V is straight-

forward. Let P be a sorted array containing all genomic positions

that are either start or end positions of an exon in V. We denote

the ith element of the array as P½i�. Let LS and LE be two binary

label-arrays with the same length as P, where LS½i� is 1 if P½i� is

start of an exon in V and 0 otherwise. Correspondingly, LE½i� is 1

if P½i� is the end of an exon in V and 0 otherwise. Let further
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Fig. 1. SplAdder analysis flowchart. The main steps of the SplAdder workflow consist of (1) integrating annotation information and RNA-Seq data, (2) generating

an augmented splicing graph from the integrated data, (3) extraction of splicing events from that graph, (4) quantifying the extracted events and optionally (5) the

differential analysis between samples and producing visualizations
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CS and CE be two arrays with the same length as P, where

CS½i� ¼
Pi

j¼1 LS½i� and CE ¼
Pi

j¼1 LE½i� are the cumulative starts

and ends up to position i. We can then determine the set of all seg-

ments as

S ¼
[jPj�1

i¼1

ðP½i�;P½iþ 1�ÞjCS½i� > CE½i�f g:

Similar to the definition of the edges for the splicing graph, we

define

T ¼
[

su ;sw2S

fðsu; swÞj9vi 2 V; sr 2 S :vi ¼ ðgsr ;start; gsu ;endÞ and

9vj 2 V; st 2 S :vj ¼ ðgsw;start; gst ;endÞ and

ðvi; vjÞ 2 Eg

to be the set of segment pairs that are connected by an intron. We

then denote the pair R ¼ ðS;TÞ to be the segment graph of a gene.

For practical reasons, we store an additional matrix that relates each

node in the splicing graph to the segments it is composed of.

Supplemental Figure S5 illustrates the relationship between splicing

graph and segment graph.

We will use the splicing graph representation to incorporate new

information based on RNA-Seq evidence as well as for the extrac-

tion of alternative splicing events. We will use the segment graph

representation for event quantification, as this is computationally

much more efficient.

3.2 Construction of an augmented splicing graph
As a preprocessing step, the input annotation is transformed into the

initial splicing graph G according to the definitions above, thereby

collapsing exons shared by multiple transcripts into single nodes of

the graph. In the following, we describe how G is transformed into

an augmented graph Ĝ using information from RNA-Seq data,

thereby introducing new nodes and edges. This is an integral part of

the SplAdder workflow that enables the discovery of novel splicing

variation based on RNA-Seq data.

The augmentation of G is a four-step algorithm:

1. build initial graph

2. add novel cassette exons

3. add novel intron retentions

4. while novel edges can be added

4.1 insert novel intron edges

When a newly added node shares one boundary with an existing

node, the existing edges are inherited by the new node. Following,

we will provide a detailed explanation for each step.

Given an RNA-Seq sample and a gene G ¼ ðgG;start; gG;endÞ, we ex-

tract all intron junctions from the alignment that overlap G and

show sufficient alignment support. Whether an intron junction is

sufficiently well supported is based on a set of given confidence cri-

teria (cf. Supplemental Table C) We define the list of RNA-Seq in-

tron junctionsR as

R ¼ fðgi; gjÞjgG;start � i < j � gG;endg;

where (gi, gj) describes the intron starting at gi and ending at gj.

Further, let v ¼ ðgv;start; gv;endÞ, with v 2 V, be an existing node in

the splicing graph. The augmentation process will transform the

existing splicing graph G ¼ ðV;EÞ into an augmented graph

Ĝ ¼ ðV̂; ÊÞ. We initialize Ĝ with G.

3.2.1 Adding novel cassette exons

In the first augmentation step, new cassette exon structures are

added to the splicing graph. For this, the algorithm iterates over all

non-overlapping pairs of R. For each pair ðgi1 ; gj1 Þ and ðgi2 ; gj2 Þ, two

conditions need to be fulfilled. Briefly, both intron ends need to be

attached to existing exons and the cassette exon must not already

exist. Formally, we check for the following conditions:

Intron ends 9vi 2 V̂ :gvi ;end ¼ gi1 � 1

and 9vj 2 V̂ :gvj ;start ¼ gj2 þ 1 and vi < vj

New exon @vh 2 V̂ :gvh ;start ¼ gj1 and gvh ;end ¼ gi2 :

If both conditions are met, a new node vn ¼ ðgj1 þ 1; gi2 � 1Þ is

added to the node set V̂ and two new edges (vi, vn) and (vn, vj) are

added to Ê. Supplementary Figure S1, Panel A, schematically de-

scribes the addition of a cassette exon. The criteria for adding a cas-

sette exon are listed in Supplemental Table A.

