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Abstract

Background: Molecular testing of lung adenocarcinoma for oncogenic driver mutations has become standard in
pathology practice. The aim of the study was to analyze the EGFR, KRAS, ALK, RET, ROS1, BRAF, ERBB2, MET and
PIK3CA mutational status in a representative cohort of Swiss patients with lung adenocarcinoma and to correlate
the mutational status with clinicopathological patient characteristics.

Methods: All patients who underwent molecular testing of newly diagnosed lung adenocarcinoma during a 4-year
period (2014-2018) were included. Molecular analyses were performed with Sanger sequencing (n = 158) and next
generation sequencing (n=311). ALK, ROST and RET fusion gene analyses were also performed with fluorescence in
situ hybridization and immunohistochemistry/immunocytochemistry. Demographic and clinical data were obtained
from the medical records.

Results: Of 469 patients with informative EGFR mutation analyses, 90 (19.2%) had EGFR mutations. KRAS mutations

were present in 33.9% of the patients, while 6.0% of patients showed ALK rearrangement. BRAF, ERBB2, MET and PIK3CA
mutations and ROST and RET rearrangements were found in 2.6%, 1.9%, 1.9%, 1.5%, 1.7% and 0.8% of the patients,
respectively. EGFR mutation was significantly associated with female gender and never smoking status. ALK translocations
were more frequent in never smokers, while KRAS mutations were more commonly found in ever smokers. The association
between KRAS mutational status and female gender was statistically significant only on multivariate analysis after adjusting
for smoking.

Conclusion: The EGFR mutation rate in the current study is among the higher previously reported mutation rates, while
the frequencies of KRAS, BRAF, ERBB2 and PIK3CA mutations and ALK, ROST and RET rearrangements are similar to the results
of previous reports. EGFR and KRAS mutations were significantly associated with gender and smoking. ALK rearrangements
showed a significant association with smoking status alone.
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Background

Lung cancer is the leading cause of cancer-related mortal-
ity worldwide [1]. Non-small cell lung cancer (NSCLC) is
the most common histological subtype of lung cancer,
accounting for approximately 80—85% of lung cancer cases
[2, 3]. Molecular testing for epidermal growth factor recep-
tor gene (EGFR) mutations and ALK receptor tyrosine
kinase (ALK) translocations has become the evidence-
based standard of care for the management of advanced
NSCLC. In the past, pivotal clinical trials have demon-
strated clinical benefit from targeting EGFR mutations and
ALK translocations, and currently a number of effective
EGFR and ALK inhibitors are available for targeted therapy
of NSCLC harboring the relevant aberrations [4]. More re-
cently, new molecular profiling technologies have permit-
ted the identification of other potential oncogenic drivers
including mutations in the KRAS proto-oncogene (KRAS),
B-Raf proto-oncogene (BRAF), erb-b2 receptor tyrosine
kinase 2 gene (ERBB2), MET proto-oncogene (MET) and
phosphatidylinositol-3 kinase catalytic subunit alpha gene
(PIK3CA) as well as ROS proto-oncogene 1 (ROSI) and
ret proto-oncogene (RET) rearrangements [4]. While a
number of studies have already evaluated the frequencies
of these genetic alterations in NSCLC patients from differ-
ent countries, information on the prevalence of oncogenic
driver mutations in the Swiss population are scarce and
limited to population based epidemiological data derived
from cancer registries and molecular test results based ex-
clusively on Sanger sequencing rather than next gener-
ation sequencing (NGS) [5, 6].

In Switzerland lung cancer is the most common cause
of cancer-related death among men (approximately 2000
deaths per year) and the second most common cause of
cancer-related death among women (approximately 1100
deaths per year) [7]. Adenocarcinoma is the predomin-
ant histological subtype with distinct molecular features,
and incidence rates of lung adenocarcinoma are increas-
ing among both sexes [8, 9]. The aim of the study was to
analyze the frequencies of ALK, RET and ROSI gene
rearrangements and EGFR, KRAS, BRAF, ERBB2, MET
and PIK3CA mutations in a representative cohort of
Swiss patients with lung adenocarcinoma using NGS as
testing method in the majority of cases and to correlate
the molecular findings with clinicopathological patient
characteristics.

Methods

Patients

A total of 475 consecutive patients who underwent mo-
lecular testing of newly diagnosed lung adenocarcinoma
at the Institute of Pathology and Molecular Pathology,
University Hospital Zurich (Zurich, Switzerland), be-
tween January 2014 and January 2018, were included in
the study, independent of tumor stage. Molecular
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analyses were performed at the University Hospital
Zurich according to National Comprehensive Cancer
Network (NCCN) and Swiss Society of Pathology
(SSPath) guidelines. Inclusion criteria were histologically
and/or cytologically confirmed lung adenocarcinoma,
chemotherapy, targeted therapy and radiotherapy naive,
and tissue blocks/cell blocks with adequate tumor cellular-
ity. Exclusion criteria were non-adenocarcinoma histology,
previous chemotherapy, targeted therapy or radiotherapy,
and insufficient tumor material. Of the initial study popu-
lation, 469 patients had adequate tumor material for mo-
lecular testing, while 6 patients had insufficient tumor
samples and were not further evaluated. The results of mo-
lecular analysis were recorded for each patient and corre-
lated with demographic and tumor related data such as
gender, age, smoking status, clinical stage, and TNM stage
(as defined by the Union for International Cancer Control
(UICC) TNM classification of malignant tumors, 8th edi-
tion [10]). Smoking status was defined as never smokers
(< 100 lifetime cigarettes), ex-smokers (>100 lifetime ciga-
rettes and currently not smoking) and current smokers
(=100 lifetime cigarettes and currently smoking). The cut-
off date for data collection was 15 May 2018. The study
was approved by the Cantonal Ethics Committee of Zurich
(StV-No. 2009/14-0029).

