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Abstract: Background: the present work describes the preparation, characterization and optimization
of eight types of PLGA-based nanosystems (nanospheres and nanocapsules) as innovative mucoad-
hesive drug delivery systems of lactoferrin, in order to achieve a preclinical consistent base as an
alternative pharmacological treatment to different ocular syndromes and diseases. Methods: All
different nanoparticles were prepared via two modified nanoprecipitation techniques, using a three-
component mixture of drug/polymer/surfactant (Lf/PLGA/Poloxamer), as a way to overcome the
inherent limitations of conventional PLGA NPs. These modified polymeric nanocarriers, intended for
topical ophthalmic administration, were subjected to in vitro characterization, surface modification
and in vitro and in vivo assessments. Results: An appropriate size range, uniform size distribution
and negative ζ potential values were obtained for all types of formulations. Lactoferrin could be
effectively included into all types of nanoparticles with appropriate encapsulation efficiency and
loading capacity values. A greater, extended, and controlled delivery of Lf from the polymeric matrix
was observed through the in vitro release studies. No instability or cytotoxicity was proved for all
the formulations by means of organotypic models. Additionally, mucoadhesive in vitro and in vivo
experiments show a significant increase in the residence time of the nanoparticles in the eye surface.
Conclusions: all types of prepared PLGA nanoparticles might be a potential alternative for the topical
ophthalmic administration of lactoferrin.

Keywords: nanoparticles; PLGA; lactoferrin; topical ophthalmic administration; nanoprecipitation;
protein nanocarriers; keratoconus; corneal ecstatic disorder

1. Introduction

The eye is an airtight organ and presents a high resistance to the absorption of xenobi-
otics [1,2]. In the past few decades, different strategies have been deeply studied to improve
ocular drug retention, ameliorate topical ophthalmic therapeutic effects and minimize the
limitations of conventional drug-delivery systems (DDS). At present, several drug-loaded
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colloidal systems, intended for ophthalmic applications, are reported to provide controlled
drug release, as well as better retention in the eye surface as opposed to well-known typical
eye drops [3].

Biodegradable polymers, such as poly (lactic-co-glycolic) acid (PLGA), are broadly
used as novel DDS due to their compliance with the desirable requirements intended for
topical ophthalmic administration (safety, biodegradability, biocompatibility, non-toxicity,
sustained drug release and drug site-specific targeting) [4]. PLGA is composed of lactic
acid and glycolic acid, providing a large range of physicochemical properties depending
on the lactic/glycolic acid ratio.

PLGA nanocarriers may be generally prepared by using different techniques, where
nanoprecipitation is one of the most common. Nanoprecipitation involves the addition
of a water-miscible organic solution, where a hydrophobic polymer is dispersed into an
aqueous solution, prompting a diffusion process that promotes the polymer precipitation [5].
Homogenous and identical particle size distribution is obtained with this technique, leading
to an enhanced colloidal stability [6–8], reduced production times and expenditures [9,10],
and high production yields [11]. Depending on the preparation process, the nanoparticle
structure may differ. The drug may be either entrapped into the matrix or adsorbed on the
surface [12,13].

The resultant nanosystems present a controlled drug release based on the polymer
degradation rate, as well as the diffusion processes of the encapsulated drug [14]. During
design and development procedure, the selection of the most appropriate type of PLGA is
the main key factor to achieve an effective drug delivery [15]. The lack of mucoadhesiveness
hinders its use in topical ophthalmic administration, although PLGA nanoparticles reached
good results as DDS [16].

Lactoferrin (Lf) is an iron-binding single-chain glycoprotein composed of two lobes to
which Fe3+ ions may strongly bind. Lf is acknowledged as a first-line defense protein with
a pleotropic functional pattern in humans, including anti-inflammatory [17,18], antibacte-
rial [19–21], antiviral [22–24] and antitumoral [25,26] actions, among others. Unlike other
iron-binding proteins, Lf was observed to promote iron retention in inflamed tissue, as
well as stimulate corneal epithelial wound healing [27,28], thereby restricting free radical
production and avoiding oxidative damage and inflammation. As consequence of the
functions of this glycoprotein, Lf has been proposed for the treatment of different surface
ocular pathologies [29], such as (I) dry eye, including Sjögren syndrome and idiopathic dry
eye, (II) keratoconjunctivitis, (III) giant papillary conjunctivitis, (IV) irritative and vernal
conjunctivitis or (V) viral and bacterial ocular infections, among others.

Additionally, Lf has been identified as a candidate to inhibit hypoxia-inducible factors
(HIFs), whose main objective is based on the expression regulation of various genes, includ-
ing VEGF and, consequently, they are considered as a target for treatment of neovascular
ocular diseases such as age-related macular degeneration (AMD), diabetic retinopathy and
diabetic macular edema [30].

Likewise, Lf has also been recognized as a key molecule in the pathogenesis of Kerato-
conus (KC). KC is a progressive and bilateral degenerative ecstatic disorder, characterized
by a disorder distinguished by stromal thinning, corneal steepening and irregular astig-
matism, which lead to great visual acuity and impaired social health and life quality that
affects young adults causing, worsening over time [31]. KC affects all ethnicities and both
genders in the same way, whose initial prevalence (1/2000) has significantly increased
in the last few years due to new diagnosis techniques [32]. The etiology of KC remains
unclear, where environmental, genetic, and behavioral factors act as the main pathophys-
iological contributors [33,34], not existing approved treatment to prevent or decrease its
progression [35], only aimed to slow down its progress [36].

