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Abstract: Mammalian heme peroxidases are fascinating due to their unique peculiarity of oxidizing
(pseudo)halides under physiologically relevant conditions. These proteins are able either to incor-
porate oxidized halides into substrates adjacent to the active site or to generate different oxidized
(pseudo)halogenated species, which can take part in multiple (pseudo)halogenation and oxidation
reactions with cell and tissue constituents. The present article reviews basic biochemical and redox
mechanisms of (pseudo)halogenation activity as well as the physiological role of heme peroxidases.
Thyroid peroxidase and peroxidasin are key enzymes for thyroid hormone synthesis and the forma-
tion of functional cross-links in collagen IV during basement membrane formation. Special attention
is directed to the properties, enzymatic mechanisms, and resulting (pseudo)halogenated products of
the immunologically relevant proteins such as myeloperoxidase, eosinophil peroxidase, and lactoper-
oxidase. The potential role of the (pseudo)halogenated products (hypochlorous acid, hypobromous
acid, hypothiocyanite, and cyanate) of these three heme peroxidases is further discussed.

Keywords: cyanate; eosinophil peroxidase; hypobromous acid; hypochlorous acid; hypothiocyanite;
lactoperoxidase; myeloperoxidase; peroxidasin; thyroid peroxidase

1. Introduction

In mammals, the phylogenetic peroxidase-cyclooxygenase superfamily of heme per-
oxidases currently comprises six members: myeloperoxidase (MPO), eosinophil peroxi-
dase (EPO), lactoperoxidase (LPO), thyroid peroxidase (TPO), peroxidasin (PXDN), and
peroxidasin-like protein (PXDNL) [1,2]. Common properties of these peroxidases are the
presence of a heme group at the active site and the ability to oxidize (pseudo)halides under
physiologically relevant conditions.

Among mammalian heme peroxidases, predominant attention is directed to MPO,
EPO, and LPO, proteins involved in different aspects of immune reactions and inflam-
mation. MPO and EPO are key components in the innate immune cell response of poly-
morphonuclear leukocytes (commonly termed neutrophils) and eosinophils, respectively.
These cells are recruited to and activated at inflammatory loci, where both peroxidases
participate in the inactivation and killing of pathogens [3,4]. LPO is secreted from epithelial
cells at mucous surfaces and secretory glands, where it helps to maintain microorganisms
in mucous linings and secretions at a low level [5]. In addition to their beneficial functions
in immune defense, these peroxidases contribute via their products to the initiation and/or
progression of disease, when proper controlling mechanisms towards cytotoxic agents are
limited or exhausted [6,7].

TPO is the key enzyme for the production of iodine-containing hormones in the
thyroid glands [8]. PXDN and PXDNL are only currently described. Whereas PXDN
catalyzes the bromine-dependent formation of cross-links during the synthesis of collagen
IV in connective tissues [9], the physiological role of PXDNL remains unknown [10].
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In a series of reports dealing with heme peroxidases, the halogenation activity of
these enzymes is solely related to the formation of hypohalous acids and hypothiocyanite
(−OSCN). However, their activity is much broader and also includes substrate halogenation,
different substrate modifications, and the formation of other halogenated species. In this
review, we provide an overview about the halogenation activity of heme peroxidases, focus
on physiologically relevant conditions of peroxidase-mediated halogenation reactions, and
specify their contribution to health protection and the initiation and progression of disease.

2. Mechanisms of Halogenation Activity of Heme Peroxidases
2.1. The Heme Moiety of Heme Peroxidases

Heme b, also known as ferric protoporphyrin IX, is the key prosthetic group of mam-
malian heme peroxidases. To date, the molecular structures of these peroxidases are known
from X-ray data with good resolution for MPO and LPO [11–13]. Whereas EPO, LPO, and
PXDN are monomeric enzymes with one heme group, MPO and TPO form homodimers.
In MPO, two identical subunits (each with one heme) are linked by a disulfide bridge. In
contrast to other heme proteins such as hemoglobin or cytochromes, the heme is covalently
linked to the apoprotein by two ester bonds in MPO, EPO, and LPO and, in the case of
MPO, additionally by a sulfonium ion linkage [11,12,14]. The resulting heme curvature
(which is the strongest in MPO) determines the extraordinary biochemical reactivity and
redox properties of these peroxidases. As the peroxidase domain in mammalian heme
peroxidases is highly conserved and also contains, in TPO and PXDN, the corresponding
amino acid residues for ester linkages to the heme, it has been thought that, in TPO and
PXDN, the heme is covalently coupled to the apoprotein moiety, too [15,16].

2.2. Activation and Major Catalytic Cycles of Heme Peroxidases

In the resting state of heme peroxidases, the heme iron is in the ferric state. To fulfill
any halogenation activity, the ferric heme group (Por-Fe3+) has to be oxidized to Compound
I (+•Por-Fe4+ = O), a state having two more oxidative equivalents than the resting enzyme.
This is usually achieved by the reaction of the ferric enzyme with hydrogen peroxide
(H2O2).

Por-Fe3+ + H2O2 −→ +•Por-Fe4+ = O + H2O (1)

In this two-electron redox reaction, H2O2 is reduced to H2O, and the ferric heme
is oxidized to Compound I [17], which is characterized by an oxo-ferryl moiety and the
additional presence of a porphyryl cation radical [18]. The highly reactive Compound I is
involved in two-electron oxidations of (pseudo)halides and also in one-electron oxidation
of numerous substrates. In the latter reaction, Compound II is formed, where the heme
bears an oxo-ferryl moiety, but no radical functions neither in the porphyrin ring nor in
adjacent amino acid residues [17]. Thus, Compound II is in between Compound I and the
resting enzyme concerning its redox state.

A spontaneous isoelectronic conversion of Compound I into Compound I* is known
for LPO and TPO in the absence of suitable substrates [8]. In Compound I*, the radical
moiety is not located on the porphyrin ring but on an adjacent amino acid residue. This
heme form is, like Compound II, unable to oxidize (pseudohalides).

In the halogenation cycle of heme peroxidases, the formation of Compound I (Equation (1))
is followed by Compound I-mediated oxidation of halides or thiocyanate (SCN−) under
direct recovery of the resting enzyme (see Section 2.3). Compound I can also be converted
into the resting enzyme via Compound II. The sequence resting enzyme→ Compound I
→ Compound II→ resting enzyme is known as the peroxidase cycle. In this cycle, both
Compound I and Compound II oxidize suitable substrates by abstracting one electron.
Redox conversion of purified resting peroxidase into Compound I can be followed by time-
resolved UV–Vis spectroscopy. Upon this conversion, there is no shift in the wavelength
maximum of the Soret band of the heme, but a significant decrease in absorption during
the course of reaction.