Molecular analysis

Nucleic acids (DNA and RNA) were isolated from
formalin-fixed paraffin-embedded (FFPE) tissue blocks
or FFPE cell blocks using the Maxwell 16 FFPE Tissue
LEV DNA/RNA Purification Kit (Promega, Fitchburg,
WI, USA). The obtained nucleic acids were quantified
with NanoDrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, Wilmington, DE, USA) and Qubit 2.0
(Thermo Fisher Scientific/Life Technologies, Eugene, OR,
USA) using the dsDNA/RNA HS Assay Kit (Thermo
Fisher Scientific/Life Technologies, Zug, Switzerland).
Mutation analysis was performed using Sanger sequencing
(m=158) or NGS (n=311). For DNA- and RNA-based
NGS, customer panels including the Ion AmpliSeq Colon
and Lung Cancer panel 2 (CLP2), Ion AmpliSeq Fusion
Lung Cancer Research panel (LFP), and Oncomine DNA
panel for Solid Tumors and Fusion Transcripts (Thermo
Fisher Scientific/Life Technologies, Carlsbad, California,
USA) were applied, as previously described [11, 12].
Briefly, we used the Ion Library Quantitation kit (Thermo
Fisher Scientific) for quantification of DNA and RNA li-
braries, the Ion One Touch 200 Template Kit v2 DL
(lately replaced by the Ion Hi-Q Chef Kit and the Ion Chef
System) (Thermo Fisher Scientific) for emulsion polymer-
ase chain reaction (PCR) and template preparation, and
the Ion Personal Genome Machine 200 Kit v2 (lately
replaced by the Ion Personal Genome Machine Hi-Q
Sequencing Kit) (Thermo Fisher Scientific) as the
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sequencing platform. For Sanger sequencing, we used the
Ilustra GFX PCR DNA and Gel Band Purification Kit (GE
Healthcare Life Sciences, Buckinghamshire, UK) for purifi-
cation of amplified DNA fragments, the Genetic Analyzer
3130 x 1 (Applied Biosystems, Foster City, CA, USA) for
sequencing and the Sequencher 5.1 (Gene Code Corpor-
ation, Ann Arbor, MI, USA) for data analysis. ALK and
ROS1 immunohistochemistry (IHC)/immunocytochem-
istry (ICC) was performed on the automated immunostai-
ner DiscoveryUltra (Roche Ventana) using a mouse
anti-human ALK monoclonal antibody (clone 5A4, Leica
Biosystems) and a rabbit anti-human ROSI monoclonal
antibody (clone D4D6, Cell Signaling Technology). ALK or
ROS1 THC/ICC positive cases were confirmed by fluores-
cence in situ hybridization (FISH) using the Vysis LSI ALK
Dual Color Break Apart Rearrangement Probe (Abbott
Molecular, Baar, Switzerland) and the ZytoLight SPEC
ROS1 Dual Color Break Apart Probe (Zytovision GmbH,
Bremerhaven, Germany). FISH testing for RET rearrange-
ment was performed using the ZytoLight SPEC RET Dual
Break Apart Probe (Zytovision GmbH, Bremerhaven,

Table 1 Patient characteristics
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Germany). For each case, a board certified pathologist
analyzed 50-100 tumor nuclei. A sample was considered
positive, if split signals were detected in >15% of tumor
nuclei according to the manufacturer’s evaluation guide-
lines (Abbott Molecular, Des Plaines, IL, USA).

Statistical analysis

Descriptive statistics were employed to describe the pa-
tient characteristics of the study cohort. The results are
presented as frequencies and percentages for categorical
variables and as mean + standard deviation, median and
range for continuous variables. Associations between mu-
tation status and clinicopathological characteristics were
tested using univariate and multivariate analyses. Univari-
ate analysis was performed by chi-square test or Fisher
exact test for categorical variables and by t test or non-
parametric Mann-Whitney test for continuous variables.
Multivariate analysis was performed by logistic regression.
P-values < 0.05 were considered statistically significant. All
statistical analyses were performed using SPSS Statistics
software (version 24.0, IBM, Ehningen, Germany).

Variable Study population Variable Study population
(n=469) (n=469)
Age (years) 64.1+£114 N stage
Gender NO 117 (24.9)
Male 235 (50.1) N1 65 (13.9)
Female 234 (49.9) N2 134 (28.6)
Smoking status N3 153 (32.6)
Never smokers 115 (24.5) Extrathoracic metastasis/—es 213 (45.4)
Ex-smokers 160 (34.1) M stage
Current smokers 194 (41.4) MO 168 (35.8)
Clinical stage M1a 88 (18.8)
I 34 (7.2) M1b 72 (154)
Il 36 (7.7) M1c 141 (30.1)
1 100 (21.3) Localization
IV 299 (63.8) Right upper lobe 121 (25.8)
T stage Right lower lobe 65 (13.9)
T1 68 (14.5) Middle lobe 19 (4.)
Tla 9(1.9 Left upper lobe 88 (18.8)
Tib 28 (6.0) Left lower lobe 73 (15.6)
Tic 31 (6.6) Lingula 14 (3.0)
T2 120 (25.6) Involvement of two lobes 89 (19.0)
T2a 81 (17.3) Distribution
T2b 39 (83) Central 96 (20.5)
T3 93 (19.8) Peripheral 323 (68.9)
T4 188 (40.1) Central and peripheral 50 (10.7)
Lymph node metastasis/—es 352 (75.1) Size (mm) 45+ 25

Data are mean values + standard deviations for continuous variables and number of patients with percentages in parentheses for categorical variables
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cDNA change Amino acid change Frequency Percentage
Exon 21 c2573T>G p.L858R 35 389
Exon 19 €.2235_2249del/c.2236_2250del® p.E746_A750del 33 36.7
Exon 19 €.2240_2257del p.L747_P753delinsS 6 6.7
Exon 19 €2254_2277del p.S5752_1759del 3 33
Exon 19 €.2239_2253del p.L747_T751del 2 22
Exon 19 €.2239_2248delinsC p.L747_A750delinsP 2 22
Exon 19 €.2238_2252delinsGCA p.L747_T751delinsQ 1 1.1
Exon 19 €.2239_2256del p.L747_5752del 1 1.1
Exon 19 €.2237_2255delinsT p.E746_S752delinsV 1 1.1
Exon 18 c2126A>C p.E709A 2 2.2
Exon 18 c2126A>G p.E709G 1 1.1
Exon 18 c2156G>C p.G719A 1 1.1
Exon 18 c2155G>T p.G719C 1 1.1
Exon 20 c2303G>T p.5768l 2 2.2
Exon 20 €2320G > A pV774 M 1 1.1
Exon 21 €c2497T>G p.L833V 1 1.1
Exon 21 Cc.2560A > G p.T854A 1 1.1