Furthermore, numerous research have recognized the role of oxidative stress and lipid
peroxidation pathways in the KC pathogenesis [37–39]. Under physiological conditions,
the generation of reactive oxygen species (ROS) during metabolism is counteracted by
the action of antioxidant enzymes, particularly catalase, superoxide dismutase and glu-
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tathione peroxidase, among others. Thus, any alteration in this balance would promote
the generation of an oxidative stress phenomenon [40]. Likewise, increased oxidative
stress is also associated with several types of non-apoptotic cell death, one of them being
ferroptosis (an iron-dependent cell death process). Ferroptosis inducted by the malfunction
of the glutathione-dependent antioxidant shield, resulting in the accumulation of lipid
peroxidation products [41]. Nevertheless, lipophilic antioxidants s (e.g., α-tocopherol,
butylated hydroxytoluene or β-carotene) and iron chelators have proven efficacy as strong
suppressors in the ferroptosis cell death prevention [42,43].

In recent years, different works were published aiming to improve the Lf ocular
bioavailability due to its great potential in the treatment of several ophthalmic diseases [44].
This improvement may be achieved by increasing the permanence of Lf on the ocular
surface or improving Lf corneal permeation. In the present work, Lf-loaded PLGA nanopar-
ticles were prepared by two different modified nanoprecipitation techniques, using a
three-component mixture of drug/polymer/surfactant (Lf/PLGA/Poloxamer), as a way to
overcome the inherent limitations of conventional PLGA NPs (high initial burst, incom-
plete release and instability of the encapsulated proteins, among others). These modified
polymeric nanocarriers, intended for topical ophthalmic administration, were subjected to
in vitro characterization, surface-modification, and in vitro and in vivo assessments.

2. Materials

Resomer® RG 502 (Mw: 10,000 Da; lactide:glycolide = 50:50), Resomer® RG 502H (Mw:
17,000 Da; lactide:glycolide = 50:50), Resomer® RG 503 (Mw: 24,000 Da; lactide:glycolide = 50:50)
and Resomer® RG 503 H (Mw: 38,000 Da; lactide:glycolide = 50:50) were purchased from
Evonik (Essen, Germany). Hydrochloric acid (HCl) and sodium hydroxide (NaOH) and
were acquired from Merck (Darmstadt, Germany). Lactoferrin, Polyvinyl Alcohol (PVA) and
Pluronic® F68 were acquired from Sigma-Aldrich (St Louis, MI, USA). Visking dialysis tubing
cellulose membrane (14,000 g/mol molecular weight cutoff) was purchased from Sigma-Aldrich
(St. Louis, MI, USA). All other chemicals and reagents were of the highest purity grade
commercially available.

3. Methods
3.1. Preparation of PLGA Nanoparticles
3.1.1. One-Step Nanoprecipitation Method: Nanospheres

The preparation of PLGA nanospheres (NSs) was performed by a modified nanoprecip-
itation method, based on the elaboration procedure previously developed by Bilati et al. [45],
with minor modifications. The polymer was firstly dissolved in DMSO (v = 4 mL). This so-
lution was injected by a syringe/needle system, introducing the needle into the dispersing
solution, an 0.5% (w/v) Pluronic® F68 aqueous solution (v = 40 mL), under magnetic stirring
(up to 750 rpm) at room temperature for 30 min. A 1:10 organic:aqueous phase ratio was es-
tablished for the nanoparticles preparation. Nanoprecipitation immediately occurred when
the organic solution was in contact with the aqueous phase. Resulting suspensions were
centrifuged 3 times at 4 ◦C and 50,000 rpm for 1-h cycles and washed with double-distilled
water to eliminate the residual DMSO, gradually replacing it with water for subsequent
freeze-drying, using trehalose as cryoprotectant (0.5% w/v). Lactoferrin-loaded PLGA
NSs were prepared following the same procedure used for blank nanoparticles, although
adding the protein to the aqueous solution before the addition of the organic solution and
the subsequently nanoparticle’s formation (see Figure 1). A 1:10 (w/w) protein:polymer
ratio was established for the drug-loaded nanospheres preparation.
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3.1.2. Two-Step Nanoprecipitation Method: Nanocapsules

The preparation of PLGA nanocapsules (NCs) was performed by a modified two-
step nanoprecipitation method, using a method as developed by Weber et al. [46] and
subsequently described by Morales-Cruz et al. [47], with negligible changes. Briefly, Lf
was dissolved in an aqueous phase (0.01% w/v) and then solvent-precipitated by adding
acetonitrile at a 1:4 (v/v) ratio. The resultant protein suspension was stirred for 5 min at
room temperature.

Furthermore, PLGA was also dissolved in acetonitrile (CPLGA = 5 mg/mL) under
magnetic stirring (500 rpm) at 25 ± 2 ◦C, and subsequently added to the Lf suspension
drop wisely. The resulting mixture was finally added into a maturation medium in a 1:10
(v/v) ratio, composed of a 1% (w/v) PVA solution, under vigorous stirring (>750 rpm) and
room temperature to promote the nanoparticle formation.

Polymer nanoprecipitation instantaneously occurred upon infusion of the Lf suspen-
sion. The resulting lactoferrin-loaded PLGA NCs were the centrifuged for 1 h at 14,000 rpm,
the supernatant discarded, and the sediment resuspended in an ocular buffer saline (PBS).
A thrice washing step was applied prior to the samples freeze-dried using trehalose as cry-
oprotectant (0.5% w/v) (see Figure 2). A 1:10 (w/w) protein:polymer ratio was established
for the drug-loaded nanocapsules preparation.
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3.2. Physicochemical Characterization of the Nanoparticles
3.2.1. Particle Size, Polydispersity, and Surface Charge

The average particle size, size distribution, and surface potential of the nanoparticles
were determined by Dynamic Light Scattering with non-invasive back scattering (DLS-
NIBS) at 25 ◦C. PLGA NPs were 1:10 diluted prior to the analysis. DLS subsets were defined
as previously described [44,48]. Each batch was thrice assessed.

3.2.2. Morphological Evaluation

PLGA NSs and NCs were morphologically analyzed two different microscopical
techniques, these being: (I) Scanning Electron Microscopy (SEM), and (II) Transmission
Electron Microscopy (TEM). An appropriate sample preparation was made prior to the
SEM and TEM analysis, as previously described [44,48]. Different batches were used for
both types of analysis.