Antioxidants 2022, 11, 890 3 of 28

2.3. Reaction of Compound I with (pseudo)halides

For isolated MPO, EPO, and LPO, the conversion of Compound I into the resting state
during the reaction of Compound I with (pseudo)halides can also be monitored by time-
resolved characteristic absorbance changes coupled with sequential stopped-flow mixing.
There is an increase in absorbance of the Soret band upon the addition of (pseudo)halides
to preformed Compound I. By variation in (pseudo)halide concentrations, the application
of conditions for first-order reactions, and verification that mono-exponential changes in
absorbance values take place, second-order rate constants can be calculated for these redox
reactions. Generally, for MPO Compound I, the highest second-order rate constant was
found for the reaction with SCN− followed by iodide (I−), bromide (Br−), and chloride (Cl−)
at pH 7. At more acidic pH, rate constants are significantly higher [19]. EPO Compound
I oxidizes Br−, I−, and SCN− at neutral and slightly acidic pH values more powerfully
than MPO. However, unlike MPO, Cl− oxidation by EPO is, by far, less efficient [20]. LPO
Compound I oxidizes I− and SCN− with a very high rate, but Br− with a much lower
rate [21].

Considering reaction rate constants and (pseudo)halide concentrations in the blood
(0.11 M Cl− [22], 40–110 µM Br− [23], <0.1 µM I− [24], 20–120 µM SCN− [25,26]), it is
reasonable to conclude that MPO primarily oxidizes Cl−, Br−, and SCN− at neutral pH
values. At 0.1 M Cl−, 100 µM SCN−, and pH 7, both ions are oxidized by MPO by
nearly the same amount [27]. In albumin, tyrosine residues are preferentially brominated
by the MPO-H2O2-halide system at physiological concentrations of Cl− and Br− and
pH > 7 [28,29]. Br− and SCN− are the preferred (pseudo)halides oxidized by EPO.

In epithelial cells of mucous surfaces and secretory glands, SCN− and I− are abun-
dantly present as both ions are taken up from the circulation by an active transport mecha-
nism via the sodium/iodide symporter [30]. Thus, in lining fluids and secretions, SCN− is
the prevailing species at neutral pH, being oxidized by LPO, and under inflammatory con-
ditions even by MPO and EPO. SCN− concentrations are around 0.5–4 mM in saliva [31,32],
300–450 µM in the nasal airway lining [33], and 270–650 µM in lung airway fluids [34].

The second-order rate constants reported thus far may be considered valuable data for
a better understanding of (pseudo)halide oxidation. However, these data were obtained
under non-physiological conditions as H2O2, and the corresponding (pseudo)halides were
sequentially added to the respective peroxidase. In cells and tissues, halide ions and SCN−

are in equilibrium with peroxidases. The reversible binding of (pseudo)halide ions to both
the resting enzyme and Compound I can affect (pseudo)halide oxidation by MPO and
LPO [35–37]. A reverse-ordered sequential mechanism was proposed for LPO-mediated
SCN− oxidation to explain non-exponential kinetic traces at low SCN− concentrations [38].

2.4. The Intermediary Halide–Compound I Complex

The detailed mechanism of redox conversion of Compound I to the ferric enzyme form
is only scarcely known. Ferric MPO was only partially reconstituted from Compound I by
the addition of Cl− and Br− at pH 7 in contrast to pH 5, where a total recovery of native
MPO was found [19,39]. Apparently, an intermediary complex between Compound I and a
halide was formed. Kinetic studies revealed that Cl− forms a reversible high-spin complex
with MPO Compound I [40,41]. This complex is also involved in the MPO-mediated
formation of taurine chloramine [40]. Moreover, kinetic studies revealed that taurine is
chlorinated by MPO without the formation of free hypochlorous acid (HOCl)/hypochlorite
(−OCl). An enzyme-bound HOCl molecule was originally assumed to be the active agent
during this chlorination process [40,42]. In the LPO-mediated iodination of tyrosine,
an intermediary complex was reported to be formed between LPO Compound I and
I− [43]. Thus, considering the formation of an intermediary, reversible halide complex with
Compound I, the actual redox process in the reaction of Compound I with a halide consists
either in the decomposition of the halide–Compound I complex to the ferric enzyme and
hypohalite, or in a reaction of the halide–Compound I complex with a small substrate that
becomes halogenated [44] (Figure 1).
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Figure 1. The role of the chloride–Compound I complex (CompI-Cl−) in chlorination reactions
mediated by MPO according to [44,45]. Explanations are given in the text. CompI denotes Com-
pound I. AH2 represents a substrate that binds near the heme pocket. AHCl is the resulting
chlorinated substrate.

Both mechanisms were evaluated in the MPO-mediated chlorination of small and
more bulky substrates by careful kinetic examination of the resulting chloramine forma-
tion [44,45]. Investigation of pH effects revealed that the chlorinating species produced
inside the heme cavity of MPO must be unprotonated [44]. According to the first mecha-
nism, −OCl is formed, which yields the chlorinating species HOCl after diffusion to the
enzyme environment. Small substrates such as taurine can directly be chlorinated via the
chloride–Compound I complex within the heme cavity. More bulky substrates such as the
tripeptide Pro-Gly-Gly are chlorinated only outside the heme pocket via HOCl derived
from −OCl [44,45]. To what extent similar mechanisms are valid for other halides and other
heme peroxidases still remains unknown.

2.5. The Nernst Equation

The Nernst equation (Equation (2)) allows determining the reduction potential E’ of a
redox couple, that is, the ability of the oxidant form of a redox couple to abstract one or
more electrons from a substrate [46].

E’ = E’◦ + (RT/nF) ln(aox/ared) (2)

In this equation, E’◦ represents the standard reduction potential, which refers to 1 M of
all reactants of a pressure of 101.3 kPa in the case of gases. In life sciences, standard values
are usually given at pH 7. These values are referenced to the potential of the standard
hydrogen electrode, which is −0.42 V at pH 7. The gas constant R and the Faraday constant
F are 8.31 J K−1 mol−1 and 96,485 As mol−1, respectively. The temperature is usually set
to 298 K. The factor n is equal to the number of electrons transferred in a single reaction
step between both partners of the redox couple. The values aox and ared correspond to the
activity products of all components involved in oxidation and reduction, respectively.

Generally, a redox reduction can thermodynamically proceed when the reduction
potential of the reduction process is higher than the corresponding value for the oxidation
reaction. Additionally, the rate of a redox reaction also depends on other factors such as
steric hindrance, the availability of redox partners, and the stability of hydrate shells.
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2.6. Redox Properties of Conversions between Compound I and (pseudo)halides

The halogenation cycle of heme peroxidases consists of two redox reactions. By
means of Equation (1), Compound I is formed. In the second reaction, Compound I is
reduced to the ferric enzyme form, and the (pseudo)halide is oxidized to the corresponding
hypo(pseudo)halous acid or by incorporation into an adjacent small substrate (Figure 1). In
the description of redox properties, we focus here on the formation of hypohalous acids
and hypothiocyanite (−OSCN).

