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Abstract: Non-specific orbital inflammation (NSOI) and IgG4-related orbital disease (IgG4-ROD) are
often challenging to differentiate. Furthermore, it is still uncertain how chronic inflammation, such as
IgG4-ROD, can lead to mucosa-associated lymphoid tissue (MALT) lymphoma. Therefore, we aimed
to evaluate the diagnostic value of gene expression analysis to differentiate orbital autoimmune
diseases and elucidate genetic overlaps. First, we established a database of NSOI, relapsing NSOI,
IgG4-ROD and MALT lymphoma patients of our orbital center (2000–2019). In a consensus process,
three typical patients of the above mentioned three groups (mean age 56.4 ± 17 years) at similar
locations were selected. Afterwards, RNA was isolated using the RNeasy FFPE kit (Qiagen) from
archived paraffin-embedded tissues. The RNA of these 12 patients were then subjected to gene
expression analysis (NanoString nCounter®), including a total of 1364 target genes. The most
significantly upregulated and downregulated genes were used for a machine learning algorithm
to distinguish entities. This was possible with a high probability (p < 0.0001). Interestingly, gene
expression patterns showed a characteristic overlap of lymphoma with IgG4-ROD and NSOI. In
contrast, IgG4-ROD shared only altered expression of one gene regarding NSOI. To validate our
potential biomarker genes, we isolated the RNA of a further 48 patients (24 NSOI, 11 IgG4-ROD, 13
lymphoma patients). Then, gene expression pattern analysis of the 35 identified target genes was
performed using a custom-designed CodeSet to assess the prediction accuracy of the multi-parameter
scoring algorithms. They showed high accuracy and good performance (AUC ROC: IgG4-ROD 0.81,
MALT 0.82, NSOI 0.67). To conclude, genetic expression analysis has the potential for faster and more
secure differentiation between NSOI and IgG4-ROD. MALT-lymphoma and IgG4-ROD showed more
genetic similarities, which points towards progression to lymphoma.

Keywords: idiopathic orbital inflammation; MALT; lymphoma; IgG4-ROD; non-specific orbital
inflammation; pseudotumor orbitae; IgG4-related orbitopathy

1. Introduction

Different non-infectious inflammatory orbital diseases have been described as ‘orbital
pseudotumor’ in the past, due to their similar clinical presentation. By means of the
evolving histopathological and molecular analysis of biopsies, more and more entities were
excluded from this broad diagnosis (e.g., vasculitis, lymphoproliferative disorders) [1].
Despite still being commonly used, an orbital pseudotumor has been widely replaced
by labels reflecting better the clinical and histopathological aspects of the disease: non-
specific orbital inflammation (NSOI), idiopathic orbital inflammation (IOI) and ‘idiopathic
non-granulomatous orbital inflammation’ have been suggested, among others, instead
of the old terminology [2–4]. In the following, the terminus “NSOI” will be used for the
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sake of simplicity, defining it as an inflammatory process of the orbit without underlying
systemic or local cause. It is still a diagnosis with heterogeneous clinical and histological
presentations and remains a diagnosis of exclusion [4]. Typically, patients present with
unilateral exophthalmos, pain, periorbital edema and erythema, as well as diplopia [5].
Since these symptoms are unspecific, they cannot be used for robust diagnosis [6]. Due
to the heterogeneous nature of the disease, NSOI can be subcategorized with regard to
onset of symptoms, location and histopathology [1,3–5]. Before diagnosing NSOI, the
clinician has to mind numerous clinical similar diagnoses (e.g., IgG4-related orbital disease,
orbital lymphoma, sarcoidosis); therefore, most patients need an orbital biopsy even
after radiological imaging [7]. Despite all the advances in histopathological techniques
(e.g., immunostaining), the differentiation between NSOI and IgG4-related orbital disease
(IgG4-ROD) remains challenging [1,8,9]. Furthermore, some patients with NSOI respond
very well to steroids, whereas others need multiple steroid sparing therapies to prevent
relapses and maintain a stable state. Therefore, we aimed to distinguish between these
different autoimmune orbital diseases, and NSOI in particular, depending on their clinical
course, at the molecular level. Methodically, we used NanoString nCounter technology,
which allows high-throughput, precise and reliable RNA analysis, even of formalin-fixed,
paraffin-embedded tissue (FFPE) [10]. Previous studies have shown that FFPE tissue can be
used as a feasible source for gene expression analysis and delivers similar results compared
to fresh-frozen tissue [11]. This allowed us to use routinely acquired and stored orbital
biopsies, which is a great advantage for elucidation of such a rare disease. The technology
detects abnormally altered genes or molecular pathways and is therefore an ideal tool
for the gene expression and transcriptome analysis of these orbital diseases to enable
better diagnostic differentiation in the future. Furthermore, we aimed to elucidate the
mechanisms for progression of these chronic inflammatory diseases to the most common
orbital neoplasm: MALT (mucosa-associated tissue) lymphoma. Therefore, we analyzed all
orbital inflammatory diseases retrospectively and selected three patients for each group for
a broad RNA expression analysis and detection of marker genes. Secondly, we analyzed a
larger cohort regarding the initially found genes to validate the results.