3.2.3. Production Yield (PY)

The PY values of the PLGA NPs were acquired by a centrifugation technique [49], with
slight changes. Concisely, predefined volumes of the PLGA NSs or NCs were centrifuged
(14,000 rpm, 25 ◦C, 1 h), the supernatants were discarded, and the sediment was vacuum-
dried until constant weight. The PY values were finally estimated as follows (Equation (1)):

PY (%) = (NPs weight)/(Total initial solids weight) × 100 (1)

3.2.4. Encapsulation Efficiency (EE) and Loading Capacity (LC)

Encapsulation efficiency and loading capacity of the PLGA NPs were determined by
following a centrifugation/spectrophotometry procedure, as previously described [44,48].
EE and LC values were obtained by a centrifugation technique, trailed by the free-drug
measurement by UV–Vis spectrophotometry, after polymer precipitation. Briefly, 20 mg
of PLGA-based nanoparticles were dissolved into 2.5 mL dichloromethane, followed by a
mechanic stirring process (Vortex®, VWR International) (Darmstadt, Germany) to promote
the polymer dissolution. Later, 5 mL of methanol were appended, and samples were
subsequently vortexed for 1 min to foster polymer precipitation. Samples were then
centrifuged (5000 rpm, 10 min) and the supernatant was subsequently collected. Unbound
Lf was quantified by UV-Vis spectrophotometry at a 280.0 nm wavelength, using a method
previously validated by our group. This procedure was repeated using 9 randomized
batches for each formulation. The EE (Equation (2)) and LC (Equation (3)) of Lf were
respectively calculated as follows:

EE = (Total amount of drug − Amount of unbound drug)/(Total amount of drug) × 100 (2)

LC = (Total amount of drug − Amount of unbound drug)/(NPs weight) × 100 (3)

3.3. Stability Studies
3.3.1. Stability to Storage

ICH guidelines were followed to design the procedure for determining storage sta-
bility [50], with negligeable adjustments. PLGA NSs and NCs were freshly prepared,
isolated by centrifugation, and resuspended in PBS (pH 7.4, v = 10 mL). Samples (1 mL)
were incubated at different temperature environments: (a) 4 ± 2 ◦C, (b) 25 ± 2 ◦C, and
(c) 37 ± 2 ◦C for two different periods: 8 h (short-time stability) and 3 months (long-term
stability), at 100 rpm and protected from light. Size and size distribution were studied in
triplicate for each batch.

3.3.2. Stability to pH

A complete pH interval (2, 4, 6, 7, 8, 10, and 12) was pre-established for the stability
study of PLGA NSs and NCs, as previously described [44]. Samples (500 µL) were 1:10
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diluted in Milli-Q® water and consequently refrigerated for 24 h. Size, polydispersity, and
surface charge were finally analyzed by DLS, as mentioned in previous sections.

3.3.3. Stability to Ionic Strength

A complete ionic strength interval (0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, and 2 M) was pre-
established for the stability study of PLGA NSs and NCs, as previously described [44,48].
Samples (500 µL) were 1:10 diluted in Milli-Q® water and then refrigerated for 24 h.
Size, size distribution, and surface charge were finally analyzed by DLS, as mentioned in
previous sections.

3.4. In Vitro Release Study

The Lf delivery from PLGA NSs and NCs was determined following the dialysis
fundamentals previously described as a way to establish the drug diffusion and kinetic
behavior from these colloidal systems in a simulated physiological environment. Hence-
forward, freshly prepared lactoferrin-loaded PLGA NSs and NCs were suspended in
PBS (pH 7.4 and ionic strength 0.075 M) for a physiological background proof-of-concept
test [51]. The experimental procedure was extensively described in previous works [44,48],
where a 1.5 mg/mL NPs concentration ([Lf] = 0.15 mg/mL) was adjusted to fill the donor
chamber of the Franz diffusion cells (v = 3 mL). The protein release rate from PLGA
NSs and NCs was determined at predetermined times by UV-Vis spectrophotometry at a
280.0 nm wavelength.

3.5. Citotoxicity Analysis
3.5.1. Bovine Corneal Opacity and Permeability Test (BCOP)

The BCOP test is an organotypic model commonly employed in the assessment
of a great variety of formulations with potential ocular irritancy to fulfill the animal
replacement bases.

The BCOP test fundamentals were based on the methodology earlier protocolized
by Tchao et al. [52] and improved by Gautheron et al. [53], with minimal adjustments. A
standardized procedure for PLGA NPs addition, as well as the permeability and opacity
measurements, were established and considerably described in previous works [44]. In
this test, corneal opacity changes were estimated by two different experimental techniques
(luxmetry and the UV-VIS spectrophotometry), while permeability data was exclusively
obtained by UV-Vis spectrophotometry (490.0 nm wavelength). Each formulation was
evaluated in triplicate. The resulting permeability and opacity values were used to calculate
an in vitro score value (if necessary, see Equation (4)) [53,54]. Furthermore, the classification
of PLGA NPs may be performed agreeing to the Kay and Calandra rating [53].