3.2.2 Adding Novel Intron Retentions

The second augmentation step adds intron retention events to the

splicing graph. For each edge ðvs; vtÞ 2 Ê, the algorithm decides

whether there is enough evidence from the given RNA-Seq sample

for expression inside the intron, to consider the intron sequence as

retained. Again, heuristic confidence criteria are applied (cf.

Supplemental Table B). Briefly, the central criteria for adding a new

intron retention is the number of sufficiently covered positions

within the intron as well as the differences in mean coverage be-

tween intronic and exonic part of that region. When sufficient evi-

dence for a retention is found, a new node vn ¼ ðvs;start; vt;endÞ is

added to V̂. The new node inherits all incoming edges from vs and

all outgoing edges from vt, thus we get the set of newly added edges

En ¼ ðx; vnÞj8x : ðx; vsÞ 2 Ê
n o

[ ðvn; xÞj8x : ðvt;xÞ 2 Ê
n o

:

Then, the set of edges is updated with Ê :¼ Ê [ En. Supplemental

Figure S1, Panel B, illustrates this case.

3.2.3 Insert Novel Intron Edges

The last augmentation makes once more use of the list of RNA-Seq

supported intron junctions R generated during the first step. Based

on start and end position of the intron, we can test if any existing

nodes start or end at these positions, respectively. We have to distin-

guish between four different basic cases: (i) neither start nor end co-

incide with any existing node boundary, (ii) the intron-start

coincides with an existing node end, (iii) the intron end coincides

with an existing node-start, (iv) both the intron-start coincides with

an existing node end and the intron-end coincides with an existing

node-start. The four cases and their respective sub-cases are illus-

trated in Panels C–H of Supplemental Figure S1. Formal definitions

of the different cases are given in Supplemental Section A. As the

addition of novel intron edges depends on other possibly novel

edges, this addition step is repeated iteratively until no new edges

can be added or a pre-defined maximum number of iterations is

reached.

3.2.4 Splicing Graph Pruning

When multiple RNA-Seq samples are available, SplAdder allows for

an optional filtering step to reduce false positive edges. All edges

that are not supported by a given minimum number of RNA-Seq

samples will be pruned from the graph. Resulting orphan nodes that

were not present in the initial graph will be pruned as well.
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3.3 Detect and quantify alternative splicing events
Based on the augmented splicing graph, we extract various classes of

AS events as subsets of connected nodes. SplAdder currently sup-

ports the following event types: exon skip, intron retention, alterna-

tive 30 and alternative 50 splice sites, multiple exon skips as well as

mutually exclusive exons. Note, that currently alternative transcript

starts and ends are not detected, as they are products of alternative

transcriptional processing rather then results of alternative splicing.

Each event is then represented as a ‘mini-gene’ consisting of two

splice variants minimally describing the alternatives of the event.

Overlapping events that share the same intron coordinates and do

only differ in the flanking exon ends are merged into a short com-

mon representation. We refer to Supplemental Section B.1 for the

formal definitions of all classes of alternative events and a detailed

description of the extraction algorithms.

Finally, the event set identified from the splicing graph is quanti-

fied using the given read alignment data. For each event, we report

the mean coverage of each exon and the number of spliced align-

ments supporting each intron. Remember, that to speed up the

quantification process, the read counting is performed on the seg-

ment graph representation defined above. Thus, no exon position

needs to be quantified twice.

3.4 Differential analysis
If the set of input samples can be separated into two or more groups

representing different conditions, the splice quantifications pro-

duced by SplAdder can be subjected to differential testing. For this,

SplAdder provides two basic strategies. The first is to use the

SplAdder output files that describe event structure and quantifica-

tion as input to other tools dedicated to analyze differential expres-

sion, such as rDiff (Drewe et al., 2013) or DESeq (Reyes et al.,

2012). In previous studies, we have generally used the combination

of SplAdder and rDiff. In this case, the mini genes predicted by

SplAdder are re-quantified by rDiff and subjected to a test for differ-

ential relative transcript usage.