2. Results
2.1. Study Population

Among the 60 patients, the mean age was 59.4 ± 16.7 years and 24 (42%) were female.
We initially analyzed 12 acute inflamed biopsy specimens from 12 patients, including 3
suffering from IgG4-ROD, 3 with uncomplicated NSOI, 3 with relapsing NSOI and 3 orbital
MALT-lymphoma patients. The validation cohort comprised of 48 independent patients:
11 IgG4-ROD, 13 MALT lymphoma and 24 NSOI (Table 1). Statistical analysis for age
between groups showed that the NSOI patients were significantly younger compared to
the lymphoma patients (ANOVA with Holm–Šídák’s multiple comparisons test, adjusted
p = 0.0012), but not compared to IgG4-ROD patients (p = 0.07). IgG4-ROD and MALT
also showed no significant age difference (p = 0.27). This is in accordance with previous
publications [4,7].

Table 1. Demographic features of patients with non-specific orbital inflammation, IgG4-related orbital
disease and orbital MALT lymphoma in our RNA expression analysis study.

NSOI IgG4-ROD MALT Lymphoma p

Number 30 14 16
Age 52 ± 16.89 63 ± 13.59 69 ± 11.5 0.0013 a

Females 45% 46% 30% 0.36 b

Unless otherwise stated, the data are the means ± SD or proportions (%) or median (x̃) (range); a: ANOVA
analysis; b: Fisher’s Exact test
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2.2. Clinical Examination

Eyelid swelling, pain, redness, proptosis, ptosis, limited ocular motility, corneal dry-
ness and visual dysfunction were the typical clinical presentations of all patients, showing
variety according to the amount and type of orbital tissue involved. The patients showed
across entities similar clinical signs without significant differences (Figure 1).
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Figure 1. Clinical symptoms present in our index population stratified for each disease entity and
subtype of disease.

2.3. Expression Analysis

Gene expression analysis was successful in all 12 samples. After biological and
technical normalization, 370 (29.3%) out of 1263 genes were identified as transcripts with
relevant gene expression in at least one of the three groups, NSOI, lymphoma and IgG4-
ROD, respectively. For each subgroup, significantly altered genes were extracted and
investigated.

Comparing NSOI with all other groups, 13/370 (3.8%) genes showed significant
deregulation after adjustment. Of those, 12 showed upregulation in NSOI (see Table 2)
and one presented with downregulation (RPS27A) (see Table S2 for detailed information).
For the lymphoma group, 247/370 (66.8%) showed significantly altered gene expression
levels compared to all others (see Table 2 for the top 20 differentially expressed genes)
Noticeable, all those genes showed reduced expression levels (Table S3 for details on all
genes). Furthermore, for the IgG4-ROD group, 62/340 (18.2%) relevantly expressed genes
show altered gene expression levels compared to the other groups, including 61 upregulated
and one downregulated target expression (see Table 2 for the top 20 differentially expressed
genes and Table S4 for all). Interestingly, there was a relatively large overlap between genes
differentially expressed in NSOI and lymphoma (10/13 (76.9%) NSOI genes and 10/247
(4%) of lymphoma genes) or IgG4-ROD and lymphoma (39/62 (62.9%) IgG4-ROD genes
and (39/247 (15.4%) of lymphoma genes), whereas NSOI and IgG4-ROD showed only
1 overlap (7.7% of NSOI and 1.6% of IgG4-ROD genes, Figure 2). Those overlaps are mainly
based on the significant downregulation of genes in the lymphoma group and specific
upregulation in the two other respective groups.
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Table 2. Top differentially expressed genes for each entity.