IVIS = mean opacity value + (15 ×mean permeability OD490 value) (4)

3.5.2. Hen’s Egg Test on the Chorioallantoic Membrane (HET-CAM)

The HET-CAM test has turn into a universal standard test for the assessment of acute
eye irritation and corrosion phenomena [55,56], where three potential consequences may be
observed in the CAM vasculature and subsequently measured following the Kalweit et al.
criteria [57]. The experimental procedure was extensively described in previous works [44].
Briefly, viable eggs were employed after 9 days of incubation under specific environmental
conditions [44], using the CAM as the target tissue. Once the formulation was placed onto
the CAM, a 5 min inspection period was carried out, taking frames from the beginning
to the end of the assay. Results were both individually and combined analyzed. Each
formulation was thrice appraised.
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3.6. Ocular Surface Retention Study
3.6.1. Ex Vivo Corneal Surface Retention

The ex vivo corneal surface retention assay was based on the method firstly defined by
Belgamwar et al. and Gradauer et al. [58,59], with minimal adjustments. The experimental
procedure was extensively described in previous works [44]. Briefly, freshly excised eyes
were placed upwards on specifically designed holders. Fluorescein-stained PLGA NSs and
NCs were then added, where the formulation’s excess was collected and reapplied. The
residual formulation volume was finally quantified for fluorescence intensity by UV-Vis
spectrophotometry at a 490.0 nm wavelength. Each preparation was examined in triplicate.
Resulting data was compared with the initial intensity values, and the ex vivo corneal
mucoadhesion values were subsequently quantified as follows (Equation (5)):

Mucoadhesion (%) = [((Abs0 − V0) − (AbsF − VF))/(Abs0 − V0)] × 100 (5)

where Abs0 and AbsF indicate the absorbance value for the initial and final fluorescein-
stained PLGA NPs, V0 denotes the volume instilled to the eyes, and VF designates the final
volume of the formulations that was not adsorbed to the mucosa.

3.6.2. In Vivo Corneal Surface Retention Study
Evaluation of the Radiolabeling Stability and Efficiency of PLGA-Based Nanoparticles

Radioactive fluoride (18F) and gallium (68Ga) are two of the most commonly used
positron emitters due to their optimal positron features (see details in Table 1), making them
suitable for the Positron Emission Tomography (PET) imaging technique. In any case, 18F is
mostly used in different conjugates, where 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) and
18F-Choline are the most commonly used, while 68Ga is mainly used in binary or ternary
complexes, such as the 68Ga-DOTA (1,4,7,10-tetraazacyclododecane-tetraacetic acid).

Table 1. Physicochemical characteristics of different radiotracers (18F and 68Ga).

Radiotracer t1/2 (min) Eβ+,max (KeV) β+ Intensity (%)
18F 109.7 635 97

68Ga 67.71 1899 89

Lately, several methodologies have been investigated to trace a variety of nanosized
systems using the aforementioned radiotraces’ labeling [60–63]. The assessment of PLGA-
based NPs radiolabeling efficiency and stability was performed by an incubation procedure,
as previously described [44,48]. It must be considered that 18F-FDG and 18F-Choline were
provided by the Cyclotron unity of the University Hospital of Santiago de Compostela
(CHUS), while and 68Ga-DOTA was provided by the Galician Radiopharmacy Unit. The
radiolabeling efficiency of PLGA-based nanoparticles was quantify by the radiotracer activ-
ity, both in the supernatant and the remnant vials, considering the incubation interval and
the radiotracer decay. Statistical analysis was later employed to acquire the radiolabeling
efficiency and labeling stability data.

Experimental In Vivo Evaluation of the Ocular Biopermanence of PLGA-Based Nanoparticles

The PET/CT combined technique was used for the in vivo estimation of the PLGA NPs
retention time on the ocular surface, as previously described [64]. The in vivo experimental
procedure was performed in male Sprague-Dawley rats, whose environmental and feeding
conditions were controlled throughout the procedure, according to the ARVO approved
guidelines for laboratory animals [65]. The PET/CT acquisition and data processing were
extensively described in previous works [44,48]. Each formulation was tested in quadrupli-
cate (two animals, four eyes) to fulfill the laboratory animal regulatory outlines [66].

The PLGA NPs radioactivity versus time diagrams were finally acquired, comparing
the resulting data against a control solution (18F-Choline buffered solution). A monoex-
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ponential decay equation based on a single compartmental model was applied for the
remaining formulation versus time fitting by means of the GraphPad Prism® v. 8.41 soft-
ware (San Diego, CA, USA) and pKSolver®, a solver add-in for Excel® (Microsoft, Redmond,
WA, USA) [67].

3.7. Data Analysis

Pairs of groups were compared by carrying out one-tailed Student’s t-test and multiple
group comparison was conducted by one-way or two-way analysis of variance, with a 95%
significance level (p < 0.05), using the GraphPad Prism® v. 8.41 software (San Diego, CA,
USA). All data were presented as a mean and standard deviation (mean ± SD). Tukey’s or
Bonferroni’s tests were also used for post-hoc contrast.

4. Results and Discussion
4.1. Preparation of Lactoferrin-Loaded PLGA Nanoparticles
4.1.1. One-Step Nanoprecipitation Method: Lactoferrin-Loaded PLGA Nanospheres

The conventional nanoprecipitation technique is usually based on a solvent displace-
ment phenomenon, where a suitable solvent condition shifted into an inappropriate solvent
condition [68]. Nevertheless, the modified one-step nanoprecipitation methodology ap-
plied in the present work made it possible to successfully entrap Lf into PLGA nanospheres.
Certainly, both protein and polymer were individually dissolved into two different proper
solvents. Then, both were changed to a single unsuitable solvent in a one-step mixing
process. The obtention of lactoferrin-loaded PLGA NSs was based on the interfacial deposi-
tion of the nanoparticle components by a solvent displacement phenomenon between two
dissimilar solvents [69].

4.1.2. Two-Step Nanoprecipitation Method: Lactoferrin-Loaded PLGA Nanocapsules

The modified two-step nanoprecipitation method designed for the obtention of lactoferrin-
loaded PLGA NCs was successfully applied. This method was based on the assumptions
previously described by Giteau et al. [70].

The modified two-step nanoprecipitation method previously described (see Section 3.1.2)
was based on a double solvent displacement process, by using a desolvating agent (acetonitrile)
to promote the protein precipitation and the polymer dissolution. The original methodology
was also slightly changed to assure the obtention of nanosized PLGA nanocarriers with high Lf
content, avoiding enzyme inactivation or aggregation phenomena.

4.2. Physicochemical Characterization of the Nanoparticles
4.2.1. Particle Size Distribution and ζ Potential

Nano-sized particles are known to affect different biological parameters, such as the
in vivo tissue distribution, drug content, or stability, among others [71–74].