During the halogenation cycle of heme peroxidases, the ferric enzyme alternates
with Compound I. Written as a reduction process, the following half reaction results for
this conversion:

+•Por-Fe4+ = O + 2 e− + 2 H+ −→ Por-Fe3+ + H2O (3)

The standard reduction potential of the redox couple Compound I/ferric MPO was
determined to be 1.16 V at pH 7 [47]. The corresponding potentials for EPO and LPO are
1.10 V [47] and 1.09 V [48], respectively. As two electrons and two protons are involved
in this half reaction, these potentials increase according to Equation (2) by 0.06 V per unit
decreasing pH.

Compound I of MPO, EPO, and LPO is able to oxidize (pseudo)halides to hypohalous
acids and −OSCN. At pH 7, the following half reactions result for these oxidations (written
as a reduction process):

HOCl + 2 e− + H+ −→ Cl− + H2O, (4)

HOBr + 2 e− + H+ −→ Br− + H2O, (5)

HOI + 2 e− + H+ −→ I− + H2O, and (6)
−OSCN + 2 e− + 2 H+ −→ SCN− + H2O. (7)

In these half reactions, HOCl, HOBr, and HOI are given in their protonated form, as
their pKa values are 7.53 [49], 8.8 [50], and 10.0 [51], respectively. For hypothiocyanous
acid (HOSCN), two pKa values were reported, namely, 5.3 [52] and 4.85 [53]. The standard
reduction potential for the redox couple HOCl/Cl−, H2O is 1.28 V at pH 7 [54]. The cor-
responding standard values for the redox couples HOBr/Br−, H2O and HOI/I−, H2O
are 1.13 V and 0.78 V, respectively [54]. The lowest value with 0.56 V was determined
for −OSCN/SCN−, H2O [54]. Below pH 7, the potentials for Cl−, Br−, and I− oxidation
increase according to Equation (2) by 0.03 V per unit decreasing pH, as two electrons and
one proton are involved in these half reactions.

In I− and SCN− oxidation by heme peroxidases, which proceeds with a high rate,
there is a great difference between the reduction potentials of the involved redox couples.
Another situation exists in Cl− and Br− oxidation by MPO and EPO [47,55]. Both potentials
for reduction and oxidation differ only slightly even when actual reactant concentrations are
considered. Moreover, as shown before, the reduction potentials for the couple Compound
I/ferric MPO or EPO exhibit another pH dependence as reported for the redox couples
HOCl/Cl−, H2O and accordingly HOBr/Br−, H2O. Consequently, the formation of these
hypohalous acids by MPO or EPO is only possible below a certain pH threshold that is
dependent on the respective halide concentration [54,55].

At 0.1 M Cl− and pH 7, the MPO-H2O2-Cl− system is unable to induce chlorohydrin
formation in unsaturated phosphatidylcholines [55,56] or to cause an accumulation of
diene conjugates in low-density lipoprotein (LDL) particles [57]. A certain pH threshold
value exists for these reactions at lower pH. At 0.1 M Cl−, these pH thresholds were 6.5 for
MPO and 6.0 for EPO during the formation of chlorohydrins [55]. Otherwise, taurine
is applied up to pH 8 to detect the chlorination activity of MPO [36,58–60]. There is no
discrepancy in these data regarding the existence of a pH threshold for HOCl formation
by the MPO-H2O2-Cl− system, as taurine chlorination by MPO can occur without the
participation of free HOCl [44]. Concerning the redox process of the MPO-mediated
taurine chloramine formation, the reduction of MPO Compound I (Equation (3)) is directly
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linked with the redox couple taurine chloramine/taurine, Cl−. The standard reduction
potential of this couple is unknown. It should be lower than the potential for HOCl/Cl−,
H2O, as the reagent HOCl is well known to oxidize taurine, a reaction commonly used
to estimate the chlorination capacity of HOCl added as a reagent or generated by the
MPO-H2O2-Cl− system.

Maybe a similar assumption is valid for monochlorodimedon, which is also applied
to follow the chlorinating activity of MPO at neutral pH. The chlorination of this agent
by chloroperoxidase is assumed to occur via an intermediary complex formation via
so-called enzyme-bound HOCl [61]. The detailed mechanism of interaction between
monochlorodimedon and MPO Compound I remains unknown.

3. Products of the Halogenating Activity of Heme Peroxidases

Talking about the products of the halogenating activity of heme peroxidases, a dis-
tinction should be made between (i) the halogenation of selected substrates adjacent to
heme peroxidases and (ii) the formation of free (pseudo)halogenated species, in particular
hypohalous acids and −OSCN (Figure 2).
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Figure 2. Overview about the halogenation activity of heme peroxidases. Explanations are given in
the text.

3.1. Halogenation of Selected Substrates

Within these reactions, halide ions are oxidized by activated peroxidases, and the
oxidized halide (having the formal oxidation state +1) is directly transferred to the cor-
responding substrate that is bound to the enzyme. Transfer reactions are known for I−,
Br−, and Cl−. The resulting halogenated substrates can fulfil important physiological
functions as hormones or play a role as intermediate products during basement mem-
brane formation. In some transfer reactions, peroxidase-bound hypohalites are assumed as
intermediary species.

In thyroid follicular cells, I− is enriched by an active transport mechanism via the
sodium/iodide symporter [62]. TPO, which is located in the follicular lumen and anchored
at the apical membrane of follicular cells, uses H2O2 and I− to iodinize tyrosine residues
in thyreoglobulin. In a second step, TPO catalyzes the phenolic coupling of two iodi-
nized tyrosine residues [16]. After proteolysis of the iodinized tyrosine and dimerized
tyrosine residues from thyreoglobulin, different iodine-containing products including the
thyroid hormones triiodothyronine (also known as T3) and thyroxine (T4, previously called
tetraiodothyronine) are formed. During this iodination step, hypoiodite bound to TPO
Compound I is thought to be the active species [8].

PXDN, originally identified in Drosophila, may be considered an enzyme-matrix
protein. Besides the peroxidase domain, which is homologous with human MPO and
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EPO, several extracellular matrix motifs are present in the primary structure of PXDN [63].
This allows PXDN to bind to collagen IV protomers and to induce, by means of Br−

oxidation, sulfilimine cross-links between methionine and hydroxylysine residues during
the synthesis of basement membranes [64,65]. In the first step, a methionine residue is
converted into a bromosulfonium intermediate that favors a cross-link to the amino group
of an adjacent hydroxylysine residue. Oxidation of Cl− by PXDN instead of Br− is, by far,
less effective in the formation of collagen IV cross-links [64]. In these reactions, both HOBr
and HOCl are assumed to be reactive species [63,64]. The potential role of HOBr as an
active agent is further supported by the fact that PXDN mediates, in addition to collagen
cross-links, the formation of 3-bromotyrosine in proteins in cells expressing PXDN [66].