NSOI IgG4-ROD MALT Lymphoma

AQP1 *, ANG *, NR4A3 *,
SDC4 *, NME4 *, ID1, ITGA7 *,
PDCL3 *, ERBB2 *, CALD1 *,

BMPR1A *, TNXB * and
RPS27A *

ADAM9, CLEC2B *, RNH1 *,
TLR4 *, RBX1 *, CLIC4.

ANXA2P2 *, RHOA *, NRP1,
FCGR3A/B, TNFRSF1A *,
GPX1 *, TCEB1 *, PSMD7,

HSP90B1, TNFSF12, GIMAP4,
PTGIS, PNPLA6, TGFB1,

FCGR2A *
and ADAM17 *

CLIC4 *, JAG1 *, RAC1 *, TNS1
*, APP *, HSPB1 *, MEG3 *,
NRP1 *, RTN4 *, LGALS3 *,
DST, CD59 *, CFH, AQP1,

ADAM15, AEBP1, ALDOA,
ANPEP, ANXA2P2 * and

BMPR1A

* Genes used in the custom-designed CodeSet for validation purposes.
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Figure 2. Venn diagram showing the significantly expressed genes for each group and the overlap
between the entities. Whereas NSOI and lymphoma as well as IgG4 and lymphoma showed many
overlaps, only one overlap could be identified for IgG4 and NSOI.

2.4. Decision-Tree-Based Analysis of Differences between Groups

Decision-tree-based analysis using the “conditional inference tree” (CIT) machine
learning algorithm regarding the different groups revealed a three-tier system based on the
PLA2G2A, RBM47 and AQP1 expression levels. Looking at the PLA2G2A expression and
its best cut-off (calculated cut-off: 610 counts, p = 0.017), the group with the PLA2G2A over-
expression consisted only of severe NSOI. Furthermore, in those samples where PLA2G2A
expression was beneath the cut-off, the expression of RBM47 (calculated cut-off: 38 counts,
p = 0.024) identified the subgroup of IgG4-ROD. On the other hand, in samples below
PLA2G2A and RBM47, the expression cut-off, the expression of AQP1 (calculated cut-off:
30 counts, p = 0.026) divided them into the two separate subgroups comprising lymphomas
and mild NSOI, respectively (Figure 3).
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Figure 3. Decision-tree-based analysis using the “conditional inference tree” (CIT) machine learning
algorithm regarding the different groups revealed a three-tier system based on (1) PLA2G2A (p = 0.017),
(2) RBM47 (p = 0.024), and (3) AQP1 (p = 0.026) expression levels.

Furthermore, comparisons for each single group were calculated. For NSOI, CIT
revealed a one-tier system based on AQP1 expression, with the appertaining cut-off of
>138 counts identifying NSOI cases (p = 0.011; Figure S1).

For lymphoma, CIT again revealed a one-tier system based on RAC1 expression, with
the appertaining cut-off of ≤193 counts identifying lymphoma cases (p = 0.007; Figure S2).
For IgG4-ROD, CIT also revealed a one-tier system based on IRF4 expression, with the
appertaining cut-off of >473 counts identifying IgG4-ROD cases (p = 0.003; Figure S3).

2.5. Calculation of Scores

Based on these findings, a scoring system for each subgroup was created. The score
identifying NSOI consists of 12 genes, where upregulation was scored for 11 (ANG, cut-off:
60; AQP1, cut-off: 125; BMPR1A, cut-off: 125; CALD1, cut-off: 300; ERBB2, cut-off: 50;
ITGA7, cut-off: 50; NME4, cut-off: 50; NR4A3, cut-off: 50; PDCL3, cut-off: 100; TNXB,
cut-off: 75; SDC4, cut-off: 100) and downregulation for 1 of those (RPS27A, cut-off: 5500).
Generalized linear modelling revealed a p < 0.001 for this scoring system. Subsequently,
the relative risk for this respective subtype was calculated for all possible score numbers.
Based in these data, logistic regression in the form y ~ 1/(1 + exp(x* − a + b)) was used
for generating the model. This resulted in an estimate for a of 15.4536 (p < 0.0001) and b of
131.3080 (p < 0.0001)

The score identifying lymphoma also consists of 12 genes, where downregulation
was scored for all of them (APP, cut-off: 400; AQP1, cut-off: 50; CD59, cut-off: 500; CLIC4,
cut-off: 200; HSPB1, cut-off: 300; JAG1, cut-off: 50; LGALS3, cut-off: 200; MEG3, cut-off: 75;
NRP1, cut-off: 250; RAC1, cut-off: 250; RTN4, cut-off: 250; TNS1, cut-off: 150). Generalized
linear modelling revealed a p < 0.001 for this scoring system.