The second strategy is to directly use the exon-intron junction

counts generated by SplAdder to apply a differential test. Briefly, we

model junction read counts with a negative binomial distribution and

employ a generalized linear model (GLM) framework for testing similar

to (Love et al., 2014). Similar to the previous approach, we use the sam-

ple replicate to estimate a mean variance relationship to better account

for overdispersion. Details of the GLM based test are provided in

Supplemental Section C. This strategy can be run as part of the

SplAdder pipeline. It directly accesses the event quantifications and is

computationally more efficient than the previous hybrid approach. We

have included both strategies into our evaluation presented in Section 4.

3.5 Visualization
SplAdder also provides means for publication-ready visualization of

the RNA-seq read coverage of exon positions and of intron junc-

tions. Visualization allows for effective visual inspection of identi-

fied alternative splicing events in light of primary read data. These

visualizations provide summarization of multiple samples as well as

the comparison of different groups of samples to highlight differen-

tial splicing over several replicate groups or conditions. An example

is provided in Supplemental Figure S8.

4 Evaluation and applications

The SplAdder approach has been successfully applied in various bio-

logical studies on Arabidopsis thaliana (Drechsel et al., 2013; Gan

et al., 2011) as well as in the context of large-scale cancer projects

with several thousand RNA-seq libraries (Weinstein et al., 2013).

Here, we have created several sets of simulated data to evaluate

SplAdder. Simulated data allows for an accurate measure of per-

formance and provides a ground truth for a fair comparison against

other existing methods. To allow as little bias as possible towards

our own method, we used an external data simulator (Griebel et al.,

2012). In the following, we describe the generated datasets and

which evaluations were performed on them.

4.1 Data simulation
4.1.1 Detection of novel events

We have used the FluxSimulator (Griebel et al., 2012) toolbox to

simulate RNA-Seq datasets of sizes 5 million, 10 million and 20 mil-

lion reads, covering 1000 genes randomly selected from the human

GENCODE annotation (v19) (Harrow et al., 2012) at various

depths. For this analysis, we put our main focus on the sensitive de-

tection of novel alternative splicing events. Thus, we pre-filtered the

annotation to genes that had at least two transcripts annotated.

All reads were aligned to the human reference genome using the

STAR (Dobin et al., 2013) as well as the TopHat2 (Kim et al., 2013)

aligners to show the applicability of our pipeline in a general con-

text. In both cases, we provided the full reference annotation for

index creation. TopHat2 implements a 2-pass alignment mode per

default. As this mode is optional for STAR, we ran it with and with-

out 2-pass mode to also get a better understanding of its benefits. In

addition to the alignment output, we also transformed the simulated

read alignments into BAM format and used it as optimal input for

the splice prediction tools, best reflecting ground truth information.

To simulate a realistic scenario of detecting novel AS events

based on the provided RNA-Seq alignments only, we provided only

a reduced annotation to the tools performing the AS event predic-

tion. This reduced representation contains only the first annotated

transcript of a gene, where first is defined as first occurrence in the

complete annotation file.

For further details on dataset creation and alignment, including

all command line parameter settings, we refer to Supplemental

Section D.

4.1.2 Differential analysis

The simulated data for the analysis of differential testing was taken

from the publication of rDiff (Drewe et al., 2013), a tool for the detec-

tion of differentially expressed transcripts from RNA-Seq data. The two

datasets consist of 5785 genes each, where one half of the genes shows

differential relative transcript expression and the other half does not.

The rDiff publication gives further details on dataset generation.

4.2 Evaluation
4.2.1 Detection of novel events

We used the Astalavista toolbox (Foissac and Sammeth, 2007) to ex-

tract all annotated alternative splicing events from the set of the ran-

domly chosen 1000 genes that we used for data simulation. In

contrast to the individual prediction tasks, Astalavista had access to

all annotated transcripts of a gene and thus generated our ground

truth set used for evaluation later on. Astalavista generates output

following a well-defined nomenclature (Guig�o Serra et al., 2008).

The single AS event predictors were run on the limited annotation

containing only the first transcript but had access to the RNA-Seq

data generated from the non-constrained annotation set. We then

converted the output of all other tools into the well-defined

Astalavista format to allow for an easy comparison. For each of the
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four AS event types (exon skip, intron retention, alternative 30 splice

site and alternative 50 splice site), we compared the predictions to the

ground truth set and computed precision, recall and F-score metrics.

For this evaluation we considered JuncBase, rMATS,

SpliceGrapher and SplAdder.

