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The design of mesoporous or hollow transition metal oxide/carbon hybrid catalysts is

very important for rechargeable Li-O2 batteries. Here, spindle-like Fe2O3 with hollow

mesoporous structure on CNTs backbones (Fe2O3-HMNS@CNT) are prepared by a

facile hydrolysis process combined with low temperature calcination. Within this hybrid

structure, the hollow interior and mesoporous shell of the Fe2O3 nanospindles provide

high specific surface area and abundant catalytical active sites, which is also beneficial to

facilitating the electrolyte infiltration and oxygen diffusion. Furthermore, the crisscrossed

CNTs form a three-dimensional (3D) conductive network to accelerate and stabilize the

electron transport, which leads to the decreasing internal resistance of electrode. As a

cathodic catalyst for Li-O2 batteries, the Fe2O3-HMNS@CNT composite exhibits high

specific capacity and excellent cycling stability (more than 100 cycles).

Keywords: hollow mesoporous structure, carbon support, transition metal oxides, cathodic catalyst, Li-O2

batteries

INTRODUCTION

To meet the global energy demand, the development of the clean and sustainable energy storage
or conversion devices is very important (Tarascon and Armand, 2011; Lu et al., 2014; Wang et al.,
2017; Zhang et al., 2018; Gao et al., 2019). Rechargeable Li-O2 battery has attracted wide attention as
a new energy storage device, due to its high theoretical energy density (∼3,500Wh kg−1) (Tarascon
and Armand, 2011; Lu et al., 2014). However, the practical application of Li-O2 batteries still suffer a
series of problems, including high overpotentials, low rate capacity and poor cycle stability, which
primarily originates from its sluggish kinetics for oxygen reduction reaction (ORR) and oxygen
evolution reaction (OER) (Bruce et al., 2012; Wang et al., 2014). At the cathode (air electrode), the
gradual formation of the insoluble discharge products Li2O2 may block the inward oxygen diffusion
of and electrolyte infiltration, which results in the rapid decline of battery performance (Zhao
et al., 2015; Wang et al., 2016). To overcome these challenges, the design and development of the
high-performance catalysts for oxygen-involved reactions are highly desired for the Li-O2 batteries.

In recent years, a lot of the efforts have been devoted to investigate the highly active and stable
catalysts for the Li-O2 batteries, such as carbons, precious metals, and transition metal oxides. As
the common catalysts, the inexpensive carbon materials have high surface area, nevertheless, their
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limited catalytic activity for both OER and ORR restricts the
battery performance of the Li-O2 batteries (Girishkumar et al.,
2010; Shui et al., 2013). Since the nanoporous gold (NPG) was
used as a cathode catalyst, various precious metals (e.g., Ru,
RuO, and Pd) have been adopted in the Li-O2 batteries (Peng
et al., 2012; Lu et al., 2013; Ottakam Thotiyl et al., 2013; Li
et al., 2014, 2015). Although the cyclic stability can be distinctly
enhanced by precious metal catalysts, the battery capacity is
severely restricted because of the highly chemical formula weight.
Moreover, high price of precious metals also hinders the large-
scale commercialization in the Li-O2 batteries. Benefiting from
the low cost, high stability and good catalytic performance,
transition metal oxides have been proposed as the promising
catalysts for the Li-O2 batteries (Wang H. et al., 2012; Chen
et al., 2016; Gong et al., 2016, 2018a,b; Xue et al., 2016a,c; Dai
et al., 2017; Tan et al., 2017; Feng et al., 2019). Many researches
have indicated that Fe-based materials possess high catalytic
activities for ORR in fuel cells and OER in water electrolysis
(Bates et al., 2016; Song et al., 2019). Recently, some reports began
to focus on iron oxides (Fe2O3), which can serve as the cathode
catalyst in Li-O2 batteries (Zhang et al., 2014). These works show
the enhanced electrochemical performance (e.g., higher capacity
and lower overpotentials) of the Li-O2 batteries, however the
cycling performance still needs to further improve. Therefore,
it is necessary to explore an effective approach to enhance the
catalytic performance of Fe2O3-based materials.