Another example is the MPO-mediated chlorination of taurine (see Sections 2.4 and 2.6).
Careful investigation of the fine mechanism of this reaction revealed that free HOCl does
not participate within this redox conversion [44]. The physiological relevance of taurine
chlorination by MPO remains puzzling. In resting neutrophils and also during the early
steps of neutrophil-derived phagocytosis, MPO and taurine are well separated from each
other. MPO is present in azurophilic granules and the phagosomal compartment, while
taurine is located in the cytoplasm at a concentration between 22 and 26 mM [67]. In
undergoing neutrophils, both MPO and taurine can exist in the same compartment. Under
these conditions, MPO is involved as an essential component in the formation of DNA-
based extracellular traps [68]. It remains unclear whether taurine chloramine plays an active
role in neutrophil extracellular trap (NET) formation or whether its formation protects
other cell components from the toxic effects of HOCl.

Maybe some other substrates will also be halogenated without the formation of free
hypohalous acids after binding near the active site of heme peroxidases.

3.2. Formation of Free (pseudo)halogenated Species
3.2.1. Thiocyanate Oxidation Products

SCN− is easily oxidized by Compound I of MPO, EPO, and LPO. The major oxidation
product −OSCN is in equilibrium with its protonated form HOSCN, having a pKa value of
5.3 [52] or 4.85 [53].

At inflammatory sites, an alternative pathway for the formation of −OSCN/HOSCN
consists in the reaction of HOCl or HOBr with SCN−. As SCN− is very rapidly oxidized by
HOCl [69] and HOBr [70], SCN− can efficiently compete with other substrates for these
powerful hypohalous acids. As addressed in several reports, SCN− is able to protect cell
and tissue components from the devastating actions of MPO-generated HOCl [71–74].

A more hydrophobic local environment at the active site of heme peroxidases might
apparently favor the formation of thiocyanogen ((SCN)2) and thiocarbamate-(S)-oxide, a de-
composition product from (SCN)2 [75]. Alternatively, −OSCN/HOSCN is known to decay
by dismutation and oxidation reactions to sulfate, hydrocyanic acid, and cyanate [76–78].
In these reactions, cyanosulfurous acid (HO2SCN) and cyanosulfuric acid (HO3SCN) are
transient intermediates.

Among the SCN− oxidation products, major focus is directed to reactions of −OSCN/
HOSCN and cyanate with the respective substrates under (patho)physiological conditions.

3.2.2. Iodide Oxidation Products

Besides TPO, I− can also be oxidized by MPO, EPO, and LPO. However, due to the
low abundance/concentration of I− in the circulation (<0.1 µM [24]) and other body fluids,
oxidation of I− by these three peroxidases does not play a significant role in the human
organism. However, in biotechnological applications, I− is often utilized as a substrate for
LPO [79,80].

During I− oxidation, a variety of products are formed including molecular iodine (I2),
triiodide anion (I3

−), HOI, and −OI [81]. HOI dominates as the main oxidation product at
micromolar concentrations only in the pH range from 8.4 to 9.3. Thus, in microbial killing,
the major iodide oxidation products are I2 and I3

− at neutral pH values [81].
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3.2.3. Chloride Oxidation Products

At neutral and slightly acidic pH values, only MPO oxidizes Cl− at reasonable rates.
However, the formation of free HOCl via MPO is restricted to acidic pH values below
6.0–6.5. This pH threshold results from the redox properties of the involved redox couples
during the formation of HOCl (see Section 2.6).

The primary species formed in the heme cavity during MPO-mediated Cl− oxidation
is obviously −OCl [44]. After its diffusion from the heme cavity to the enzyme environment
(see Figure 1), protonation of −OCl leads to the formation of HOCl and subsequently
molecular chlorine (Cl2 (aq)) according to the following equilibria:

−OCl + H+ 
 HOCl and (8)

HOCl + H+ + Cl−
 Cl2(aq) + H2O. (9)

The pKa value of HOCl is 7.53 [49]. For Equation (9), an equilibrium constant of
1.04 × 10−3 M2 at 25 ◦C and an ionic strength of 0.5 M was reported [82]. Thus, the forma-
tion of substantial Cl2 becomes evident only at strong acidic pH values.

Both HOCl and Cl2 are powerful species to promote substrate chlorination and ox-
idation. In one of the first reports about Cl− oxidation via MPO, the authors did not
differentiate between HOCl and Cl2 as suitable chlorinating species [83]. In some reports,
the ability of MPO to produce Cl2 was demonstrated via the Cl2-mediated formation of
3-chlorotyrosine [84], 5-chloro-2′-deoxycytidine from 2′-deoxycytidine [85], 5-chlorocytosine
in bacterial RNA [85], or even chlorinated sterols [86].

Interestingly, the MPO-H2O2-Cl− system oxidizes L-tyrosine to two different prod-
ucts as a consequence of the pH-dependent formation of Cl2 and/or HOCl [84]. Below
pH 5, Cl2-mediated formation of 3-chlorotyrosine dominates, whereas the HOCl-mediated
pathway leads to the formation of p-hydroxyphenylacetaldehyde via an intermediary
monochloramine. The latter product can be formed within a pH range from 4 to 8.

3.2.4. Bromide Oxidation Products

Both MPO and EPO are known to oxidize Br−. However, it remains unclear whether
a similar mechanism to that proposed for Cl− oxidation exists for the oxidation of Br−

(see [44]). HOBr is generally believed to be the major Br− oxidation product generated by
MPO and EPO. The following equilibria can be formulated:

−OBr + H+ 
 HOBr and (10)

HOBr + H+ + Br−
 Br2(aq) + H2O. (11)

The pKa value of HOBr is 8.8 [50]. The equilibrium constant for molecular bromine
(Br2(aq)) hydrolysis equals 6.1 × 10−9 M2 at 25 ◦C and an ionic strength of 0.5 M [87]. Thus,
HOBr is the dominating species in neutral and slightly acidic aqueous media. Considering
a Br− concentration of 10−4 M, around and below pH 5, the formation and contribution of
Br2 are obvious.

3.2.5. Oxidation of Selenocyanate

Selenocyanate (SeCN−) functions as an intrinsic selenium pool in different mammalian
cells [88,89]. This anion can apparently accumulate in mucous lining fluids and secretions
by the same active transport mechanism reported for SCN− [90]. The LPO-H2O2 system
is able to oxidize SeCN−, but less efficiently than published for SCN− [91]. However,
the resulting −SeOCN is more potent in the killing of microbes (such as Pseudomonas
aeruginosa, Burkholderia cepacia complex, and methicillin-resistant Staphylococcus aureus)
when compared to the −OSCN/HOSCN system [91].

3.2.6. Formation of inter(pseudo)halogens

Activated heme peroxidases are principally able to produce inter(pseudo)halogens,
where two different (pseudo)halogens are coupled within one molecule. However, their



Antioxidants 2022, 11, 890 9 of 28

pathophysiological relevance is rather limited and widely unknown. The brominating
agent bromine chloride (BrCl) was postulated to be generated by the MPO-H2O2-Cl−/Br−

system [92]. The formation of cyanogen iodide (ICN) by MPO or LPO occurs when I− is
present in excess over SCN− [93,94], a condition that is far from that observed in biological
fluids. Finally, cyanogen chloride (ClCN) and cyanogen bromide (BrCN) may be formed
by the reaction of HOCl or HOBr with cyanide (CN−) [95,96].