Subsequently, the relative risk for this respective subtype was calculated for all possible
score numbers. Based on these data, logistic regression in the form y ~ 1/(1 + exp(x* − a))
was used for generating the model. This results in an estimate for a of 8.5000 (p = 0.0072).

The score identifying IgG4-ROD consists of 15 genes, where upregulation was scored
for all of them (ADAM9, cut-off: 250; ADAM17, cut-off: 300; ANXA2P2, cut-off: 3000;
CLEC2B, cut-off: 500; CLIC4, cut-off: 500; FCGR2A, cut-off: 500; GPX1, cut-off: 600; NRP1,
cut-off: 1200; PSMD7, cut-off: 550; RBX1, cut-off: 500; RHOA, cut-off: 700; RNH1, cut-off:
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350; TCEB1, cut-off: 450; TLR4, cut-off: 450; TNFRSF1A, cut-off: 400). Generalized linear
modelling revealed a p < 0.001 for this scoring system.

Subsequently, the relative risk for this respective subtype was calculated for all possible
score numbers. Based on these data, logistic regression in the form y ~ 1/(a + exp(x* − b))
was used for generating the model. This results in an estimate for a of 0.8164 (p = 0.0099)
and b of 11.831 (p = 0.0003). Scores for each entity were validated using leave-one-out cross
validation. Graphs of all the different scores regarding subtype are depicted in Figure 4.
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up- and downregulated genes, a logistic regression model was used to differentiate IgG4-ROD (A),
MALT lymphoma (C), and NSOI (D) with a high probability. Volcano plots for IgG4-ROD (B), MALT
lymphoma (E), and NSOI (F) shows the most significantly differentially expressed genes.

2.6. Data Validation

To check the biological and clinical reliability and meaningfulness of the calculated
multi-parameter scoring systems, a validation cohort of 48 independent samples was
analyzed for determination of prediction accuracy. As expected, performance within the
validation cohort was reduced compared to the training data set, but, especially for IgG4
and MALT lymphoma, still reaches statistical significance and shows good performance
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with high accuracy. For the IgG4 score, analysis of variance (ANOVA) of the binomial
generalized linear regression (logit) resulted in a p = 0.0051, with an AUC in the ROC
performance plot of 0.81 (Figure 5A). The lymphoma score performed slightly better than
the IgG4 score, showing an AUC of 0.82 with p < 0.0001.
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genes. The validation cohort compromises 48 independent samples. ROC analysis of group-prediction
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In synopsis of all three scores (illustrated in Figure 5C), the nice and hard discrimi-
nation between IgG4 and MALT lymphoma was validated. For NSOI, the used models
performed worse but still reached statistical significance, showing an association of higher
scores with a higher probability of NSOI (p = 0.0167, AUC: 0.67; Figure S4). Four NSOI cases
showed a lymphoma score of 1 or higher. Reevaluation of those four cases revealed disease
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progression and reclassification as MALT lymphomas, whereas the remaining 20 NSOIs
did not show this (until now).

3. Discussion

The present study provides the first differential RNA analysis for specific target
genes of orbital inflammatory diseases. We showed that IgG4-ROD and NSOI can also
be distinguished by RNA expression analysis using a multiparameter scoring algorithm.
Furthermore, we could elucidate the genetic similarities between these orbital inflammatory
diseases and MALT lymphoma, which might lead to a better understanding of the progres-
sion of these diseases to lymphoma. In the future, genetic profiling of biotic specimens
could lead to a more secure and faster diagnosis of orbital lesions and thus to a faster and
more effective treatment.