Figure 3 shows the average size and ζ potential for PLGA NSs and NCs, respec-
tively. The PDI index was minimum for all formulations, suggesting that a homogeneous
population of nanoparticles was obtained. Regarding the surface charge, high negatively
ζ potential values were obtained, presumably due to the PLGA presence in the sur-
face [75]. This negatively charged net might indicate that these colloidal systems would
remain stable over time, which is desirable in order to prevent particle aggregation or
coalescence [76].
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Figure 3. Comparison of size and ζ potential differences for blank and lactoferrin-loaded PLGA-based
nanoparticles. A one-way ANOVA statistical analysis was applied, and no statistically significant
differences were found among the formulations (p > 0.05), regardless of the polymer used.

4.2.2. Effect of Protein Loading on Particle Size and ζ Potential

Figure 3 displays the mean size for blank and lactoferrin-loaded PLGA-based nanopar-
ticles. The resulting data suggest that Lf hardly has any influence on particle size. However,
it must be taken into account that the drug:polymer ratio was 1:40, so its impact may be
camouflaged by the component proportions in the final formulation. A one-way ANOVA
statistical analysis was applied, and no statistically significant differences were found
among the formulations (α n.s.), regardless of the polymer used.

On the other hand, surface charge values of Lf-loaded PLGA NSs were lower than
blank PLGA NSs (see Figure 3), suggesting that the Lf might not be just encapsulated
into the nanocarriers, but also adsorbed to the nanoparticle surface. A one-way ANOVA
statistical analysis was carried out, and no statistically significant differences were found
among the formulations (α < 0.001), regardless of the polymer used.

These results are supported by previous studies [77], where the surface potential of
the nanoparticles was affected by the molecular distribution of all the compounds and
the net formed by the chemical positions. Nevertheless, these ζ potential differences are
not significantly observed in the lactoferrin-loaded PLGA NCs (α n.s.) (see Figure 3),
supporting the idea that Lf is encapsulated and protected by a polymeric shell, typical of a
reservoir colloidal system, without being massively adhered to the polymeric surface.

4.2.3. Morphological Evaluation

SEM and TEM images were scanned both before and after the vacuum-drying process
to prove that the physical and morphological characteristics of the PLGA NPs remained
unchanged after the dehydration process. Resultant images confirmed the presence of
homogenous populations of spherical shape and size below 300 nm. Hence, the vacuum-
dried PLGA NPs presumably guarantee the nanoscale size, where size and morphology
results were aligned with the morphological evaluation data.

The microstructural analysis by TEM also set that PLGA-based nanoparticles were
observed as individual spherical entities, with a homogeneous distribution, spherical in
shape and irregular surface particles with well-defined sizes (see Figure 4). These results
agree well with previous studies [78–80], clearly differentiating the structure of the NSs
from the NCs.
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Figure 4. TEM images of lactoferrin-loaded PLGA NSs and lactoferrin-loaded PLGA NCs.

4.2.4. Production Yield (PY), Encapsulation Efficiency (EE) and Loading Capacity (LC)
of Nanoparticles

Two different types of PLGA-based NPs were developed for Lf encapsulation. Figure 5
shows the PY, EE and LC of resulting lactoferrin-loaded PLGA-based NPs. The EE determi-
nation proved that the nanoprecipitation technique was reproducible and useful, supported
by appropriate PY values (above 80%). A one-way ANOVA analysis was performed to
assess the existence of dissimilarities among the prepared formulations. The resultant
data indicate that no statistically significant differences were found in terms of PY and
EE. Nevertheless, considerable differences were observed for LC values, where NCs-based
formulations permitted the obtention of high Lf-embedded content into the polymer matrix,
compared to the NSs-based formulations, which barely showed any loading capacity (less
than 10%). These data are consistent with the nanoparticle preparation method, where
NCs show a large amount of drug inside the polymer matrix while, in the NSs, the drug is
mostly adhered to the polymeric matrix surface, presumably by electrostatic bonds.
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Figure 5. PY, EE, and LC values for PLGA-nanoparticles. No statistically significant differences were
found in terms of PY and EE (p > 0.05). Nevertheless, considerable differences were observed for LC
values, where NCs-based formulations permitted the obtention of higher Lf-embedded content into
the polymer matrix, compared to the NSs-based formulations (p < 0.0001).

4.3. Stability Studies
4.3.1. Stability to Storage

The resultant data for the long-term stability study proved that both PLGA NPs
did not experience any significant modification in their size over a 3-month period (see
Figures 6 and 7) for two different temperature sets (4 ± 2 ◦C and 25 ± 2 ◦C). Nevertheless,
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aggregation phenomena were observed in the third temperature set (37 ± 2 ◦C/60 ± 5%
RH) as of the second month. This process may be associated with the glass transition
temperature of the PLGA, which varies from 40 to 60 ◦C (near the studied temperature),
leading to an increase in the brittle characteristics of the polymer in physiological-like
conditions [81].
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Figure 6. Stability-to-storage study for PLGA-based NSs at three different temperature conditions:
(I) 4 ± 2 ◦C, (II) 25 ± 2 ◦C and (III) 37 ± 2 ◦C, respectively.
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Figure 7. Stability-to-storage study for PLGA-based NCs at three different temperature conditions:
(I) 4 ± 2 ◦C, (II) 25 ± 2 ◦C and (III) 37 ± 2 ◦C, respectively.
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4.3.2. Stability to pH

Collapse, rupture, or aggregation of nanoparticles may appear as a consequence of
pH media variations. Figures 8 and 9 show the variations in the physical magnitudes for
both PLGA-based nanoparticles along the studied pH interval.
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The same pattern was observed along the pH interval in terms of size and ζ potential
values for both types of PLGA nanoparticles. These changes are apparently related to
the polymeric nature of the resultant nano-sized particles, where PLGA determines the
nanoparticle’s ζ potential. Therefore, extremely acidic pH values promoted the nanoparti-
cle’s aggregation due to the interaction between the protonated medium (positive charge)
and the carboxyl groups of the polymer (negative charge), where a nullification of the NPs
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surface charge was observed. Nonetheless, PLGA-based nanoparticles remained stable in
in the rest of the pH interval. Hence, PLGA-based colloidal systems would be suitable for
topical ophthalmic administration [82].