4. (Patho)Physiological Relevance of Reactions of Hypohalous Acids and Thiocyanate
Oxidation Products
4.1. Heme Peroxidases in Immune Reactions

The heme peroxidases MPO, EPO, and LPO are part of the immune defense system in
living organisms. Several major functions of these heme peroxidases are discussed [6,7].
In newly formed phagosomes of neutrophils recruited to inflammatory sites, MPO is
apparently involved in the rapid pH increase, thus creating optimal conditions for the
destructive action of either serine proteases or other microbicidal agents [6,97]. Dying
neutrophils are known to release so-called NETs, where MPO as an essential element and
other cationic proteins are tightly associated with DNA [68,98,99]. These NETs inactivate
hyphenated fungi and microbes independent of phagocytosis [100,101]. In addition to these
beneficial functions, the highly cationic charged MPO protein is known to form complexes
with several acidic proteins and polymers after its release from neutrophils [28,102–108].
This can largely affect physiological functions. For example, MPO transcytoses through
endothelial cells of blood vessels, associates closely with fibronectin at the basolateral
side, diminishes thus the bioavailability of nitric oxide (NO) at this location, and impairs
the NO-mediated vessel relaxation [109,110]. Further, the attachment of MPO to cell
surface epitopes of the inflamed endothelium can induce the formation of antibodies
against MPO [111]. These MPO-antineutrophil cytoplasmic antibodies are involved in the
pathogenesis of glomerulonephritis and vasculitis of the upper and lower airways [112,113].

At sites of inflammation, eosinophils are recruited and activated together with other
cells such as mast cells and basophils involved in reactions of the type 2 immune re-
sponse [114]. Larger pathogens such as helminths and other parasites as well as virus-
infected and cancer cells are targeted by eosinophils [115–117]. In targeted cells, eosinophil
granule proteins including EPO exhibit cytotoxic activities [4]. Eosinophils are involved
in different allergic diseases, where EPO contributes with substrate bromination and
carbamylation to disease progression [118–121]. Eosinophils are also known to release
DNA-containing extracellular traps [122,123] and, in contrast to neutrophils, free extracellu-
lar granules that can target conidia from Aspergillus fumigatus, a common fungus in allergic
bronchopulmonary mycoses [124,125].

In mucous fluids and secretions, the main function of the LPO-H2O2-SCN− system is
the generation of the microbicidal −OSCN/HOSCN to maintain pathogen contamination
of a low level [5,7].

4.2. Control over Tissue Damage by Heme Peroxidases

Immune defense reactions are usually directed to combat against unwanted and/or
unpredictable invaders (such as microbes, fungi, and parasites), to eliminate damaged cell
and tissue material, and to recognize and kill virus-laden and tumor cells. In inactivation of
pathogens, immune cells, especially neutrophils and eosinophils, use numerous aggressive
components that can also principally damage intact host cells. In healthy organisms, the
release of cytotoxic elements from immune cells or damaged host cells is antagonized by
protective principles that resist and inactivate these destructive agents [6,126]. This balance
between cytotoxic invaders and protective defender activities can be disturbed under very
strong acute and long-lasting chronic inflammatory conditions due to a decreased capacity
or exhaustion of protective mechanisms. The latter can vary in a wide range from one
patient to another. Thus, the limited ability of host antagonizing principles favors chronic
inflammatory states and provides the basis for disease progression.
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Among the antagonizing principles (examples are given in [6]), the plasma protein
ceruloplasmin forms a high-affinity inhibitory complex with MPO, and also with EPO, by
insertion of a polypeptide loop into the heme pocket of these heme peroxidases [127–130].
SCN− is known to inactivate HOCl and HOBr [69,70]. In addition, a defense against HOCl
and HOBr is given by reduced glutathione (GSH), ascorbate, and urate [131]. Glutathione
also inactivates an excess of −OSCN/HOSCN [132]. Further, the availability of H2O2 can
be diminished by several H2O2-consuming proteins such as peroxiredoxins, catalase, and
glutathione peroxidase [133–135]. An overview about antagonizing principles against
components and major products of the heme peroxidase-H2O2-(pseudo)halide system is
presented in Figure 3. To sum up, insufficient antagonizing mechanisms favor substrate
halogenation and oxidation by heme peroxidases.
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4.3. Important Reactions of (pseudo)hypohalous Acids and Targets of MPO and EPO

Reactions of HOCl [136,137], HOBr [138], and −OSCN/HOSCN [139,140] with dif-
ferent biologically relevant substrates have been intensively investigated at neutral pH
values. Whereas HOCl and HOBr prefer a broad range of substrates, −OSCN/HOSCN
reacts more specifically with substrates containing accessible sulfhydryl and selenocysteine
residues [131]. Cysteine and methionine residues of proteins and GSH are preferred targets
for HOCl [141]. Concerning protein residues, HOBr reacts well with cysteine, methion-
ine, and tryptophan residues, and also, with a sufficiently high rate, with cystine, lysine,
tyrosine, histidine residues, and α-amino groups [131]. Interestingly, the reaction rate
of tyrosine residues with HOCl is about five orders of magnitude lower than that with
HOBr [138].

The aforementioned data were obtained on isolated, artificial systems. After their
release from invading leukocytes, heme peroxidases are often attached to proteins, cell
surfaces, lipoproteins, and components of the extracellular matrix. This attachment favors
local reactions of MPO and EPO products with lipids, nucleic acids, and carbohydrates.
In undergoing neutrophils, MPO resides on the cell surface at phosphatidylserine epi-
topes [142]. Comparable high rates were reported for the reaction of HOCl and especially
of HOBr with the serine and ethanolamine groups of phospholipids [131]. Plasmalogens,
a class of ether phospholipids abundantly present in the heart and brain and known to
trigger either an anti- or proinflammatory response [143], are rapidly targeted by HOCl
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and HOBr on the double bond adjacent to the ether moiety [144–146], where cleavage of
the vinyl ether bond at the sn-1 position results in the formation of a lysophospholipid and
an α-halogenated fatty aldehyde [147].

MPO binds to lipoproteins such as LDL [148–150] (where apoB-100, the major apolipoprotein
of LDL, and respective lipid species represent major targets for HOCl attack [151,152]) and
high-density lipoprotein (HDL) [153–155] (quite heterogenous lipoprotein particles varying
in density, size, electrophoretic mobility, and protein and lipid composition; for a review,
see [156]). Although electron microscopy studies originally revealed limited binding and
internalization of MPO (compared to EPO) to inflammatory cells [157], ongoing studies
clearly underscore the adverse oxidative reactions of endothelial-localized MPO [158] as
well as endothelial-transcytosed MPO [109] leading to targeted subendothelial matrix
oxidation of proteins [159–164] via MPO-mediated nitration and/or chlorination; the latter
reaction could by suppressed by SCN− and nitrite (NO2

−) [162].