3.1. Clinical Examination

Our study population showed, as described before, varying clinical manifestations
for NSOI, IgG4-ROD and orbital lymphoma. The age and gender distributions are in
accordance with previous studies, showing a significantly higher age for lymphoma patients
compared to the inflammatory orbital disorders, with the lowest age for NSOI [4,7,12,13].
Pain remains a major symptom and a diagnostic criterion for NSOIs [6]. As described before,
the pain varied from discomfort and tenderness to severe pain on eye movement in the
periorbital region. Severe NSOIs showed significance in orbital pain as a symptom when
compared to the other entities (Figure 1). This in accordance with previous publications,
which showed less pain and less impaired ocular motility in patients with IgG4-ROD [14].
Motility showed in our small study cohort no significant differences. Proptosis, diplopia
and eyelid swelling were present in all entities to about the same extent. The patient cohort
showed, as in previous studies, an overlap of clinical findings in these orbital diseases.
Therefore, imaging and mostly biopsies are still necessary for a safe diagnosis.

3.2. Gene expression Analysis as Diagnostic Tool

Recent reports revealed the difficulty in distinguishing NSOIs from IgG4-ROD by
routinely used forms of diagnostics, such as histopathology and immunohistochemistry:
IgG4-ROD is characterized by dense lymphoplasmacytic infiltrate, storiform fibrosis and
obliterative phlebitis. NSOIs tend to manifest in a variable histopathological picture rang-
ing from a lack of the previously mentioned characteristics to highly inflamed infiltrates
and storiform fibrosis, depending on time of biopsy, previous therapy and diagnosis [1,15].
As lymphocytes are short lived (a life span of several weeks to month), a diagnostic trial
with corticosteroids on these entities before diagnostic surgery may mask histopatholog-
ical presentation. Approximately one third of IgG4-ROD do not meet the criteria and
are therefore diagnosed as possible IgG4-ROD. This often results in confusion and de-
layed diagnosis [15–18]. Therefore, diagnostic criteria for both NSOI and IgG4 based on
histopathology remain critical and less accurate when used at different time points due
to practical considerations regarding specimen acquisition and diagnostic trials on corti-
costeroids. Therefore, we aimed to amend the diagnostic possibilities by evaluating the
RNA expression. Gene expression profiling can already help distinguish different causes
of synovitis, esophagitis, myocarditis and uveitis [19–22]. Our main goals proceeding
with this study were the identification of differential gene expression in at least one of
the groups and the evaluation of expression clusters and establishment of a set of marker
genes as a potential diagnostic and prognostic tool. This is to date the first comparative
RNA expression analysis of these entities, although Higgs et al. (2017) analyzed serum
of IgG4-RD serum but not of IgG4-ROD tissue [23]. Taylor et al. (2019) already showed
that genome sequencing (NGS) can help to distinguish otherwise difficult differentiation
between IgG4-RD and inflammatory fibroblastic tumors and is a useful tool for molecular
diagnosis [24]. Asaskage et al. (2020) demonstrated by high-throughput RNA sequencing of
biopsy specimen that IgG4-ROD shows 35 upregulated genes compared to healthy controls
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and reactive lymphoid hyperplasia. These included matrix metallopeptidase 12 (MMP12)
and secreted phospoprotein 1 (SPP1), which were proposed as new biomarkers [25]. Our
analysis showed upregulation of MMP14 in IgG4-ROD, which highlight this pathway, and
which should be further explored. In our cohort, the gene expression analysis revealed also
significant up- and downregulated genes in the IgG4-ROD biopsy specimen, which could
be used to reliably distinguish them from NSOI and MALT lymphoma.

Rosenbaum et al. (2017) analyzed the gene expression of inflamed lacrimal glands in
different diseases, including NSOI, and could demonstrate that biopsy specimens showed
a clear heterogeneity between entities [26]. However, 32% of NSOI specimens could
not be distinguished from healthy controls, which might be due to previous prednisone
treatment, which is known to have a large effect on gene expression [27]. In our cohort, the
differences in significantly upregulated and downregulated genes being integrated into the
“conditional inference tree” (CIT) machine learning algorithm helped us generate a specific
probability calculation tool for each entity based on potential target genes. By employing
this decision tree-based analysis, we could identify a set of marker genes for each entity
out of the 1364 analyzed genes. In the following, we used the 35 identified biomarker
genes to validate the scoring algorithm in a larger sample size. Here, we could show that
especially for IgG4-ROD and MALT lymphoma the scoring algorithm is highly reliable and
effective. For NSOI, the score worked less well but was still significant. This reflects the
heterogeneous nature of the NSOI patients and points toward the suspected sub-entities of
NSOI. Therefore, we plan further RNA expression analysis of NSOI to further distinguish
possible molecular sub-entities and improve the score further. Still, our multiparameter
scoring algorithm based on the identified marker genes can already be used for a fast and
more accurate diagnosis of IgG4-ROD, NSOI and MALT lymphomas. Thus, our marker
genes might reduce the morbidity of patients since an adequate therapy could be faster
applied, thereby reducing the possible long-term damages of these chronic diseases. An
integration of molecular marker-based approaches into clinical decision making could
significantly improve clinical management of individual patients, hopefully resulting in a
generally improved strategy for those cases that are nowadays clinically difficult to resolve.