?c.2235_2249del: n = 25; ¢.2236_2250del: n = 8

Results

The diagnosis of lung adenocarcinoma was based on hist-
ology (with or without cytology) in 91.7% (430/469) and
on cytology alone in 8.3% (39/469) of the patients. Sam-
ples submitted for molecular testing were obtained from
primary tumors, lymph node metastases or distant metas-
tases in 79.7% (374/469), 10.7% (50/469) and 9.6% (45/
469) of the patients, respectively. There were 191 (40.7%)
resection specimens, 224 (47.8%) biopsy specimens, 48
(10.2%) fine needle aspiration/bronchial brushing/bron-
choalveolar lavage specimens and 6 (1.3%) cell blocks
from pleural effusions. Table 1 summarizes the demo-
graphic and clinicopathological patient characteristics.
The study population consisted of 235 men and 234
women (mean age at diagnosis, 64.1 + 11.4 years; range,
27-94 years). The majority of patients were ever smokers
(current smokers and ex-smokers) (354/469, 75.5%) and
had clinical stage IV lung adenocarcinoma (299/469,
63.8%) at diagnosis. Females were more likely to be never
smokers than males (70/234, 29.9% vs 45/235, 19.1%, p =
0.007, beta 0.589, OR 1.802, CI 95% 1.174—2.767). Overall
127 patients received targeted treatment. Stage IV patients
(both at diagnosis and during follow-up) with EGFR muta-
tion and ALK rearrangement received targeted treatment
in 75.4% and 61.9%, respectively. The majority (91.7%) of
stage IV patients with EGFR mutation who did not receive
targeted therapy were treated with chemotherapy and/or
radiotherapy. Likewise, all stage IV patients with ALK
translocation who were not treated with targeted therapy
received chemotherapy and/or radiotherapy. Median

patient follow-up was 17 months (range, 1-52 months).
268/469 (57.1%) patients were alive at the time of last
follow-up, including 165/469 (35.2%) patients with stable
disease and 103/469 (22.0%) patients with progressive dis-
ease. 147/469 (31.3%) patients died of disease during
follow-up, and 54/469 (11.5%) patients were lost to
follow-up. Median overall survival for the entire study co-
hort was 38 months.

EGFR mutation analysis

A total of 95 EGFR mutations were detected in 90/469
(19.2%) patients. The most common EGFR mutations were
exon 19 deletions (49/90, 54.4%, most frequent subtype:
E746_A750del, 33/90, 36.7%) and exon 21 L858R missense
mutations (35/90, 38.9%) (Table 2). Doublet EGFR muta-
tions were found in 5 (5/90, 5.6%) tumors, including 2 tu-
mors with L858R and non-L858R missense mutations, 2
tumors with two non-L858R missense mutations and 1
tumor with non-L858R missense mutation and T854A pri-
mary resistant mutation (Additional file 1: Table S1). The
analysis of the distribution of EGFR mutations among men
and women showed a predominance of EGFR mutations
in the female group: 55/234 (23.5%) women had a total of
59 EGFR mutations (most frequent: exon 19 deletion, 31/
55, 56.4%). By contrast, 35/235 (14.9%) males had a total of
36 EGFR mutations, the most common of which — as in
the female group — were exon 19 deletions (18/35, 51.4%).
The highest prevalence of EGFR mutations was observed
in never smokers (69/115, 60.0%) and was considerably
lower in ex-smokers (10/160, 6.3%) and current smokers
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Table 3 Associations between clinicopathological features and
EGFR mutational status
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Table 3 Associations between clinicopathological features and
EGFR mutational status (Continued)

Variable EGFR wt EGFR mt p-value Variable EGFR wt EGFR mt p-value
(n=379) (n=90) (n=379) (n=90)
Age (years) 64.1+109 642 +13.1 0.946 Involvement of two lobes 67 (17.7) 22 (244) 0.141
Gender 0.020 Distribution
Male 200 (52.8) 35 (389) Central 74 (19.5) 22 (244) 0.298
Female 179 (47.2) 55 (61.1) Peripheral 267 (704) 56 (62.2) 0.130
Smoking status Central and peripheral 38 (10.0) 12 (13.3) 0.361
Never smokers 46 (12.1) 69 (76.7) <0.001 Size (mm) 4554263 44.7+203 0.744
Ex-smokers 150 (39.6) 10011 < 0.001 Data are mean values + standard deviations for continuous variables and
number of patients with percentages in parentheses for categorical variables
Current smokers 183 (48.3) 11.(122) <0.001 Bold numbers indicate significant p-values (< 0.05)
Clinical stage
| 25 (66) 9 (100) 0963 (11/194, 5.7%). The association between EGFR mutational
| 2684 4 ) 0200 status and either gender or smoking status was statistically
) ' ' significant on univariate (p =0.019 and p < 0.001, respect-
I 8232 12(133) 0.040 ively) and multivariate analyses (p =0.033 and p <0.001,
v 234 (617) 65 (72.2) 0063 respectively) (Tables 3 and 4). No statistically significant
T stage differences were found between EGFR mutated and EGFR
T 55 (14.5) 13 (144) 0,987 wildtype tumors with respect to clinical stage (except for
T1a 7018) 202 0685 stage III, p =0.040), T stage (except for T2a, p =0.001), N
stage, M stage (except for Mlc, p = 0.011), tumor location,
Tib 26 (6.9) 222 0.095 . .
mean tumor size and mean patient age (Table 3).
Tic 22 (5.8) 9 (10.0) 0.150
T2 90 (23.7) 30 (333) 0.061
T2a 55 (14.5) 26 (289) 0.001 KRAS mutation analysis
Tob 35 (92) 4 (44) 0139 Of 443 patients with informative KRAS mutation analysis,
3 77 203) 16 (178) 0587 159 (35.9%) harbored KRAS mutations. KRAS mutations
- 157 @14) 31 344) 0204 were most frequently located in exon 2 (154/159, 96.9%),
’ ' ' and the most common mutations were G12C (72/159,
LN metastasis/—es 289(763) 63000 0.218 45.3%) and G12V (26/159, 16.4%) (Table 5). Of 443 pa-
N stage tients with informative KRAS and EGFR mutation analyses,
NO 90 (23.7) 27 (30.0) 0218 2 patients (0.5%) had coexistent KRAS and EGFR muta-
N1 57 (15.0) 8 (89) 0129 tions (one with G13S and E746_A750del and one with
N2 114 (30.1) 20 (22.2) 0138 G12V and E709A). KRAS mutations tended to be more
frequent in females (86/217, 39.6%) than in males (73/226,
N3 118 (31.1) 35(389) 0.158 .
32.3%) and were more commonly found in ever smokers
E:gt";z?:;zgfes 164 (43.3) 49 (544) 0056 (152/353, 43.1%) than in never smokers (7/90, 7.8%). The
association between KRAS mutation and smoking status
M stage was statistically significant on both univariate and multi-
MO 143 37.7) 25(278) 0077 variate analyses after stratification by gender (p < 0.001 and
M1a 72 (19.0) 16 (17.8) 0.790 p<0.001, beta -2.285, OR 0.102, CI 95% 0.045-0.228),
M1b 60 (15.8) 12 (13.3) 0.555 while gender was significantly associated with KRAS muta-
Mic 104 (27.4) 37 @410) 0.011 tion only on multivariate analysis after adjusting for smok-
Localizati ing (p =0.016, beta 0.507, OR 1.660, CI 95% 1.099-2.507)
ocalization . . . .