4.4. Reactions of −OSCN/HOSCN

In unperturbed mucous lining fluids and secretions, the LPO-H2O2-SCN− system
contributes to the control over microorganisms by producing −OSCN/HOSCN. The un-
charged HOSCN can permeate through biological membranes and thus target intracellular
GSH as well as critical thiol and selenocysteine residues of proteins [165,166]. It penetrates
even into biofilms [165,166]. In epithelial cells of mucous surfaces, HOSCN is inactivated
by thioredoxin reductases [167]. Bacteria are unable to inactivate HOSCN in this way [167].

Both in asthma patients and in a murine asthma model, overproduction of −OSCN/
HOSCN by peroxidases can promote allergic inflammation in the lung airways [168–170].
In airway epithelial cells, HOSCN activates the transcription factor NFκB via protein kinase
A, induces necrotic processes, and favors the release of IL-33 and other proinflammatory
mediators [170–173]. Accordingly, eosinophils are recruited to and activated at inflam-
matory sites [174]. −OSCN/HOSCN, IL-13, and IL-33 are assumed to be components
of a vicious circle that exaggerates and prolongs the type 2 immune response in allergic
diseases [171].

To sum up, adverse reactions of excess −OSCN/HOSCN are favored by enhanced
SCN− levels in the blood, recruitment of eosinophils to inflammatory sites, release of EPO
from these cells, and a diminished glutathione level in mucous fluids.

4.5. Reactions of Cyanate
−OCN was identified as a minor product of SCN− oxidation by MPO and more

efficiently by EPO [78]. There are two principal routes for the oxidation of SCN−, the redox
conversion of SCN− by Compound I of heme peroxidases, and the reaction of SCN− with
HOCl or HOBr. In both routes, the formation of SCN− oxidation products including −OCN
is favored by high SCN− levels. Furthermore, −OCN can also be derived from urea, as
both substances are in equilibrium with each other [175]. Thus, conditions favoring an
increase in urea such as uremia also contribute to enhanced levels of −OCN [176,177].
In other words, the resulting carbamylation of biological targets is not specific to heme
peroxidase-mediated posttranslational modifications.

−OCN promotes the carbamylation of functional residues in proteins. Although
different amino acid residues are targeted by −OCN, lysine residues are preferred. In the
latter case, this residue is converted into a homocitrulline moiety. Carbamylation affects
several physiological functions. It favors T cell activation [178] and promotes endothelial
dysfunction [179]. Carbamylated proteins were detected in atherosclerotic plaques adjacent
to MPO [180], in dysfunctional HDL induced by MPO [181], and at inflammatory sites of
eosinophil-driven allergic asthma [120]. The homocitrulline level in the blood correlates
well with an increased risk of cardiovascular disease [180].

Additional pathways of MPO-mediated carbamylation reactions were recently de-
scribed under the involvement of −CN [182]. −OCN is formed as a result of the oxidation of
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−CN by MPO Compound I or by the reaction of HOCl with −CN. Otherwise, carbamylation
is also induced via the reaction of −SCN with chloramines.

4.6. Bromination of Substrates

At inflammatory sites, the bromination of substrates is mostly attributed to the activity
of EPO. As MPO is also able to produce reactive brominating species, the detection of these
products cannot be used as a biomarker for the brominating activity of EPO. Neverthe-
less, the yield of brominated products increases under conditions of eosinophilia, when
eosinophils are massively recruited to inflamed loci. An overview about the formation of
brominated products in biological systems is presented in Table 1.

Table 1. Formation of physiologically relevant heme peroxidase-mediated brominated products.

Target Molecule Brominated Product Remarks References

Taurine
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is favored by high SCN− levels. Furthermore, –OCN can also be derived from urea, as both 

substances are in equilibrium with each other [175]. Thus, conditions favoring an increase 

in urea such as uremia also contribute to enhanced levels of –OCN [176,177]. In other 

words, the resulting carbamylation of biological targets is not specific to heme peroxidase-

mediated posttranslational modifications. 
–OCN promotes the carbamylation of functional residues in proteins. Although dif-

ferent amino acid residues are targeted by −OCN, lysine residues are preferred. In the lat-

ter case, this residue is converted into a homocitrulline moiety. Carbamylation affects sev-

eral physiological functions. It favors T cell activation [178] and promotes endothelial dys-

function [179]. Carbamylated proteins were detected in atherosclerotic plaques adjacent 

to MPO [180], in dysfunctional HDL induced by MPO [181], and at inflammatory sites of 

eosinophil-driven allergic asthma [120]. The homocitrulline level in the blood correlates 

well with an increased risk of cardiovascular disease [180]. 

Additional pathways of MPO-mediated carbamylation reactions were recently de-

scribed under the involvement of −CN [182]. –OCN is formed as a result of the oxidation 

of −CN by MPO Compound I or by the reaction of HOCl with −CN. Otherwise, carbamyla-

tion is also induced via the reaction of −SCN with chloramines. 
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2′-Deoxyguanosine 

 

8-Bromo-2′-deoxyguanosine 

 

MPO [188] 

Plasmalogens 

(double bond adjacent to 

ether linkage) 

 

α-Bromo fatty aldehydes 

 

MPO/EPO; other products: 

lysophospholipids 
[144] 

In proteins of the airway epithelium of asthmatic patients, 3-bromotyrosine, 3,5-di-

bromotyrosine, and 3-nitrotyrosine were detected [122,183,189]. In the liver and urine of 

lipopolysaccharide (LPS)-treated rats, enhanced levels of 8-bromo-2′-deoxyguanosine and 

3-bromotyrosine were reported [188]. Diabetic patients excreted increased values of 8-

bromo-2′-deoxyguanosine in their urine [188]. 

4.7. Chlorination of Substrates 

Among heme peroxidases, MPO is the only protein able to catalyze the generation of 

HOCl or Cl2 and to further chlorinate a variety of biological substrates. The incorporation 

of a chlorine atom into a substrate is of special interest, as this unequivocally demonstrates 

MPO-mediated chlorination capacity, which can be used as a biomarker for the chlorina-

tion activity of MPO. Indeed, there are numerous reports about the substrate chlorination 

of cholesterol, DNA, and pyrimidine nucleotides, and secondary reactions of chlorinated 

pyrimidines with GSH, NADH, tertiary amines, and a panel of other biological substrates 

[190–194], as well as substrate chlorination in cell and tissue components under patho-

physiological conditions. Selected examples are presented in Table 2. 
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In proteins of the airway epithelium of asthmatic patients, 3-bromotyrosine, 3,5-
dibromotyrosine, and 3-nitrotyrosine were detected [122,183,189]. In the liver and urine
of lipopolysaccharide (LPS)-treated rats, enhanced levels of 8-bromo-2′-deoxyguanosine
and 3-bromotyrosine were reported [188]. Diabetic patients excreted increased values of
8-bromo-2′-deoxyguanosine in their urine [188].