Our analysis showed distinct genetic differences between NSOI and IgG4-ROD and
lymphoma patients. However, the distinction of relapsing NSOI and milder cases was not
possible with gene expression analysis. Due to the heterogeneous nature of the disease,
which was also shown by Rosenbaum et al., we must assume that there is no simple gene
expression variance that explains the course of the disease. Larger expression profiling
analyses might further elucidate a possible connection. Furthermore, single-cell transcrip-
tomics might even lead to a further understanding of the underlying pathophysiology, as
in rheumatoid arthritis [28]. In theory, genetic expression analysis of specific subtypes of
the three entities could be correlated with the clinical findings and therapeutic effect to
enable more effective treatment strategies. Until now, no correlation between recurrence
rate and histological subtype has been found [4,29].

3.3. Progression to MALT Lymphoma

Until now, the progression of chronic orbital inflammatory diseases into lymphoid,
monocular proliferation remains unclear. Reports suggest that 12% of orbital MALT lym-
phoma derive from IgG4-ROD [30,31]. This could explain why the differentiation between
IgG4-ROD and MALT is sometimes difficult, since both share similar immunophenotypic
profiles [17] and histological features [18], such as IgG4-positive cells (though less in MALT)
and T cell infiltration (higher in IgG4 as in MALT) [32].

Our RNA expression analysis showed marked differences between the three entities,
as well as similarities: differential gene expression analysis revealed a much larger overlap
between lymphoma and IgG4-ROD as well as NSOI, whereas IgG4-ROD and NSOI shared
only one gene. Previous publications suggested an overlap or modest link between IgG4-
ROD and NSOI, which could not be verified in our study cohort [16,33,34]. In contrast,
the suggested progression of chronic inflammation, as in IgG4-ROD and NSOI, to orbital
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MALT lymphoma seems reasonable since both entities showed a significant overlap in
differentially expressed genes (Figure 2).

Shimizu et al. (2021) introduced a differentiation by metabolic signatures for IgG4-
ROD vs. MALT lymphoma [35]. Their cluster analysis did not only propose a clear
differentiation but also showed similarities for both entities in some patients. They also pro-
pose a “class–switch” of metabolism through the process [30,31]. Both analyses undermine
the hypothesis of “chronic inflammation deriving to two different entities”. For MALT
lymphoma, this “switch” could be a continues proliferation of malignant B cells, whereas
for IgG4-ROD it is an infiltration of lymphocytes and IgG4-producing plasma cells. This
confirms the need for biological markers in early stages of the disease. Our results could
be used for further investigations of this connection and might even lead to a risk score to
estimate the progression risk of chronic orbital inflammation.

3.4. Limitations

Limitations of this study include its relatively small number of patients that were
collected from only one institute and its retrospective design. This might have resulted in
selection and confounding bias. Furthermore, the heterogeneous histopathological findings
and orbital locations might mask gene expression differences that are only present in specific
subtypes of NSOI. However, since the main goal of this study was to differentiate between
NSOI and IgG4, this broader analysis revealed the most prominent genes for each entity.
Future studies might further elucidate the gene expression patterns of histopathological
subtypes and different locations within the orbit. This might even lead to finding a new
entity within NSOIs, as has happened before with IgG4-ROD.

4. Materials and Methods
4.1. Study Population

In this study, we retrospectively analyzed all patient records with an acute orbital
inflammatory mass who visited our tertiary referral orbital center between 2000 and 2020
and were diagnosed after orbital biopsy as either NSOI, IgG4-ROD or orbital MALT
lymphoma. Only patients with complete data sets were considered for further molecular
analysis. First, we identified patients with a typical clinical course and certain diagnosis
for NSOI, relapsing NSOI, IgG4-ROD and MALT lymphoma patients (n = 3 each) for a
broad RNA expression analysis and screening for potential biomarker genes. For further
validation, a larger cohort comprised of 48 independent patients was analysed: 11 IgG4-
ROD, 13 MALT lymphoma and 24 NSOI samples.