4.3.3. Stability to Ionic Strength

Collapse, rupture, or aggregation of nanoparticles may appear because of ionic
strength media variations. Figures 10 and 11 show the resultant data for both types
of Lf-loaded PLGA nanoparticles over the studied ionic strength interval, respectively.
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Figure 10. Changes in size and ζ potential values of lactoferrin-loaded PLGA NSs over the studied
ionic strength interval.
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Figure 11. Changes in size and ζ potential values of lactoferrin-loaded PLGA NCs over the studied
ionic strength interval.
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The colloidal steadiness of both types of nanoparticles remained stable in spite of dys-
physiological conditions due to variations in the ionic strength values of the medium, where
a surface charge rise seemed to be directly related to an increase in the NaCl concentration.

Ionic strength may condition the physical stability of PLGA nanoparticles by promot-
ing possible time-dependent precipitation, sedimentation, or aggregation phenomena [83].
Nonetheless, Lf-loaded PLGA NPs remained stable in terms of changes in size, turbidity,
and particle compactness in spite of changes in the ionic strength values of the media over
the studied period.

4.4. In Vitro Release Study

The two key release mechanisms linked to drug-loaded PLGA nanosystems are usu-
ally diffusion and bioerosion/degradation. The release rate is initially controlled by the
diffusion mechanism while the bioerosion/degradation processes modulate the final stage
of the release period. Preceding studies have also proven the influence of drug release
mechanisms and many other factors (porosity, water content, polymer–drug and drug–drug
interactions, among others) in drug diffusion and degradation kinetics from PLGA-based
DDS [83].

The pilot in vitro release study of lactoferrin from the PLGA NPs evidenced that both
nanospheres and nanocapsules exhibited a controlled release profile, compared to a Lf
aqueous solution (control solution), as observed in Figure 12. The in vitro lactoferrin release
profiles allow the elucidation of a biphasic pattern, as follows: (I) a first initial burst release
due to the lactoferrin desorption from the particle surface, and (II) an asintotic release phase,
resulting from the lactoferrin diffusion from the polymer matrix because of the polymer
erosion processes. It must be considered that the polymer’s autocatalytic degradation is
based on the excision of ester bonds, resulting in a decrease in the molecular weight, being
faster in the matrix center and becoming more pronounced in larger systems [84].
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Figure 12. In vitro release study of Lf from PLGA NSs (a) and NCs (b). The first graph embodies
the raw amount of Lf corrected by the available surface released from the PLGA NSs over the 24 h
period. The second graph represents the percentage of Lf released from the PLGA NSs over the 24 h
period. No statistically significant differences were observed among all the PLGA-based formulations
(p > 0.05).
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On the other hand, a lower molecular weight leads to less hydrophobia and therefore
a higher water absorption capability, increasing their hydrolysis and bioerosion rate. Thus,
the release of Lf was expected to be faster in the nanoparticles made with Resomer® RG 502
and Resomer® RG 502H, compared to those made with Resomer® RG 503 and Resomer®

RG 503H. Nevertheless, no statistically significant differences were observed among all
the formulations.

In addition, the release rate can be also affected by interactions between the drug and
the polymer. These interactions and their impact on the subsequent release profiles have
been deeply examined in previous studies [81–83]. However, no statistically significant dif-
ferences were noticed among all the formulations despite differences in the hydrophobicity
of the polymers, possibly due to the similarity on the lactic and glycolic acids’ content.

The resulting in vitro release profiles were adjusted to different kinetic models. The
best correlation was obtained with the Hopfenberg and Peppas-and-Korsmeyer kinetic
models (with n values in the range of 0.57–0.93), suggesting that the surface erosion of
both NSs and NCs was caused by the dissolution, swelling and polymer chain scission
processes [85–87], and the protein diffusion was the predominant release mechanism
(Table 2). These results were supported by data previously published in other scientific
articles [88–90].

Table 2. Release data of Lf-loaded PLGA NSs and NCs into the Hopfenberg (Mt/M∞ = 1− [kt]n),
Higuchi (Mt/M∞ = k

√
t), Peppas and Korsmeyer (Mt/M∞ = ktn), and monoexponential diffusion

kinetics models.

Hopfenberg Higuchi Peppas and Korsmeyer

Formulation k n R k R k n R

502 NSs 0.0377 3 0.9418 26.04 0.9265 50.57 0.58 0.9326
502H NSs 0.0302 3 0.9679 23.99 0.9363 14.21 0.70 0.9610
503 NSs 0.0394 3 0.9340 27.42 0.9061 20.09 0.92 0.9163
503H NSs 0.0293 3 0.9789 24.00 0.9364 11.12 0.80 0.9787

502 NCs 0.0215 3 0.7839 14.85 0.7924 0.57 0.57 0.7965
502H NCs 0.0243 3 0.8798 17.85 0.8336 0.81 0.81 0.8826
503 NCs 0.0237 3 0.9639 17.82 0.8909 0.93 0.93 0.9722
503H NCs 0.0170 3 0.8914 12.76 0.8756 0.70 0.70 0.9043

4.5. Citotoxicity Analysis
4.5.1. Bovine Corneal Opacity and Permeability Test (BCOP)

The BCOP test is an appropriate ex vivo tissue model that allows the depth of
injury assessment by distinguishing the moderate, severe, and extremely severe ocular
irritant substances. Figure 13a show the transparency variations measured by UV-Vis
spectrophotometry for the lactoferrin-loaded PLGA NSs and NCs. Figure 13b show the
transparency variations measured by luxmetry for the lactoferrin-loaded PLGA NSs and
NCs, respectively.