Tailoring of the morphology is an important method
for obtaining the high-performance catalysts in various
electrochemical application. Mesoporous hollow architectures
show high surface area and large pore volume, which offers fast
electron transfer paths and facilitates the electrolyte infiltration
(Kresge et al., 1992; Inagaki et al., 2002; Malgras et al., 2016).
Normally, mesoporous or hollow metallic oxide are prepared
through the template-basedmethods, using either hard templates
(e.g., carbon sphere and mesoporous silica) or soft templates
(e.g., surfactants and polymer) (Attard et al., 1997; Crossland
et al., 2013; Liu et al., 2015; Xue et al., 2016d). For these
template methods, the multi-step processes are unavoidable,
and the mesoporous of hollow structures may be damaged after
removing the templates. Moreover, the resultant mesoporous or
hollow frameworks often show poor crystalline degree and even
amorphous, which limits their electrochemical performance
(Lin et al., 2015). It should be noted that the low electronic
conductivity is an intrinsical characteristic of the most metallic
oxides. Although most of pure carbon materials possess low
catalytic activity for OER and ORR, they are identified as the
good catalyst support due to their high electric conductivity and
large specific surface area (Hsin et al., 2007; Stein et al., 2009; Wu
et al., 2009; Xia et al., 2018). Among various carbonmaterials, the
carbon nanotubes (CNTs) show low density, very high strength,
high chemical stability, and excellent conductivity (Sathiya et al.,
2011; Wang Z. et al., 2012; Ma et al., 2018). These advantages
are beneficial to fabricate hybrid or composite materials in many
applications by using CNTs as useful substrates. However, the
fabrication of mesoporous hollow Fe2O3 with high crystalline
degree supported on CNTs by a simple and effective method is
still an important challenge.

Inspired by the above idea, we proposed a Fe2O3/CNTs
composite (denoted as Fe2O3-HMNS@CNT) prepared by
using a simple hydrolysis reaction combined with heat
treatment, in which spindle-like Fe2O3 with hollow mesoporous
structure grown on CNTs backbones. Their hollow interior and
mesoporous shell with high specific surface area offer abundant
catalytical active sites for OER and ORR, which also promotes
the diffusion and infiltration of electrolyte. Furthermore, a great
deal of the crisscrossed CNTs form the three-dimensional (3D)
conductive network, which benefits the fast and stable electron
transport. As a cathodic catalyst for Li-O2 batteries, the Fe2O3-
HMNS@CNT exhibits good battery performance, especially
excellent outstanding cycling stability (100 cycles).

EXPERIMENTAL METHODS

Hollow Mesoporous Fe2O3 Nanospindles
on CNT Backbones
Carbon nanotubes (CNTs, 30–60 nm in diameter and 5–15µm
in length) were purchased from Shenzhen Nanotech Port Co. Ltd
(Shenzhen, China). CNTs were refluxed inHNO3 and then rinsed
with distilled water. After drying, the obtained CNTs (10mg) was
dispersed in FeCl3 solution (20mL, 0.12M) under sonication for
1 h. Then, the suspension was heated at 75◦C for 6 h in an oil bath
with stirring. After several rinsing combined with sonication, the
products were dried at 60◦C. Finally, the above products were
annealed at 400◦C for 4 h in air by using a slow heating rate
(0.5◦C min−1) to form hollow mesoporous Fe2O3 nanospindles
on CNT backbones.

Materials Characterization
The X-ray diffraction (XRD, Bruker D8 advance) with Cu Ka
radiation (λ = 1.5406 Å) is used to analyze the crystal structure
of the sample. The N2 adsorption–desorption measurements
conducted on a ASAP-2010 analyzer to investigate the pore
structure. The Brunauer-Emmet-Teller (BET) method is used
to calculate the specific surface area. The morphology and
microstructure are observed by using field-emission scanning
electron microscope (FE-SEM, Hitachi S-4800) and high-
resolution transmission electron microscope (HR-TEM, JEOL
JEM-2100), respectively.

Electrochemical Measurement
The electrochemical measurements are tested under two-
electrode system at room temperature in the pureO2 atmosphere,
using Li plate as the counter and reference electrode. The work
electrode is prepared bymixing Fe2O3-HMNS@CNT catalyst (50
wt %), Super P (45 wt %) and polytetrafluoroethylene (PTFE)
binder (5 wt %), followed by vacuum drying at 100◦C for 12 h.
The capacity and current density of the sample is calculated by
the whole electrode’ weight. For the assembling of Li-O2 battery,
the working electrode and Li plate are separated by a glass-
fiber separator in coin cell. The tetraethylene glycol dimethyl
ether (TEGDME) containing lithium bis(tri-fluoromethane-
sulfonyl)imide (LiTFSI) (1M) is used as electrolyte. The Land
2100 Charge/Discharge instruments are carried to test the
electrochemical measurements.
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FIGURE 1 | Schematic illustration of the preparation of the Fe2O3-HMNS@CNT composite.