' (Tables 6 and 7). Among the patients with informative
Right upper lobe % @5.1) 26 (289) 0456 KRAS mutation analysis, males were significantly more
Right lower lobe 57(150) 889 0129 likely to be ever smokers (current smokers or ex-smokers)
Middle lobe 15 (40) 4 (44) 0.770 than females (190/226, 84.1% vs 163/217, 75.1%, p = 0.020,
Left upper lobe 72 (19.0) 16 (17.8) 0.790 beta 0.559, OR 1.748, CI 95% 1.092-2.800). No statistically
Left lower lobe 60 (1889) 13 (14.4) 0744 significant differences were found between KRAS mutated
Lingula 13 34) LA 0487 and KRAS wildtype tumors with respect to clinical stage, T

stage (except for T2, p =0.043), N stage, M stage, tumor
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Univariate logistic regression

Multivariate logistic regression

OR 95% Cl Beta p-value OR 95% Cl Beta p-value
Sex 0.019 0.033
Male 1.00 1.00
Female 1.756 1.10-2.81 0.563 1328 0.75-2.37 0.284
Smoking status <0.001 <0.001
Ever smokers 1.00 1.00
Never smokers 23.786 1335-4238 3.169 23.069 1292-4120 3.139

location (except for the left lower lobe, p =0.006), mean
tumor size and mean patient age (Table 6).

ALK rearrangement analysis

ALK rearrangement was detected by FISH (n = 20) or NGS
(n=8) in 28/376 (7.4%) tumors, including one with coexist-
ent KRAS mutation (G12 V). Of the 8 cases with ALK re-
arrangement diagnosed by NGS, EML4 exon 13-ALK exon
20 fusion gene variant was found in 4 (50.0%) cases, EML4
exon 6-ALK exon 20 fusion gene variant was detected in 3
(37.5%) cases, and EML4 exon 18-ALK exon 20 fusion gene
variant was detected in 1 (12.5%) case. There was no signifi-
cant difference in the frequency of ALK rearrangement be-
tween males and females (15/198, 7.6% vs 13/178, 7.3%,
univariate analysis, p =0.920, multivariate logistic regres-
sion, p=0.669) (Tables 8 and 9). By contrast, ALK re-
arrangement was significantly more common in never
smokers than in ever smokers (12/84, 14.3% vs 16/292,
5.5%, p = 0.007) (Table 8). The association between ALK re-
arrangement and smoking status remained statistically sig-
nificant on multivariate analysis after adjusting for gender
(p=0.008, beta 1.081, OR 2948, CI 95% 1.323-6.567)
(Table 9). Among the patients tested for ALK

Table 5 KRAS mutations in 159 lung cancers

rearrangement, females were more likely to be never
smokers than males (49/178, 27.5% vs 35/198, 17.7%, p =
0.023, beta 0.570, OR 1.769, CI 95% 1.082-2.892). No sta-
tistically significant differences were found between
ALK-rearranged and ALK wildtype tumors with respect to
clinical stage (except for stage III, p =0.038), T stage (ex-
cept for T1b, p = 0.025), N stage (except for N2, p = 0.003),
M stage (except for M1b, p=0.013), tumor location
(except for the right upper lobe, p=0.001, and the
middle lobe, p=0.019), mean tumor size and mean
patient age (Table 8).

KRAS mutation analysis was not performed in 26
patients with proven EGFR mutation, and ALK re-
arrangement testing was not performed in 93
patients including 62 patients with KRAS mutation
and 31 patients with EGFR mutation. Because gen-
etic alterations in EGFR, KRAS and ALK are gener-
ally mutually exclusive, it can be concluded that 90/
469 (19.2%) patients had EGFR mutations, 159/469
(33.9%) had KRAS mutations, and 28/469 (6.0%) had ALK
gene rearrangement (Table 10). 195/469 (41.6%) patients
had triple-negative (EGFR-negative/KRAS-negative/ALK-
negative) lung adenocarcinomas.

cDNA change Amino acid change Frequency Percentage
Codon 12/Exon 2 c34G>T p.G12C 72 453
Codon 12/Exon 2 c35G>T p.G12V 26 164
Codon 12/Exon 2 c35G>A p.G12D 20 126
Codon 12/Exon 2 c35G>C p.G12A 15 94
Codon 12/Exon 2 c.34_35del p.G12F 3 19
Codon 12/Exon 2 c34G>C p.G12R 2 13
Codon 12/Exon 2 c34G>A p.G12S 1 0.6
Codon 13/Exon 2 c37G>T p.G13C 10 6.3
Codon 13/Exon 2 c37G>A p.G13S 2 13
Codon 13/Exon 2 c38G>A p.G13D 2 13
Codon 13/Exon 2 c37G>C p.G13R 1 06
Codon 61/Exon 3 c183A>C p.Q61H 3 1.9
Codon 61/Exon 3 C182A>T p.Q61L 2 13
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Table 6 Associations between clinicopathological features and
KRAS mutational status (Continued)