4.2. Clinical Examination

All patients showed a new onset of inflammation, varying accordingly to extent in
orbit and location, ranging from space-occupying or infiltrating lesions with proptosis,
motility dysfunction to severe orbital inflammation with pain edema and redness. First,
all patients were evaluated by a highly trained orthoptist and afterwards by a specialized
ophthalmologist (A.E., M.O.). Eye examinations included slit-lamp biomicroscopy, ap-
planation tonometry, fundoscopy, Hertel and Naugel exophthalmometry, assessment of
subjective diplopia and objective measurement of misalignment using the prism-cover test,
and measurement of monocular excursions and visual acuity. The clinical examination
included evaluation of eyelids (ptosis, retraction, swelling, erythema), orbit (proptosis,
palpable mass), globe (injection, chemosis, intraocular inflammation, retinal abnormality),
and optic nerve function (relative afferent pupillary defect, color vision, visual field, visual
acuity). These examinations aimed to characterize the inflammation, anatomic location and
functional implications. By this, further diagnostic procedures were determined (e.g., sero-
logic parameter) to rule out other differential diagnoses such as Graves’ orbitopathy (GO)
and vasculitis (granulomatosis with polyangiitis, GPA). In synopsis with MRI images, a
tentative diagnosis was determined before orbital biopsy was performed. The diagnoses of
NSOI, IgG4-ROD and orbital MALT lymphoma were finally based on clinical, flow cytomet-
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ric and histological (including immunostaining) examinations. IgG4-ROD was diagnosed
in accordance with the published criteria [16]. Briefly, IgG4-ROD was diagnosed in the
presence of (1) enlargement of orbital tissues with marked lymphoplasmatic infiltration and
fibrosis/sclerosis; and (2) >50 IgG4 positive plasma cells per high power field (IgG4+/IgG
Ratio > 40%) and a serum IgG4 level > 135 mg/dL.

Patients who showed persistent or relapsing inflammation after two prednisolone
courses were defined as relapsing NSOI. They underwent as a follow-up anti-inflammatory
therapy another high-dose and prolonged prednisolone or other immunosuppressive
therapy (e.g., methotrexate, azathioprine) to prevent therapeutic recurrences of NSOIs.

4.3. Tissue Samples

We obtained 60 extraconal lesion biopsy specimens from 60 individuals: 27 non-
specific orbital inflammation (NSOI), 14 IgG4-related ophthalmic diseases (IgG4-ROD) and
16 MALT lymphoma patients. All tissue samples were routinely processed, formalin fixed,
and paraffin embedded.

4.4. RNA Extraction

One to three paraffin sections with a thickness of 7 µm per sample was deparaffinized
with xylene prior to RNA extraction using the RNeasy FFPE kit (Qiagen, Hilden, Germany)
according to the manufacturer’s recommendations with slight adjustments. Total RNA
concentrations were measured using a Nanodrop 1000 instrument (Thermo Fisher Scientific,
Waltham, MA, USA) [36].

4.5. nCounter CodeSet Design and Expression Analysis

Multiple genes involved in tumor- and inflammation-associated pathways were se-
lected based on the current literature in order to screen for biological references poten-
tially/probably distinguishing NSOIs from the other lesions and additionally give patho-
physiological insight into each entity.

Gene expression patterns were screened for prognostic and predictive biomarkers
using the NanoString nCounter platform for digital gene expression analysis with the ap-
purtenant PanCancer Progression Profiling panel, consisting of 770 tumor-related genes and
the Immunology V2 Profiling panel consisting of 594 genes mediating immune response
as well as 30 reference genes (see Table S1), experiment reagents were designed and syn-
thesized by NanoString Technologies (Seattle, WA, USA). Hybridizations were performed
using the high-sensitivity protocol on the nCounter Prep-Station. Post-hybridization pro-
cessing was performed by using the nCounter MAX/FLEX System (NanoString) and the
cartridge was scanned using a Digital Analyzer (NanoString). The cartridge was read with
maximum sensitivity (555 FOV). A 100-ng sample input was used for each reaction.