FIGURE 2 | (A) XRD patterns, (B) N2 adsorption–desorption isotherms of the Fe2O3-HMNS@CNT composite.

RESULTS AND DISCUSSION

Figure 1 illustrates the fabrication of the mesoporous hollow
Fe2O3 nanocrystals covered on CNT by a simple hydrolysis
reaction combined with heat treatment. In order to facilitate
the nucleation and anchoring of the nanocrystals on the CNT
surface, these CNTs are functionally modified with carboxylic
or hydroxyl groups under acidic reflux. During the subsequent
stirring process, the electropositive Fe3+ ions can preferential
adsorb the electronegative oxygen-containing groups on CNTs
by the electrostatic attraction. Due to the hydrolysis of Fe3+ ions
followed by the olation/oxolation of the FeO6 units, the formed
spindle-like β-FeOOH nanocrystals can be spontaneously grown
on CNT backbones, which avoids the addition of any structure-
directing agent. The TG/DSC is used to explore the reactions
in the final annealing step (Figure S1). The TG curve show
two mainly weight loss processes at 300◦C and 300∼400◦C
during the annealing step, which are attributed to the conversion
from FeOOH into Fe2O3. The slowly intramolecular dehydration
results in the slow weight loss before 300◦C. After 300◦C,
a distinct weight loss can be found, which is originated
from the fast removal of the H2O molecules. After annealing
treatment in air, the spindle-like β-FeOOH nanocrystals are
converted to hollow mesoporous α-Fe2O3 nanospindles on CNT
backbones (denoted as Fe2O3-HMNS@CNT) by the thermal
dehydroxylation together with the lattice shrinkage.

The crystalline structure of the Fe2O3-HMNS@CNT
composite is confirmed by XRD analysis. As shown in Figure 2A,
the XRD pattern exhibits several intensively diffraction peaks
at the 2θ values of about 24.2, 33.2, 35.6, 39.3, and 40.9◦, which
are indexed to the (012), (104), (110), (006), and (113) facets
of the hexagonal α-Fe2O3. This result of XRD is in accord with
the standard card of α-Fe2O3 (JCPDS no. 33-0664). The pore
structure of the Fe2O3-HMNS@CNT composite is analyzed
by N2 adsorption–desorption isotherms (Figure 2B). It can be
seen that there is a type-IV curve of the Fe2O3-HMNS@CNT
with a distinctly hysteresis loop on N2 adsorption–desorption
isotherms, which indicates the typically mesoporous structure
(Deng et al., 2007; Xue et al., 2016b). Moreover, the nitrogen
uptake is found from 0.40 to 0.70 (P/Po), which can be
attributed to the mesoporous materials’ capillary condensation
of nitrogen. Based on N2 adsorption–desorption isotherms, the
specific surface area is calculated to be 97 m2 g−1. The above
results indicate that the Fe2O3-HMNS@CNT has a typically
mesoporous structure with high specific surface area.

The morphologies and structures of the Fe2O3-HMNS@CNT
composite are observed by scanning electron microscopy (SEM)
and transmission electron microscopy (TEM). As shown in
Figure S2, the CNT shows the typical one-dimensional tubular
structure with a diameter of ∼40 nm. Figure 3a reveals a
panoramic view of the sample, in which the spindle-like
nanocrystals grown on the entire surface of the sinuous CNTs
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backbones. It can be noted that there are many obvious porous
within the Fe2O3 nanospindles, as shown in Figures 3b,c. TEM
observation is used to further investigate the internal structure of
the sample. The spindle-like Fe2O3 nanocrystals have a diameter
of around 80 nm and a length of about 250 nm (Figure 3d),
which show a well-developed hollow interior (marked by orange
dotted line) and a typically mesoporous shell (marked by
purple dotted line) (Figure 3e). During the calcining process, the

decomposition-oxidation of the FeOOH can release abundant
H2O and gases, which leads to the formation of mesoporous
structure. On the other hand, the density of FeOOH (3 g cm−3)
is lower than that of the hematite (Fe2O3, 5.3 g cm−3), so some
internal mesoporous slowly forms the larger porous to maintain
the spindle-like structure during the lattice shrinkage process,
thus leading to the formation of the hollow interior together with
the mesoporous shell. As shown in Figure 3f, some clear lattice

FIGURE 3 | (a–c) FESEM, (d–f) HRTEM images of the Fe2O3-HMNS@CNT composite.