4.2.2 Event quantification

Based on the read data simulated for the detection of novel events,

we were also able to evaluate the event quantifications provided by

the respective approaches. We based all our analyses on percent

spliced in (PSI) values, as they are an accepted standard in the com-

munity. To generate the ground truth PSI values, we took the rela-

tive expression of a transcript for each gene as simulated by

FluxSimulator. For each alternative splicing event, we computed its

PSI value as the ratio between the sum of abundances of transcripts

that represented the inclusion (e.g. not skipping the exon in an exon

skip event) over the sum of abundances of all transcripts containing

any of the event exons.

The so generated PSI values were then used as ground truth for

comparison of the predicted event quantifications. Only the cor-

rectly detected events of each approach could be compared to the

ground truth quantifications. We used the Pearson correlation coef-

ficient as a measure of agreement between predicted and true PSI

values.

This evaluation was performed for JuncBase, rMATs and

SplAdder, as SpliceGrapher does not provide quantification values.

4.2.3 Differential analysis

The two test sets taken from (Drewe et al., 2013) contain 5785

genes each that either do (2937) or do not (2938) show differential

transcript usage. One dataset shows small variability and the other

large variability, which we will further refer to as the small and large

dataset, respectively. For each dataset, we used the set of differential

genes as ground truth and counted a prediction as a true positive if

the tool found at least one significant AS event in that gene. From

this we generated receiver operating characteristic (ROC) curves

with increasing significance cut-offs to evaluate each tool’s

performance.

For this analysis we compared only rMATS, JuncBase and

SplAdder, as SpliceGrapher does not provide differential testing

functionality.

5 Results

5.1 Detection of novel events
Based on the three sets of simulated reads and the different align-

ments performed on these read sets, we evaluated how well the sin-

gle prediction tools can reconstruct the splicing variability in the

sample from read alignments and limited annotation. In comparison

to the ground truth dataset generated by using Astalavista on

the non-restricted annotation file, we computed precision, recall and

F-Score metrics for four types of AS events (Figs 2, S6 and S7).

In general we find varying accuracies across the different event

types, with consistent patterns for all the tested tools. Intron reten-

tions are the most difficult to predict and exon skips the easiest.

rMATS was able to detect only two kinds of events on the data we

provided: exon skips and mutual exclusive exons. Only exon skips

were part of our evaluation. All event types that were not predicted

are shown as bars of height zero. We also would like to note, that

the simulated data resembles a polyA selected library. When work-

ing with non-polyA selected, rRNA depleted libraries, performance

will likely be worse, as incompletely spliced transcripts will be

amongst the sequenced fragments, diluting the signal.

Across all event types, sample sizes and alignment methods

SplAdder shows the best performance compared to the other tools.

Although rMATS shows the highest precision on the predicted exon

skip events (0.965, cf. Supplemental Fig. S6), it has a considerably

lower recall, thus affecting its overall performance. Further, it does

not predict any of the other assessed types. In contrast JuncBase

shows a generally high recall but predicts many false positive events,

resulting in a low precision (cf. Supplemental Figs S6 and S7).

A high read coverage has, in general, a positive effect on predic-

tion accuracy with better results for the samples covered at a higher

depth. However, we observed some instances where high coverage

results in lower performance, most likely due to more false positives

in the predicted set.

5.2 Event quantification
For all events that were correctly predicted by each approach, we

compared the associated PSI value to the ground truth computed on

the simulated abundances.

In general, we observe good correlation between predicted and

true PSI values (cf. Supplemental Table F for a list of all coeffi-

cients). Whereas SplAdder shows the highest correlation for exon

skip events, JuncBase has slightly higher accuracy for the other event

types, although closely followed by the SplAdder predictions. As

rMATS only predicted exon skip events, we could only include this

one event type into our comparison.

We did not observe large differences between correlation values

for the different aligners. Interestingly, a higher read depth led to

slightly lower quantification accuracies for all tools, even when

using the unaligned ground truth read data. We speculate that this is

an effect of the simulation tool. However, since we use the reads

only for a relative comparison of the different approaches, our

evaluation should not suffer from this.

5.3 Differential analysis
SplAdder can be utilized in two different ways to compare alterna-

tive splicing between samples. One approach is to use the event

mini-genes output by SplAdder as input to other tools for the ana-

lysis of differential transcript usage. For our experiments, we use

rDiff and refer to this use case as SplAdderþ rDiff. In addition, we

recently added a testing module to the SplAdder core pipeline that

uses a Generalized Linear Model (GLM), which we will refer to as

SplAdderþGLM in the following evaluations. Based on the two

artificial datasets described above, we find that SplAdder shows

very good performance overall when compared to other testing

approaches (Fig. 3).