Variable KRAS wt KRAS mt p-value Variable KRAS wt KRAS mt p-value
(n=284) (n=159) (n=284) (n=159)
Age (years) 64.7 £120 63.3+94 0.193 Involvement of two lobes 61 (21.5) 24 (15.1) 0.102
Gender 0.108 Distribution
Male 153 (53.9) 73 (45.9) Central 64 (22.5) 27 (17.0) 0.165
Female 131 (46.1) 86 (54.1) Peripheral 189 (66.5) 117 (73.6) 0.124
Smoking status Central and peripheral 31 (10.9) 15 (94) 0.624
Never smokers 83 (29.2) 7 (4.4) <0.001 Size (mm) 458 +258 456+ 258 0.937
Ex-smokers 99 (34.9) 61 (384) 0461 Data are mean values + standard deviations for continuous variables and
number of patients with percentages in parentheses for categorical variables
Current smokers 102 (35.9) 91 (57.2) <0.001 Bold numbers indicate significant p-values (< 0.05)
Clinical stage
| 19 (67) 169 0927 EGFR, KRAS and ALK comparative analyses
| 24.85) 1063 0412 Comparative analyses of EGFR and KRAS mutated tumors,
' ' ' EGFR mutated and ALK rearranged tumors and KRAS
I 60 (211 38(239 0500 mutated and ALK rearranged tumors are summarized in
v 181 (637) 100 (62.9) 0.860 Additional file 1: Tables S2—-S4. Of note, EGFR mutated tu-
T stage mors were more likely to have multiple extrathoracic me-
T 39 (13.7) 26 (16.4) 0455 tastases (M1c) compared with KRAS mutated tumors (37/
. )05 S 03 a0 90, 41.1% vs 447159, 27.7%, p =0.030) (Additional file 1:
b 6 56) 1 69 0588 Table S2). EGFR mutated tumors were also more likely to
' ' be clinical stage IV and have single or multiple extrathor-
Tie 6 (56) 13(82) 0299 acic metastases (M1b or Mlc) compared with ALK rear-
1K 78 (27.5) 30 (189) 0.043 ranged tumors (65/90, 72.2% vs 14/28, 50.0%, p =0.029
T2a 51 (18.0) 18 (11.3) 0.065 and 49/90, 54.4% vs 7/28, 25.0%, p = 0.006) (Additional file
Tob 7 (9.5) 12 (75) 0485 1: Table S3). ALK rearranged tumors were more frequently
3 52 (183) 37 (233) 0211 associated with clinical stage III than EGFR mutated tu-
mors (10/28, 35.7% vs 12/90, 13.3%, p = 0.008) and more
T4 115 (40.5) 66 (41.5) 0.835 . L. .
commonly showed ipsilateral mediastinal or subcarinal
LN metastasis/—es 212 (746) 121 (76.1) 0.734 lymph node metastasis (N2) compared with EGFR and
N stage KRAS mutated lung adenocarcinomas (15/28, 53.6% vs
NO 72 (25.4) 38 (239) 0.734 20/90, 22.2%, p = 0.002 and 15/28, 53.6% vs 48/159, 30.2%,
N1 33(116) 27 (17.0) 0.114 p=0.016).
N2 82 (28.9) 48 (30.2) 0.771
N3 o7 (342) 46 (289) 0250 Other mutations and rearrangements
' ' ' RET fusions were detected by FISH in 4 (1.9%) of 208
E:ggs?:;a;fes 124(437) 74465 0559 tested patients, including 1 patient with coexistent
PIK3CA mutation (E545K). ROS1 fusions were detected
M stage by FISH (n=5) or NGS (1=3) in 8 (3.2%) of 248 tested
MO 101 356) 59 37.1) 0.746 patients. No statistically significant differences were found
Mila 59 (208) 26 (16.4) 0257 between RET/ROSI rearranged and non-rearranged tu-
M1b 37 (13.0) 0(189) 0.100 mors with respect to gender, smoking status, clinical stage,
Mic 87 (306) 44 (27.7) 0512 TNM stage, tumor location, mean tumor size and mean
Localization patient age. 12/309 (3.9%) tumors harbored BRAF muta-
tions. The majority of BRAF mutations were located in
Right upper lobe 71250 44@27.7) 0538 exon 15 (10/12, 83.3%); the most common BRAF muta-
Right lower lobe 45 (158) 17.(10.7) 0.134 tion was V60OE (9/12, 75.0%) (Table 11). No statistically
Middle lobe 11.39) 6 (38) 0958 significant differences were found between BRAF mutated
Left upper lobe 52 (183) 31 (195) 0.759 and BRAF wildtype tumors with respect to the clinico-
Left lower lobe 33(116) 34 214) 0.006 pathological parameters evaluated. ERBB2 mutations were
Lingula 1G9 309 025 detected in 9/286 (3.1%) tumors (Table 12), including 7

insertion/duplication mutations in exon 20, 1 nonsense
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Univariate logistic regression