All PLGA-based formulations showed an in vitro IS of 0 (IS = 0), exhibiting no cyto-
toxicity effects in terms of transparency modification, compared to control formulations.
These results are also supported by the fluorescein permeability data (see Figure 13c),
where no fluorescein passage was observed through the corneas after the administration of
the formulations.
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Figure 13. Resulting data of the BCOP test for PLGA-based NSs (top) and NCS (bottom). (a) final
corneal transparency values measured by UV-Vis spectrophotometry; (b) final corneal transparency
values measured by luxmetry, and (c) fluorescein permeability measured by UV-Vis spectrophotometry.

4.5.2. Hen’s Egg Test on the Chorioallantoic Membrane (HET-CAM)

The CAM is a no innervated tissue and constitutes a well-developed vasculariza-
tion model and an easy-to-study alternative strategy for ocular irritation assessment due
to the complete inflammatory process response, similar to that induced in the Draize
test, as it can be performed with greater efficiency and faster measurements than other
in vivo tests [91–93]. Thus, the HET-CAM assay was used to assess the cytotoxicity and
biocompatibility of the prepared nanoparticles.

PLGA-based NPs showed no cytotoxicity effects (IS = 0) (see Figure 14), comparing
them with control formulations (0.9% (w/v) NaCl and 1.8% (w/v) NaOH aqueous solutions,
used as negative and positive control formulations). These results are in accordance with
formerly published studies [94] and agree with the results previously obtained by the BCOP
test (see Section 4.5.1) confirming that these nanoparticles are biocompatible and non-toxic.
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Figure 14. Resulting images of CAM membranes after the PLGA-based nanoparticles administration
during the HET-CAM test, compared to the control solutions: (A) 502 PLGA NSs; (B) 502H PLGA
NSs; (C) 503 PLGA NSs; (D) 503H PLGA NSs; (E) 502 PLGA NCs; (F) 502H PLGA NCs; (G) 503 PLGA
NCs; (H) 503H PLGA NCs; (I) NaCl aqueous solution; and (J) NaOH aqueous solution.
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4.6. Ocular Surface Retention Study
4.6.1. Ex Vivo Corneal Surface Model

The ex vivo corneal surface bioadhesion determination was adapted from the previous
works described by Belgamwar et al. (2009) and Gradauer et al. (2012) [58,59], with minor
modifications. Figure 15 displays the mucoadhesion percentage for all the PLGA-based
NPs. The resulting data reinforce the possibility of using PLGA-based nanoparticles as an
alternative technological strategy for the topical ophthalmic administration of Lf.
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Figure 15. Ex vivo mucoadhesion data for PLGA-based nanoparticles. A one-way ANOVA analysis
was applied for the PLGA NSs, showing no differences among the formulations (p > 0.05), except for
the 502 PLGA NSs, which showed a higher mucoadhesion than the rest, being statistically significant
(p < 0.02). Nevertheless, the same one-way ANOVA analysis was applied for the PLGA NCs, and no
significant differences were observed between the prepared formulations, even for the 502 PLGA
NCs compared to the others (p > 0.05).

A one-way ANOVA analysis was applied for the PLGA NSs, showing no differences
among the formulations, except for the 502 PLGA NSs, which showed a higher mucoadhe-
sion than the rest, being statistically significant. Nevertheless, the same one-way ANOVA
analysis was applied for the PLGA NCs, and no significant differences were observed
between the prepared formulations, even for the 502 PLGA NCs compared to the others.

The PLGA NSs and NCs ex vivo mucoadhesion values are lower than observed in our
group for previous studies made with chitosan and sulfobutylether-β-cyclodextrin/chitosan
nanoparticles [44] and nanostructured lipid carriers [48], so it seems that PLGA-based
nanoparticles have less mucoadhesiveness. This is presumably associated with the surface
charge of the nanoparticles, where chitosan-based NPs showed a positive surface charge,
which allowed electrostatic interactions with the sialic acid groups of mucin, whereas PLGA
nanoparticles showed a negative surface charge, so that their main mechanism of ocular
adhesion may be associated with ease of permeation through the corneal layers. Likewise,
it must be considered that the ex vivo conditions directly correlate with in vivo conditions,
where different factors are involved and influence the pharmaceutical form administration,
such as tearing and blinking, among others (see details in Section 4.6.2).

4.6.2. In Vivo Ocular Surface Permanence Study
Evaluation of the Radiolabeling Stability and Efficiency of PLGA-Based Nanoparticles

Figure 16 shows the 18F-FDG, 18F-Choline and 68Ga-DOTA radiolabeling stability and
efficiency for PLGA-based NPs, respectively. As observed, 18F-FDG and 68Ga-DOTA led to
low radiolabeling efficiency (under 50%), although a radiolabeling stability was observed
along the studied interval time, while 18F-Choline displayed a great radiolabeling efficiency
(over 80%) and stability over the assayed period (up to 3 h), assuring suitable properties
for PLGA NPs radiolabeling study. Based on these results, 18F-Choline was chosen as the
radiotracer for subsequent in vivo radiolabeling studies.
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Figure 16. 18F-Choline (top), 18F-FDG (middle) and 68Ga-DOTA (bottom) radiolabeling stability and
efficiency for PLGA-based nanoparticles over time.

The labeling efficiency of the studied radiotracers are closely related with the radio-
tracer charge and the ζ potential of the nanoparticles. PLGA nanoparticles, similarly to the
nanostructured lipid carriers (NLCs) developed in previous works [48], have a negative
surface charge and, therefore, have a maximum radiolabeling efficiency with 18F-Choline,
which has a positively charged net. On the contrary, chitosan-based nanoparticles [44] that
showed a positively charged surface, better radiolabeling performance was obtained with
the 18F-FDG that has a negatively charged net. In the case of 68Ga-DOTA, the radiotracer
is also negatively charged, although the radiolabeling efficiency of PLGA NPs was lower,
presumably due to the larger size of the radiotracer.