4.7. Chlorination of Substrates

Among heme peroxidases, MPO is the only protein able to catalyze the generation
of HOCl or Cl2 and to further chlorinate a variety of biological substrates. The incor-
poration of a chlorine atom into a substrate is of special interest, as this unequivocally
demonstrates MPO-mediated chlorination capacity, which can be used as a biomarker for
the chlorination activity of MPO. Indeed, there are numerous reports about the substrate
chlorination of cholesterol, DNA, and pyrimidine nucleotides, and secondary reactions of
chlorinated pyrimidines with GSH, NADH, tertiary amines, and a panel of other biological
substrates [190–194], as well as substrate chlorination in cell and tissue components under
pathophysiological conditions. Selected examples are presented in Table 2.

Table 2. Formation of MPO-mediated chlorinated products.

Target Molecule Chlorinated Product Remarks References

Taurine
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Antimicrobial and anti-

inflammatory activity 
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(double bond adjacent to 

ether linkage) 

 

α-Chloro fatty aldehydes 

 

Other products: 

lysophospholipids 
[160,161] 

Double bonds in 

unsaturated lecithins 
Chlorohydrins at these double bonds  [56,197] 

Taurine chloramine
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diomyocytes leads to the conversion of this chloro fatty aldehyde to 2-chlorohexadecanoic
acid and 2-chlorohexadecanol [209]. Bromine inhalation mimics ischemia/reperfusion
cardiomyocyte injury in rats via the intermediate formation of 2-bromo fatty aldehyde
(2-bromohexadecanal) [210] apparently via the action of MPO and EPO [211].

Several chlorinated products of nucleobases were detected after incubation with the
MPO-H2O2-Cl− system [85,185,191]. Of special interest is the confirmation of these prod-
ucts in inflamed tissue material. 5-Chlorouracil was found in atherosclerotic plaques [196].
Like 8-bromo-2′-deoxyguanosine, enhanced values for 8-chloro-2′-deoxyguanosine were
detected in the liver and urine of LPS-treated rats as well as in the urine of diabetic pa-
tients [188].

4.8. Identification of Chlorinated Epitopes/Proteins in Biological Specimens

Basically, polymorphonuclear neutrophils are the major reservoir of MPO (the most
abundant peroxidase in humans), representing 2–5% of cell weight, while the level of MPO
in monocytes is approximately 1% [212,213], but MPO is also present in certain macrophage
subtypes, including liver (Kupfer cells) and brain macrophages (microglia; [214]). While the
use of different mass spectrometry analysis techniques (see Tables 1 and 2) has turned out
to be suitable for the identification of EPO/MPO-derived chlorinated and/or brominated
species, immunological techniques may be considered crucial, focusing on MPO-generated
chlorinated epitopes under inflammatory and/or disease conditions.

Immunohistochemical staining of chlorinated proteins generated by the MPO-H2O2-Cl−

system has been performed with the use of specific monoclonal antibodies (mAbs, clone
2D10G9 [215], and clones 6E10A11 and 10A7H9 [202]) in various inflammatory condi-
tions in humans such as kidney disease (glomerular and tubulointerstitial inflammatory
and fibrotic lesions [216], membranous glomerulonephritis [214,217], and acute tubular
damage [218]), placental tissues (first trimester following complications [219] and third
trimester in normal pregnancy [220]), liver tissue (nonalcoholic steatohepatitis [221]), my-
ocardial heart tissue (infarcted human left ventricle [222]), and in particular atheroscle-
rotic lesion material (autopsy material, lesion types II to VI [105,107,202,223–226]). Most
importantly, the mAbs raised against in vitro chlorinated proteins not only detected
HOCl-modified proteins such as modified apoB-100 [223] and the modified matrix gly-
coprotein fibronectin [107] in situ but also detected these modified proteins when they
were extracted from lesion material and subjected to immunoblot analyses: data that con-
firm enzymatic in vivo chlorination via the MPO-H2O2-Cl− system. Extensive staining
for HOCl-modified proteins (colocalizing with MPO and/or mononuclear cells, similar
to that observed in the human system) was also found in atherosclerotic lesions from
homozygous [227] and heterozygous Watanabe heritable hyperlipidemic rabbits [228], but
to a lesser extent in lesions from a specific strain of New Zealand White rabbit with a high
atherosclerotic response to hypercholesterolemia [227].

Although the expression of granule enzymes (including MPO) is much lower in the
rodent system compared to humans [229,230], substantial staining for HOCl-modified
proteins/epitopes has been detected in C57BL/6 murine livers following galactosamine/
endotoxin-induced hepatoxicity: data in line with the increased staining for 3-chlorotyrosine
adducts [231], another footprint for the generation of HOCl by neutrophil-derived MPO [232].
Pronounced staining for HOCl-modified epitopes became apparent during hepatic is-
chemia/reperfusion injury in C57BL/6 mice [233] to an extent similar to that observed
during hepatic ischemia/reperfusion injury in male Sprague Dawley rats [234].

Indeed, progressive neutrophil accumulation and activation in the liver following
treatment with monocrotaline, a pyrrolizidine alkaloid, have been paralleled by an in-
creased activity of MPO and pronounced staining of HOCl-modified proteins/epitopes
in Sprague Dawley rats [235]. Furthermore, different combinations of LPS with other
drugs were applied to follow neutrophil-induced liver injury in Sprague Dawley rats.
(i) Cotreatment with ranitidine, a H2 histamine receptor antagonist, increased staining of
HOCl-epitopes (in the midzonal areas of liver lobules [236]) that could be significantly
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impaired by the mitogen-activated protein kinase inhibitor SB 239063 [237]. (ii) Cotreatment
with sulindac (a nonsteroidal anti-inflammatory drug) elevated the panlobular formation
of HOCl-modified epitopes [238] that could be inhibited by etanercept, a tumor necrosis
factor inhibitor, or plasminogen activator inhibitor-1. (iii) Cotreatment with amiodarone,
an antiarrhythmic medication, after a 10 h treatment led to massive accumulation of
HOCl-modified epitopes [239] that could be reduced to baseline levels by either rabbit
antineutrophil antiserum or heparin. Colocalization of chlorinated epitopes with lectin-like
oxidized LDL receptor-1 during the initiation of transplant vascular injury in rats [240]
is supported by data that the lectin-like oxidized LDL receptor-1 acts as a receptor for
HOCl-modified lipoproteins [241,242]. Most importantly, high oral dosing with SCN−,
a competitive MPO substrate, protected against myocardial ischemia/reperfusion injury in
male Sprague Dawley rats by impairing infarct size and decreasing mAb recognition of
HOCl-damaged myocardial proteins generated via the MPO-H2O2-Cl− system of activated
neutrophils [243]. Whether the addition of NO2

− may lead to an additional decrease
remains to be elucidated. It is worth mentioning that NaSCN treatment has been found to
attenuate atherosclerotic plaque and chlorotyrosine formation and to improve endothelial
regeneration in apoE−/− mice [72]. In another mouse model (LDL receptor−/− mice)
expressing human MPO, SCN− supplementation has been reported to decrease atheroscle-
rotic plaque formation and to improve endothelial vasodilatation [71].