Multivariate logistic regression

OR 95% Cl Beta p-value OR 95% Cl Beta p-value
Sex 0.108 0016
Male 1.00 1.00
Female 1376 0.93-2.03 0319 1.660 1.10-2.51 0.507
Smoking status <0.001 <0.001
Ever smokers 1.00 1.00
Never smokers 0.112 0.05-0.25 —2.194 0.102 0.05-0.23 —2.285

mutation in exon 13 and 1 missense mutation in exon 8
of the ERBB2 gene; the most frequent ERBB2 mutation
was p.A775_G776insYVMA (alternative nomenclature
p.Y772_A775dup, ¢.2313_2324dup) (5/9, 55.6%). ERBB2
mutations were more common in never smokers than in
ex—/current smokers (5/64, 7.8% vs 4/222, 1.8%,
chi-square test, p = 0.029, multivariate logistic regression,
p=0.020, beta 1.621, OR 5.059, CI 95% 1.296-19.747),
while no significant differences were found between
ERBB2 mutated and ERBB2 wildtype tumors with respect
to the other clinicopathological parameters analyzed. Nine
MET exon 14 skipping mutations were detected in 234
(3.8%) tumors, including one with coexistent BRAF
(V600E) and PIK3CA (E542K) mutation and one with co-
existent KRAS (G13C) mutation. PIK3CA mutations were
detected in 7/163 (4.3%) tumors (3 x E542K, 2 x E545K, 1
x R38H, 1 x H1047R), including one with coexistent BRAF
(V600E) and MET exon 14 skipping mutation, two with
coexistent EGFR mutations (L858R and L747 P753de-
linsS, respectively), one with coexistent KRAS (G12A) mu-
tation and one with coexistent RET rearrangement. No
statistically significant differences were found between
MET/PIK3CA mutated and MET/PIK3CA wildtype tu-
mors with respect to gender, smoking status, clinical stage,
TNM stage, mean tumor size and mean patient age. While
MET mutated tumors were more likely to be located in
the right upper lobe than MET wildtype tumors (6/9,
66.7% vs 50/225, 22.2%, p = 0.007), PIK3CA mutated tu-
mors were less likely peripheral in location and involved
more frequently both the central and peripheral portions
of the lung compared with PIK3CA wildtype tumors (2/7,
28.6% vs 107/156, 68.6%, p = 0.041 and 3/7, 42.9% vs 10/
156, 6.4%, p = 0.012). Among the 469 study patients, 154
(32.8%) had lung adenocarcinomas that were negative for
all oncogenic driver mutations evaluated in the current
study.

Discussion

This study presents for the first time data on the EGFR,
KRAS, ALK, ROSI, RET, BRAF, ERBB2, MET and PIK3CA
mutation frequencies in a representative Swiss cohort of
patients with stage I-IV lung adenocarcinoma using NGS

as testing method in the majority of patients. Molecular
testing was performed in all patients at the time of initial
diagnosis during a 4-year period at a primary referral cen-
ter for lung diseases in Northeastern Switzerland. We also
comprehensively studied types of mutations and associa-
tions of mutational status with demographic and clinico-
pathological patient characteristics.

The reported EGFR mutation rate in patients with
lung adenocarcinoma varies widely between different
populations worldwide, ranging from 10 to 20% in Euro-
pean and North American cohorts [5, 6, 13-23] to more
than 50% in Asian populations [24, 25]. The wide range
of reported EGFR mutation rates among European co-
horts might be explained by differences between the
published studies with respect to patient selection cri-
teria and methods used for molecular analysis. In a
French study by Vallee et al. [19], one of the largest
single center studies in Europe, EGFR mutations were
detected in 13.5% of patients with NSCLC and in 14.7%
of patients with lung adenocarcinomas. The authors
used allele-specific PCR for evaluation of L858R point
mutation and DNA fragment analysis to detect exon 19
deletions. Because other EGFR mutations were not eval-
uated, the true prevalence of EGFR mutations in this
study remains unknown. The INSIGHT study, a large
multicenter study comprising 1785 NSCLC patients (in-
cluding 1393 patients with lung adenocarcinoma), showed
an EGFR mutation frequency of 13.8% in NSCLC patients
and of 15.4% in patients with lung adenocarcinoma [14].
The study analyzed tumor samples from 14 cancer centers
in six Central European countries, each with different pa-
tient inclusion criteria and testing methods, which makes
comparison with other studies more difficult. In addition,
mutation testing was not performed at a fixed time point,
which could induce bias as mutations may arise during
the disease course [23]. Our study results show a preva-
lence of EGFR mutations that is similar to that reported
by Moiseyenko et al. [20] (19.8%) in a Russian cohort and
by Hlinkova et al. [22] (20%) in a Slovakian cohort, but
lower than the EGFR mutation rates reported in two
previous studies from Switzerland [5, 6]. Ess et al. [5]
retrospectively analyzed population based data on the
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Table 8 Associations between clinicopathological features and
ALK rearrangement (Continued)