In the range of a low false positive rate, the performance of

SplAdderþ rDiff is comparable to rMATS and slightly inferior to

SplAdderþGLM. This is consistent for both the small and large

variance dataset. JuncBase uses a t-test for assessing the different

groups of samples, which appears less well suited for testing read

count data, as it leads to relatively many false positives at high confi-

dence. The ROC curve shape directly reflects this.

5.4 Software and usability
We have taken great care when implementing the SplAdder ap-

proach. It has been developed in Matlab but was translated into

Python to improve accessibility. Both implementations provide the

same functionality, however we will continue future development in

Python only. When it comes to usability, SplAdder is a convenient

SplAdder: analysis of alternative splicing events from RNA-Seq data 1845

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw076/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw076/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw076/-/DC1


one-stop-shop that provides all analysis within a single pipeline.

With one simple command line call specifying the parameter set, all

subsequent steps are automatized. In addition, the pipeline can be

broken into single steps if necessary.

All other tested approaches required invocation of multiple sep-

arate tool components and required custom scripting on the user

side to form a coherent pipeline. A single exception is rMATS that is

also well engineered and is quite usable. Most of this also reflects in

the running times of the implementations (cf. Supplemental Table

E). Whereas rMATS and SplAdder have quite low running times,

JuncBase and SpliceGrapher are considerably slower. Especially the

Cufflinks preprocessing for JuncBase is very compute intense, with

up to 30 h for some evaluation samples of the largest size. Thus, we

have excluded this preprocessing time from the running time table

for JuncBase.

We believe that SplAdder’s improved usability is an important

feature that will enable comprehensive AS analysis on RNA-Seq

data for a wider audience than with previous methods. Our method

is particularly timely, given the ubiquitous presence of available

RNA-seq data, high interest in quantifying splicing phenotypes, and

scalability to process thousands of samples.

6 Conclusion

We present SplAdder, a novel approach for the large-scale analysis of

alternative splicing events based on RNA-Seq data. We also provide a

thoroughly engineered software implementation that is straightfor-

ward to use and can be easily deployed in a high performance com-

puting framework. SplAdder has been successfully applied to splicing

analysis in various organisms, compares favorably to various other

(a)

(b)

(c)

(d)

Fig. 2. SplAdder evaluation results. This matrix of bar charts summarizes the evaluation results for the comparison of rMATS, SpliceGrapher, JuncBase and SplAdder

(see legend) on different sets of simulated RNA-Seq read data. The metric shown here is the F-Score, defined as the harmonic mean of precision and recall. (Plots of

the same design with details on precision and recall are provided in Supplemental Figs S6 and S7.) The rows of the plot matrix represent four different event types: (a)

exon skip, (b) intron retention, (c) alternative 30 splice site and (d) alternative 50 splice site. The columns represent different read set sizes (5 million, 10 million, 20 mil-

lion). The four bar groups represent the different aligners used (from left to right: STAR 1-pass, STAR 2-pass, TopHat2 and the simulated ground truth alignment) (Color

version of this figure is available at Bioinformatics online.)

1846 A.Kahles et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw076/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw076/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw076/-/DC1
http://bioinformatics.oxfordjournals.org


state of the art methods showing an overall high accuracy and can be

readily applied to datasets of thousands of samples. We are working

to further improve SplAdder to natively work with high performance

compute clusters and generate more interactive visualizations.

Acknowledgements

The authors are grateful to Vipin T Sreedharan for providing code to convert

annotation files, to Andreas Wachter for valuable discussions and feedback

on the software and to David Kuo for proofreading.

Funding

Funding was provided by the Max Planck Society, Memorial Sloan Kettering

Cancer Center, by the German Research Foundation (RA1894/2-1) and the

Lucille Castori Center for Microbes, Inflammation, and Cancer (No. 223316).

Conflict of Interest: none declared.

References

Behr,J. et al. (2013) MITIE: Simultaneous RNA-Seq-based transcript identifi-

cation and quantification in multiple samples. Bioinformatics, 29,

2529–2538.

Brooks,A.N. et al. (2011) Conservation of an RNA regulatory map between

Drosophila and mammals. Genome Res., 21, 193–202.

Dobin,A. et al. (2013) STAR: ultrafast universal RNA-seq aligner.