4.9. Role of pH in Chlorination Activity of MPO at Inflammatory Sites

The presence of chlorinated species at inflammatory sites raises several questions
about the conditions favoring these modifications. First, the detection of chlorinated mate-
rial is indicative of a weak status of antagonizing protective mechanisms. As outlined in
Section 4.2., several major mechanisms which control concentrations of H2O2 and inactivate
heme peroxidases and their products are known. Second, after its release from undergoing
neutrophils, the highly cationic MPO may bind to acidic epitopes of proteins, lipoproteins,
cell surfaces, and extracellular matrix components, resulting in HOCl-mediated modifica-
tions of these targets. Third, a pH decrease below 6 favors the MPO-mediated formation of
HOCl and Cl2 and thus chlorination reactions as a further consequence. Several reports
exist demonstrating that the bulk pH might be lower at inflammatory sites in contrast to
healthy tissue regions (as reviewed in [244]). The reasons for this deviation are metabolic
acidosis, and diminished buffer capacity. For example, in cystic fibrosis patients, the pH
value of inflamed airway mucous fluids was 0.3–0.5 pH units lower than that measured in
unperturbed fluids [245–247].

As the pH value is usually measured by microelectrodes or pH-sensitive fluorophores
in biopsy specimens, a mean pH value is given without consideration of local pH deviations.
Protons and other cations can be enriched in the near environment of acidic artificial
polymers and DNA [248,249]. Model calculations revealed a distance-dependent decrease
in the local pH at the surface of DNA origami. Within a distance of 5 nm, the pH falls
by about two pH units of the bulk value [249]. Intriguingly, horseradish peroxidase and
glucose oxidase attached to a DNA scaffold exhibited enhanced activity as a result of this
pH decrease [249]. Similar pH effects were reported for polyelectrolyte-bound trypsin and
chymotrypsin [250,251]. After recruitment of neutrophils to inflammatory sites, complexes
between MPO and DNA are very common from undergoing neutrophils [98,99]. At present,
we can only speculate about the local pH conditions at the surface of MPO attached to DNA.

A further aspect is important for the presence of acidic pH values. At inflammatory
loci, undergoing neutrophils and tissue components are scavenged by macrophages. Unlike
classically activated human macrophages (type 1 macrophages), alternatively activated
human macrophages (type 2 macrophages) acidify their phagosomes to pH 5.0 within
10 min [252,253]. Macrophage phagosomal pH values around and below pH 5 were
also reported by other groups [254,255]. As MPO is present in the material taken up
by macrophages at inflammatory sites, good conditions are created for MPO-mediated
chlorination reactions inside the phagosome.
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5. Conclusions

The formation of PXDN-mediated bromine-dependent cross-links in collagen IV and
the iodination of tyrosine residues in thyreoglobulin by TPO represent functional reactions
of specialized heme peroxidases. Their halogenation activities are embedded in complex
processes of the synthesis of vascular basement membranes and endocrine hormones.
Both heme enzymes incorporate oxidized halides into substrates tightly associated with
these proteins. For MPO, EPO, and LPO, halogenation of bound substrates is evidenced
only for the chlorination of taurine by MPO at present. In contrast to PXDN and TPO,
in their halogenation activity, MPO, EPO, and LPO apply small (pseudo)halogenated
species that can interact with multiple substrates. The halogenation activities of MPO,
EPO, and LPO concern different aspects of immune defense reactions against pathogens
as well as inactivation of virus-laden and other non-functional cells. Otherwise, these
halogenation reactions can damage intact cell and tissue constituents and contribute to
disease progression. These contrasting effects—on the one hand, playing an essential role
in host defense and, on the other hand, contributing to the pathogenesis of long-lasting
disorders—are well known for MPO [6] and also demonstrated for EPO [7]. The hypohalous
acids, HOCl and HOBr, which are only generated by MPO and EPO, are the most reactive
(pseudo)halogenated species. Thus, it is not surprising that, among mammalian heme
peroxidases, both MPO and EPO are primarily involved in a panel of chronic inflammatory
diseases. In addition, excess formation of SCN− oxidation products also favors damaging
reactions under pathological conditions.

Currently, we are far from a thorough understanding of detailed mechanisms of
the (patho)physiological consequences of the halogenating activity of MPO and EPO. Of
course, the activities of these peroxidases are closely associated with the recruitment and
activation of neutrophils, eosinophils, and other inflammatory cells such as lymphocytes,
monocytes, endothelial cells, fibroblasts, and platelets at local inflammatory sites. If we
contemplate inflammatory processes as an indispensable defense mechanism against a
wide range of different threats, health problems arise usually from very strong acute as well
as long-lasting chronic inflammation. The latter is insufficiently terminated and concerns
immunocompromised individuals most of all. Here, aggressive products released and
generated from immune and undergoing host cells foment the inflammatory process in
the long run. The heme peroxidases MPO and EPO and their products are part of this
proinflammatory machinery when protecting mechanisms are limited or exhausted.

To summarize, the role of immunologically relevant heme peroxidases in defense
reactions and disease development should be regarded in close context with other reactions
and activities of immune cells. Revealing their biological activities under the inflammatory
status in detail, it would be possible to understand the (patho)physiological relevance
of the halogenation activity. It is still a great challenge for scientists to achieve a deeper
understanding of these questions to extend therapeutic strategies based on basic molecu-
lar mechanisms.
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Br− bromide
Br2 molecular bromine
BrCN cyanogen bromide
Cl− chloride
Cl2 molecular chlorine
ClCN cyanogen chloride
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CN− cyanide
EPO eosinophil peroxidase
GSH reduced glutathione
HDL high-density lipoprotein
HO2SCN cyanosulfurous acid
HO3SCN cyanosulfuric acid
HOBr hypobromous acid
HOCl hypochlorous acid
HOCN cyanic acid
HOI hypoiodous acid
HOSCN hypothiocyanous acid
I− iodide
I3
− triiodide anion

ICN cyanogen iodide
LDL low-density lipoprotein
LPO lactoperoxidase
LPS lipopolysaccharide
MPO myeloperoxidase
NET neutrophil extracellular trap
NO2

− nitrite
−OCl hypochlorite
−OCN cyanate
−OI hypoiodite
−OSCN hypothiocyanite
PXDN peroxidasin
PXDNL peroxidasin-like protein
SCN− thiocyanate
(SCN)2 thiocyanogen
SeCN− selenocyanate
−SeOCN hyposelenocyanite
TPO thyroid peroxidase
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