FIGURE 4 | (A) The fully discharging and charging curves in the first cycle and the SEM images [inset of (A)], (B) cyclic stability tested under a limited capacity (1,000

mAh g−1), and (C) the variation of the terminal charge/discharge voltages and specific capacity over 100 cycles of the Fe2O3-HMNS@CNT-based cathode.
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fringes with an interplanar spacing of 0.251 nm in a single Fe2O3

nanospindle, corresponding to the (110) planes of the hexagonal
α-Fe2O3, which confirms the formation of the α-Fe2O3 with
high crystallinity.

Inspired by the superiorities of material and structure, the
Fe2O3-HMNS@CNT composite is investigated as the cathodic
catalyst for rechargeable Li-O2 batteries. Figure 4A shows the
discharge and charge curves of the sample, which is tested under
O2 atmosphere with a current density of 200mA g−1. The Fe2O3-
HMNS@CNT-based cathode exhibits a large discharge capacity
of 7,730 mAh g−1 and a high discharge plateau (∼2.70V)
with the low overpotential for discharging (0.26V). Owing
to the low overpotential (1.10V) for the charge process, the
coulombic efficiency of the sample is closed to 100%. The
reversible formation/decomposition of the discharging product
Li2O2 can be confirmed by SEM (inset of Figure 4A). After
fully discharging (defined as II), it is seen that a mass of the
Li2O2 particles with the typically toroid-like shape uniformly
cover on the electrode surface, which is observably different from
the fresh electrode (defined as I). When the electrode is fully
charged, the formed Li2O2 particles is rarely observed (defined
as III), indicating high reversibility of the Fe2O3-HMNS@CNT-
based cathode. We further evaluate the cycling performance of
the Fe2O3-HMNS@CNT-based cathode, tesed under the limited
capacity (1,000 mAh g−1). It can be found that the sample has
the small discharge and charge overpotentials of 0.24 and 0.93V
in the first cycle, respectively, which implies the high catalytic
activity for both OER and ORR (Figure 4B). After 100 cycles, no
distinct change of the specific capacities of the sample is observed
in discharging/charging curves. Moreover, the discharging and
charging terminal voltages can still maintain in 2.6 and 4.3V.
These results exhibit the excellent cycling stability of the Fe2O3-
HMNS@CNT-based cathode (Figure 4C). As a reference, the
cycling stability of the Fe2O3-HMNS@CNT-based cathode is
much better than those of previously reported non-precious
metal/metal oxide-based materials (Table S1).

As the cathodic catalyst for rechargeable Li-O2 batteries,
the as-prepared Fe2O3-HMNS@CNT composite exhibits the
excellent cycling stability, which not only benefits by the intrinsic
material characteristics but also dependents on the morphology
and structure. On the one hand, these largely separated Fe2O3

nanospindles directly grown on the CNT backbones, which
makes them accessible to the electrolyte. Different from the
conventional nanoparticle catalysts, the adverse agglomeration of
the Fe2O3-HMNS@CNT can be effectively decreased, avoiding
the elimination of the active interfaces. The Fe2O3 with a hollow
interior and a mesoporous shell offers high specific surface area
and a mass of catalytical active sites, which also facilitates the
diffusion and infiltration of electrolyte. On the other hand, the 3D
conductive network composed of the crisscrossed CNTs ensures

the fast and stable electron transport, leading to the lower internal
resistance of electrode.

CONCLUSION

In summary, we successfully fabricated hollow mesoporous
Fe2O3 nanospindles on CNTs (Fe2O3-HMNS@CNT) though a
simple hydrolysis reaction followed by a heat treatment, which
are served as cathodic catalyst for Li-O2 batteries. In this catalyst
design concept, the spindle-like Fe2O3 nanocrystals possess the
hollow interior and mesoporous shell, which not only provides
high specific surface area and abundant catalytical active sites
but also facilitates the diffusion and infiltration of electrolyte.
Moreover, the 3D conductive network formed by the crisscrossed
CNTs ensures the fast and stable electron transport, reducing
internal resistance of electrode. Benefiting from the intrinsic
material characteristics and structural superiorities, the Fe2O3-
HMNS@CNT catalyst shows high specific capacity and excellent
cyclic stability.
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