Bioinformatics, 29, 15–21.

Drechsel,G. et al. (2013) Nonsense-mediated decay of alternative precursor

mRNA splicing variants is a major determinant of the arabidopsis steady

state transcriptome. Plant Cell, 25, 3726–3742.

Drewe,P. et al. (2013) Accurate detection of differential RNA processing.

Nucleic Acids Res., 41, 5189–5198.

Eichner,J. et al. (2011) Support vector machines-based identification of alter-

native splicing in Arabidopsis thaliana from whole-genome tiling arrays.

BMC Bioinf., 12, 55

Foissac,S. and Sammeth,M. (2007) Astalavista: dynamic and flexible analysis

of alternative splicing events in custom gene datasets. Nucleic Acids Res.,

35, W297–W299.

Gan,X. et al. (2011) Multiple reference genomes and transcriptomes for

Arabidopsis thaliana. Nature, 108, 10249–10254.

Griebel,T. et al. (2012) Modelling and simulating generic RNA-Seq experi-

ments with the flux simulator. Nucleic Acids Res., 40, 10073–10083.

Guig�o Serra,R. et al. (2008) A general definition and nomenclature for alterna-

tive splicing events. PLoS Comput. Biol., 4, e1000147.

Guttman,M. et al. (2010) Ab initio reconstruction of cell type-specific tran-

scriptomes in mouse reveals the conserved multi-exonic structure of

lincRNAs. Nat. Biotechnol., 28, 503–510.

Harrow,J. et al. (2012) GENCODE: The reference human genome annotation

for The ENCODE Project. Genome Res., 22, 1760–1774.

Heber,S. et al. (2002) Splicing graphs and est assembly problem.

Bioinformatics, 18, 181–188.

Katz,Y. et al. (2010) Analysis and design of RNA sequencing experiments for

identifying isoform regulation. Nat. Methods, 7, 1009–1015.

Kianianmomeni,A. et al. (2014) Genome-wide analysis of alternative splicing

in volvox carteri. BMC Genomics, 15, 1117.

Kim,D. et al. (2013) TopHat2: accurate alignment of transcriptomes in the pres-

ence of insertions, deletions and gene fusions. Genome Biol., 14, R36.

Kornblihtt,A.R. et al. (2013) Alternative splicing: a pivotal step between eukary-

otic transcription and translation. Nat. Rev. Mol. Cell Biol., 14, 153–165.

Love,M.I. et al. (2014) Moderated estimation of fold change and dispersion

for RNA-seq data with deseq2. Genome Biol., 15, 550.

Modrek,B. and Lee,C. (2002) A genomic view of alternative splicing. Nat.

Genet., 30, 13–19.

Pan,Q. et al. (2008) Deep surveying of alternative splicing complexity in the human

transcriptome by high-throughput sequencing. Nat. Genet., 40, 1413–1415.

Reyes,A. et al. (2012) Detecting differential usage of exons from RNA-Seq

data. Genome Res., 22, 2008–2017.

Rogers,M.F. et al. (2012) SpliceGrapher: detecting patterns of alternative

splicing from RNA-Seq data in the context of gene models and EST data.

Genome Biol., 13, R4

Shen,S. et al. (2014) rmats: Robust and flexible detection of differential alter-

native splicing from replicate rna-seq data. Proc. Natl. Acad. Sci. U. S. A.,

111, E5593–E5601.

Trapnell,C. et al. (2010) Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell differenti-

ation. Nat. Biotechnol., 28, 511–515.

Wang,E.T. et al. (2008) Alternative isoform regulation in human tissue tran-

scriptomes. Nature, 456, 470–476.

Weinstein,J.N. et al. (2013) The Cancer Genome Atlas Pan-Cancer analysis

project. Nat. Genet., 45, 1113–1120.

Wu,J. et al. (2011) Splicetrap: a method to quantify alternative splicing under

single cellular conditions. Bioinformatics, 27, 3010–3016.

Fig. 3. Differential testing evaluation. Testing accuracy for four different methods (SplAdderþGLM, SplAdderþ rDiff, rMATS and JuncBase; see legend). Each

plot represents a different test set. The plot shown on the left represents the sample dataset with large biological variance between replicates, whereas the plot

on the right is based on the sample set with small biological variance between replicates. The dashed line represents the diagonal and reflects the performance

of a random assignment of classes (Color version of this figure is available at Bioinformatics online.)
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