4.6. Nanostring Data Processing

NanoString data processing was done with the “R i386 statistical programming en-
vironment” (v4.0.3), R Foundation for Statistical Computing, Institute for Statistics and
Mathematics, Vienna, Austria. Considering the counts obtained for positive control probe
sets, raw NanoString counts for each gene were subjected to a technical factorial normal-
ization, carried out by subtracting the mean counts plus two times the standard deviation
from the CodeSet inherent negative controls. Subsequently, a biological normalization
using the included RNA reference genes was performed. Additionally, all counts with
p > 0.05 after one-sided t-test versus negative controls plus 2× the standard deviation were
interpreted as not expressed to overcome basal noise [37].

4.7. Statistical Evaluation

Statistical analysis was carried out using the “R i386 statistical programming environ-
ment” (v4.0.3). Prior to exploratory data analysis, the Shapiro–Wilks test was applied to
test for a normal distribution of each data set for ordinal and metric variables. Resulting
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dichotomous variables underwent either the Wilcoxon Mann–Whitney rank sum test (non-
parametric) or a two-sided student’s t-test (parametric). For comparison of ordinal variables
and factors with more than two groups, either the Kruskal–Wallis test (non-parametric)
or ANOVA (parametric) were used to detect group differences. Double dichotomous
contingency tables were analyzed using Fisher’s exact test. To test the dependency of the
ranked parameters with more than two groups, the Pearson’s Chi-squared test was used.
Correlations between metrics were tested applying Spearman’s rank correlation test as
well as Pearson’s product–moment correlation testing for linearity. Quality control of the
run data was first performed basically by mean-vs-variances plotting to find the outliers
at the target or sample level. True differences and clusters at both the target and sample
level were calculated by correlation matrices analysis. To further specify the different
candidate patterns, both unsupervised and supervised clustering as well as principal com-
ponent analysis were performed to overcome commonalities and differences. Sensitivity
and specificity of markers were determined from receiver operating characteristic (ROC)
curves illustrating their performance to discriminate the studied groups. The bootstrap
procedure (1000 iterations) was used for internal validation of the estimates in the ROC
analyses. The best candidate genes were selected and binarized (0, 1; with 1 equaling a
better chance of an event) by their respective cut-offs and finally summed up. Robustness of
the generated scores was validated using generalized linear modeling. The resulting scores
were compared with respect to sensitivity and specificity. The probability for each entity
was determined using the nonlinear (weighted) least-squares estimates of the parameters
of a nonlinear fitted regression model [38,39]. Adaption of profiles for diagnostic purposes
were modeled with the supervised machine learning tool conditional interference trees
(CTree), as implemented in the “party” library of R [40] using leave-one-out cross-validation.
CTree is a non-parametric class of regression tree leading to a non-parametric class of tree-
structured regression models, embedding a conditional inference procedure, applicable to
all kinds of regression problems, including nominal, ordinal, numeric, censored as well as
multivariate response variables and arbitrary measurement scales of the covariate [40]. Due
to the multiple statistical testing, the p-values were adjusted by using the false discovery
rate (FDR). The level of statistical significance was defined as p ≤ 0.05 after adjustment.

4.8. Model Validation

For validation of our results obtained in the screening collective, an independent
validation cohort (n = 48) comprising 11 IgG4-ROD, 13 MALT lymphoma and 24 NSOI
samples were examined. Gene expression pattern analysis of the target genes encompassing
all three models was performed using a custom-designed CodeSet comprising 35 target
genes as well as five reference genes (ACTB, B2M, GAPDH, RPL19, RPLP0) previously
identified as being stably expressed in the screening cohort. All CodeSets along with the
experiment reagents were designed and synthesized by NanoString Technologies (Seattle,
WA, USA). In line with the methodology described above, post-hybridization processing
was performed using the nCounter MAX/FLEX System (NanoString) and cartridges were
scanned on a Digital Analyzer (NanoString). Samples were analyzed on the NanoString
nCounter PrepStation, using the high-sensitivity program, and cartridges were read at
maximum sensitivity (555 FOV). Again, a 100-ng total RNA input was used for each
reaction, raw data processing as well as its analysis have been performed in the same way
as described for the initial screening.

5. Conclusions

Through our study we could elaborate that, although NSOIs, IgG4-ROD and orbital
MALT lymphoma share genes as well as clinical symptoms, they can be safely distin-
guished due to their distinctive genetic expression patterns by implementing significantly
upregulated and downregulated genes in a machine learning algorithm. The identified
genes could be used as biomarkers to simplify the differential diagnosis of these lesions,
since histopathological and immunohistochemical findings can be inconclusive.
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