Experimental In Vivo Evaluation of Ocular Surface Permanence

Figure 17 shows the ocular surface permanence of the 18F-Choline-radiolabeled PLGA-
based nanoparticles for a 300-min period, compared to the 18F-FDG solution, used as
control. A 18F-FDG solution was used as a standard due to the fact that the 18F-Choline
is positively charged in its free form, so that it would ionically interact with the negative
charge of the sialic acid groups of the mucin layer, resulting in erroneous biodistribution
values. On the contrary, 18F-FDG, presenting a free negative charge, would not bind to the
mucin layer, perfectly simulating the administration of a control substance. For the sake of
clarification, an analysis of the 18F-Choline-labeled PLGA nanoparticles was carried out to
see if this radiotracer modified the size and surface charge, and the results showed that
there was no change in either parameter (unpublished data), ensuring that the labeling
procedure is suitable for this type of delivery system. The corneal surface retention study
of the PLGA-based NPs was measured by the 18F-Choline radioactivity assessment in a
PET system.

The ocular surface permanence of the PLGA-based nanoparticles was carried out on
rats using 18F-Choline as a radiotracer. A PET equipment was employed in order to trail the
radioactivity evaluation over the studied time (Figure 18). In the present work, a longer t1/2
was observed for both Lf-loaded PLGA NSs and NCs, compared to the 18F-FDG control
solution, despite the fact that both formulations presented a tear-like composition [94].
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Resultant data were precisely adjusted to a monoexponential decline outline by a single
compartmental model (R = 0.9875 for Lf-loaded PLGA NSs, R = 0.9977 for Lf-loaded
PLGA NCs, and R = 0.9930 for the 18F-FDG solution) (see Figure 17). The resultant data
are in accordance with PET data of previous studies [95], and suggest that PLGA-based
nanoparticles showed mucoadhesive, cell uptake and corneal penetration characteristics.
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Figure 17. Ocular biopermanence of a 18F-Choline radiolabeled PLGA-based nanoparticles and a
18F-FDG aqueous solution (control), assessed pondering the primary biopermanence data (%) in the
ROI. Statistically significant differences (p < 0.05) were observed regarding PLGA-based formulations
and 18F-FDG solution.
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Figure 18. Fused PET/CT images during the 5 h studied interval. (I) 18F-FDG buffered aqueous
solution, (II) 18F-Choline radiolabeled PLGA NSs and (III) 18F-Choline radiolabeled PLGA NCs.
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Table 3 shows the pharmacokinetics factors (k, t1/2, MRT, AUC, and % dose 30 min)
of the 18F-Choline radiolabeled PLGA-based nanoparticles and 18F-FDG standard solu-
tion. Statistically significant differences (p < 0.05) were observed regarding PLGA-based
formulations and 18F-FDG solution for the studied period, where Lf-loaded polymeric
nanoparticles exhibited a better ocular retention outline.

Table 3. Ocular biopermanence parameters for 18F-Choline radiolabeled PLGA-based nanoparticles
and 18F-FDG control (named as “control” in the table) formulations.

Formulation K (min−1) t1/2 (min) % Dose 30 min

Mean SD Mean SD Mean SD
PLGA NSs 0.008 0.0092 93.31 37.71 77.73 18.78
PLGA NCs 0.014 0.0107 51.32 17.45 49.72 8.19

18F-FDG control 0.044 0.012 16.27 3.81 23.31 5.89
18F-Choline control 0.013 0.012 53.19 11.28 42.90 5.33

The ocular permanence of the PLGA-based nanoparticles obtained by the PET tech-
nique followed the same pattern that the mucoadhesive Lf-loaded CS/TPP and CS/SBE-
β-CD NPs, as well as the Lf-loaded NLC [44]. Corneally, chitosan-based NPs displayed
a t1/2 of 114 ± 72 h for CS/TPP NPs, and 60 ± 20 h for CS/SBE-β-CD NPs, respectively,
while Lf-loaded NLC showed a t1/2 of 107.82 ± 38.10 h. Thus, results confirmed the great
bioadhesive capability of the PLGA-based formulations in the ocular mucosa.

5. Conclusions

In recent decades, polymeric nanoparticles have risen as promising alternatives for
drug delivery in the biomedical field. Indeed, PLGA-based formulations have turned
into promising DDS for topical ophthalmic administration, compared to the conventional
pharmaceutical forms. This is mainly associated with their numerous advantages, such
as their versatility, ease of scale, high stability, biodegradability and biocompatibility,
among others.

The present work reports the design, development and physicochemical charac-
terization of tunable-size Lf-loaded PLGA-based nanoparticles by modified nanopre-
cipitation methods. Lf-loaded PLGA-based nanoparticles showed appropriate average
particle size, size distribution and ζ potential, as well as a spherical and uniform shape.
Different drug:polymer ratios were tested in order to obtain the lowest particle size
with maximum production yield, encapsulation efficiency, and loading capacity values.
Analogously, all formulations showed good stability to storage, pH and ionic strength in
the studied ranges. A controlled lactoferrin release was also confirmed, confirming their
use as suitable DDS for topical ophthalmic delivery. Resultant data also demonstrated
that both nanosystems (NSs and NCs) interact with ocular surface, guaranteeing an
optimal contact between the formulation and the corneal mucosa for at least 5 h, with no
evidence of tissue cytotoxicity.

In conclusion, different PLGA-based NPs were proposed as biocompatible DDS for
the lactoferrin administration via topical ophthalmic route, reinforced by several preclinical
studies in order to accomplish a reliable base as a new pharmacological alternative for
the keratoconus treatment over the invasive surgical procedures. Despite this, better
in vitro/in vivo correlations should be made in order to broaden the knowledge of the
potential of these nanosystems as a new approach for the keratoconus treatment, as well as
establish its reproducibility with the backdrop of other biological features.
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