Variable ALK neg. ALK pos. p-value  Variable ALK neg. ALK pos. p-value
(n=348) (n=28) (n=348) (n=28)
Age (years) 644+11.2 61.7£14.1 0.229 Involvement of two lobes 70 (20.1) 6 (21.4) 0.868
Gender 0.920 Distribution
Male 183 (52.6) 15 (53.6) Central 70 (20.1) 8 (28.6) 0.288
Female 165 (47.4) 13 (464) Peripheral 244 (70.1) 16 (57.1) 0.153
Smoking status Central and peripheral 34 (9.8) 4 (14.3) 0.508
Never smokers 72 (20.7) 12 (42.9) 0.007 Size (mm) 445+ 244 460+31.7 0.761
Ex-smokers 124 (35.6) 9 (32.1) 0.710 Data are mean values + standard deviations for continuous variables and
number of patients with percentages in parentheses for categorical variables
Current smokers 152 (43.7) 7 (25.0) 0.054 Bold numbers indicate significant p-values (< 0.05)
Clinical stage
| 22 63) 200 0697 frequency of molecular testing, factors affecting testing
and the prevalence of EGFR mutations and ALK rear-
Il 29 (83) 2(7.1) 0.822 . . .
rangements in patients with stage IV or relapsed
Il 67 (19.3) 10 (35.7) 0.038 non-s . : :
-squamous NSCLC (including adenocarcinoma, large
v 230 (66.1) 14 (50.0) 0086 cell carcinoma and NOS histology) from 2008 to 2014.
T stage Using direct sequencing (EGFR exons 18-21) for EGFR
T 47 (135) 6 (214) 0258 mutation analysis and FISH with a break-apart probe for
13 8 (23) 000) 0263 ALK rearrange.ment testing, EGFR mutations gexclusively
b 19 55 5 (179) 0.025 exon 19 deletions and exon 21 L858R mutations!) were
' ' ’ detected in 11% of patients with advanced non-squamous
e 20(57) 1G6) 0608 NSCLC and in 13% of patients with lung adenocarcinoma,
™ 88 (25.3) 7 (25.0) 0973 while 12% of patients with non-squamous NSCLC and
T2a 59 (17.0) 4(143) 0711 10% of patients with lung adenocarcinoma harbored ALK
T2b 29 (83) 3(107) 0.721 rearrangements. Other oncogenic driver mutations or as-
13 70 20.1) 4(143) 0455 sociations beF\A{een EGFR ‘mutatlon/ALI.< }”earrangerTlent
status and clinicopathological characteristics of patients
T4 143 (41.1) 11 (393) 0.852 . .
. with lung adenocarcinoma were not evaluated. More re-
LN metastasis/—es 259 (744) 24 857) 0.183 cently, Schwegler et al. [6] prospectively analyzed popula-
N stage tion based epidemiological data on overall survival of
NO 89 (25.6) 4(143) 0.183 patients with mutated stage IV lung adenocarcinoma,
N1 50 (14.4) 136) 0151 mostly residents in rural areas of Central Switzerland,
N2 93 (26.) 15 (536) 0.003 from 2010 to 2914..EGFR mutations were dete.cted with
Sanger sequencing in 14% of the patients, while KRAS,
N3 116 (33.3) 8 (28.6) 0.606 .
' ERBB2, BRAF and MET mutations and ALK and RET
E:ggs?:;a;fes 161 (46.3) 7250) 0029 translocations were found in 20%, 2%, 1%, 0.5%, 6% and
0.5%, respectively [6]. In contrast to our study, the types
M stage of mutations were not analyzed, and mutational status
MO 116 (33.3) 14 (500) 0.074 was not correlated with demographic or clinicopathologi-
Mla 71 (204) 7 (25.0) 0.564 cal features. Possible reasons for the reported lower EGFR
M1b 56 (16.1) 0 (0.0) 0.013 mutation rates compared with that of our study may be
Mic 105 (302) 7 (250) 0565 different modes of patient selection (selection from the
Localization molecular database of University Hospital Zurich vs selec-
o o tion from cancer registries), different patient selection cri-
Right upper lobe % (276) 0 00) 0.001 teria (patients with stage I-IV lung adenocarcinoma vs
Right lower lobe 51(14.7) 50179 0.587 patients with stage IV or relapsed non-squamous NSCLC
Middle lobe 1 (32 4(143) 0.019 [5] and patients with stage IV lung adenocarcinoma [6])
Left upper lobe 66 (19.0) 6 (214) 0.750 and different methods used for mutational analysis (NGS
Left lower lobe 43 (124) 6(214) 0236 and Sanger sequenFing vs Sanger sequencing alone). In
Lingula " G2 | 36 0611 contrast to the studies by Ess et al. [5] and Schwegler et al.

[6], the majority of patients in our study underwent
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Univariate logistic regression

Multivariate logistic regression

OR 95% Cl Beta p-value OR 95% Cl Beta p-value
Sex 0.920 0.669
Male 1.00 1.00
Female 0.961 044-2.08 —-0.040 0.842 038-1.85 -0.172
Smoking status 0.009 0.008
Ever smokers 1.00 1.00
Never smokers 2875 1.30-6.35 1.056 2948 1.32-6.57 1.081

molecular testing with NGS, which has been shown to
demonstrate high analytic sensitivity, accurate detection of
complex indel mutations, and broad reportable ranges
with simultaneous detection of doublet EGFR mutations
and concomitant KRAS and BRAF mutations in the clin-
ical diagnostic setting [2, 26]. In addition, in the study by
Schwegler et al. [6] patients with stage I-III lung adenocar-
cinoma were excluded from the analysis, and 20% of stage
IV lung cancer patients were not tested for oncogenic
driver mutations, while in the study by Ess et al. [5] 38% of
patients did not receive molecular analysis. Although we
did not assess mutation testing rates at our institution, it
can be assumed that the molecular testing rates in the
period from 2014 to 2018 were higher than those of previ-
ous years and that patients treated at an institution active
in clinical research are more regularly tested for predictive
biomarkers than patients treated at an institution not par-
ticipating in clinical research [5]. In accordance with pub-
lished literature [13-16, 23], we found a significant
association of EGFR mutation status with female gender
and never smoking status. When we restricted the analysis
to female never smokers, we achieved a high EGFR muta-
tion rate of 65.7% (46/70), a finding consistent with previ-
ous reports [13, 24, 25].

Table 10 Frequency of oncogenic driver mutation in our study

cohort
Study population Patients tested®
(n=469)
EGFR 90/469 (19.2) 90/469 (19.2)
KRAS 159/469 (33.9) 159/443 (35.9)
ALK 28/469 (6.0) 28/376 (7.4)
BRAF 12/469 (2.6) 12/309 (3.9)
ERBB2 9/469 (1.9) 9/286 (3.1)
MET 9/469 (1.9) 9/234 (3.8)
PIK3CA 7/469 (1.5) 7/163 (4.3)
RET 4/469 (0.8) 4/208 (1.9)
ROST1 8/469 (1.7) 8/248 (3.2)

Data are absolute number of patients with percentages in parentheses
“Percentages in parentheses refer to the number of tested patients

KRAS mutation is one of the most frequent mutations
in NSCLC, at least in Caucasian populations, with re-
ported frequencies reaching up to 30% of lung adeno-
carcinomas [13, 23, 27, 28], while its prevalence in
Asian populations is approximately 10% [29-31]. KRAS
mutations are predominantly found in smokers [32],
but they may occur in up to 15% of non-smokers [27].
To date, no effective anti-KRAS agent has been released,
although a number of preclinical studies and clinical trials
are currently underway, exploring novel therapeutic ap-
proaches to target KRAS mutated NSCLC [33-36]. The
KRAS mutation rate in our study was slightly higher than
was previously reported for Caucasian populations (which
might be related to different smoking habits in this Swiss
cohort), but was almost identical to the KRAS mutation
rate reported by Brcic et al. [13] in a Croatian cohort. The
presence of KRAS mutation in our study was significantly
associated with a history of smoking on both univariate
and multivariate analyses, while the association of KRAS
mutation with gender was statistically significant only on
multivariate analysis after adjusting for smoking. This
finding adds to a mixed body of literature. Some studies
have shown increased incidence of KRAS mutations
among females [23], while others found equal frequencies
in both men and women [13, 37, 38].

ALK rearrangements are detected in 3-7% of NSCLC
[39-44]. They predominantly occur in non-smokers,
lung adenocarcinomas and non-Asian vs Asian popula-
tions, while men and women seem to be equally affected
[3]. The frequency of ALK rearrangement in our study is
consistent with previous reports, as is the association with
smoking status (higher frequency in never smokers). Inter-
estingly, our study showed a higher frequency of ipsilateral
mediastinal or subcarinal lymph node metastasis (N2) in

Table 11 BRAF mutations in 12 lung cancers
cDNA change

Amino acid change Frequency Percentage

Exon 15 c1799T>A p.V60OE 9 75.0
Exon 15 c1781A>G p.D594G 1 83
Exon 11 ¢.1406G >T p.G469V 1 8.3
Exon 11 c.1406G > C p.G469A 1 83
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ERBB2 mutation type Mutation

Alternate nomenclature
(based on HGVS guidelines)

Frequency Percentage

Exon 20 insertion p.A775_G776insYVMA

(c.2324_2325ins12)

p.P780_Y781insGSP
(c.2339_2340insGGCTCCCCA)

Exon 20 insertion

Exon 20 insertion p.G776 > VC
(c.2326_2327insTGT)

Exon 8 missense mutation p.Q527*
(c.1579C>T)

Exon 13 nonsense mutation p.S310Tyr
(c929C > A)

p.Y772_A775dup 5 556
(c.2313_2324dup)

p.G778_P780dup 1 1.1
(c.2331_2339dup)

p.G776delinsVC 1 11.1
(c.2326_2327insTGT)

p.GIn527Ter 1 11.1
(c1579C>T)

p.Ser310Tyr 1 1.1
(c929C>A)

HGVS Human Genome Variation Society

ALK-rearranged tumors compared with non-rearranged,
EGFR mutated and KRAS mutated tumors, while no sig-
nificant differences were found between ALK-rearranged
and non-rearranged/EGFR mutated/KRAS mutated tumors
with regard to NO, N1 and N3 stages. In addition, ALK
rearranged lung adenocarcinomas were more frequently
pT1 tumors compared with ALK-non rearranged lung can-
cer. In a previous study, evaluating surgically resected stage
I-1II NSCLCs, Paik et al. [45] found that ALK FISH-posi-
tive NSCLC cases showed lower tumor stage (pT1), but
had more frequently lymph node metastases compared
with ALK FISH-negative NSCLC cases. The authors sug-
gested that ALK-rearranged lung cancer might have unique
biological features with a tendency to early lymph node
metastasis despite the small primary tumor size, which
could explain higher incidences of ALK rearrangement in
advanced NSCLC compared with surgically resectable lung
cancer [45].

The frequency of BRAF mutations in the current study
seems to be among the higher previously reported muta-
tion rates [46—48], but is still lower than the mutation rate
reported by Illei et al. [26] (6.3%), who analyzed 1006 lung
cancers with NGS. Other targetable genomic alterations
in NSCLC, including RET and ROSI rearrangements and
ERBB2, MET exon 14 skipping and PIK3CA mutations,
are present only in a small percentage of NSCLC patients
(~1-2% [49], ~ 2% [50], 2—4% [51-53], 3-4% [54—57] and
2-5% [26, 58, 59], respectively). While our study with a
limited sample size of RET and ROS!I rearranged lung can-
cer showed no significant differences between RET or
ROS1 rearranged and non-rearranged tumors regarding
clinicopathological characteristics, previous investigations
have reported a higher incidence of RET and ROSI rear-
rangements in younger age group and never smokers [60,
61] as well as a significant association of RET rearranged
NSCLC with small primary tumor size and lymph node
involvement [60, 62]. According to previous reports [63],
ERBB2 mutations in NSCLC are more common in
females, Asian cohorts and never-smokers. While our
study showed no significant association of ERBB2

mutation with female gender, we could confirm the higher
prevalence of ERBB2 mutations in never smoking patients.
PIK3CA mutations are more commonly encountered in
squamous NSCLC [58, 59, 64] and seem to confer inferior
prognosis in lung adenocarcinoma [65]. Interestingly,
PIK3CA mutations have been reported to occur in parallel
with other oncogenic driver mutations [66, 67], as was the
case in 5 of 7 PIK3CA mutated tumors in the present
study. Regarding the clinicopathological characteristics of
MET exon 14 skipping mutation-positive tumors, three
retrospective studies showed that MET exon 14 skipping
positivity in NSCLC patients is significantly associated
with advanced age [68—70]. In the current study, we found
no significant difference in mean age between patients
with and those without MET exon 14 mutated tumors.
However, we acknowledge that the sample size of MET
exon 14 mutated tumors was too small to draw meaning-
ful conclusions.

Conclusion

Our study presents data on the frequency of oncogenic
driver mutations in a Northeastern Swiss population with
stage [-IV lung adenocarcinoma using NGS as testing
method in the majority of cases. A number of studies
already analyzed oncogenic driver mutation frequencies,
notably EGFR, KRAS and ALK mutation rates, in different
populations from European countries. However, based on
the available data, the true prevalence of mutations in lung
adenocarcinoma is often difficult to determine due to pa-
tient selection bias, different testing platforms used for
analysis and the histological heterogeneity of tumors in-
cluded in the studies. Although we cannot exclude some
selection toward patients with higher likelihood of mu-
tated tumors in the current study, a major selection bias is
unlikely to have occurred because the epidemiological
characteristics of our study population are similar to those
of the INSIGHT study and other previous investigations.
We found a relatively high EGFR mutation rate, while
KRAS, BRAE, ERBB2, MET and PIK3CA mutation and
ALK, RET and ROSI rearrangement frequencies were
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similar to those of previous reports. EGFR and KRAS mu-
tation was significantly associated with gender and smok-
ing status, while ALK rearrangement was significantly
associated with smoking status alone.
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Comparison of EGFR mutated and ALK rearranged tumors. Table S4.
Comparison of KRAS mutated and ALK rearranged tumors. (DOCX 30 kb)
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