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We previously generated artificial lymph node-like tertiary lymphoid organs (artTLOs) 
in mice using lymphotoxin α-expressing stromal cells. Here, we show the construction 
of transplantable and functional artTLOs by applying soluble factors trapped in slow- 
releasing gels in the absence of lymphoid tissue organizer stromal cells. The resultant 
artTLOs were easily removable, transplantable, and were capable of attracting memory 
B and T cells. Importantly, artTLOs induced a powerful antigen-specific secondary 
immune response, which was particularly pronounced in immune-compromised hosts. 
Synthesis of functionally stable immune tissues/organs like those described here may 
be a first step to eventually develop immune system-based therapeutics. Although much 
needs to be learned from the precise mechanisms of action, they may offer ways in 
the future to reestablish immune functions to overcome hitherto untreatable diseases, 
including severe infection, cancer, autoimmune diseases, and various forms of immune 
deficiencies, including immune-senescence during aging.
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inTrODUcTiOn

It is well established that the function of the immune system may be compromised in a variety of 
diseases resulting in clinically significant immune deficiencies. Secondary immune deficiencies may 
be caused by overwhelming microbial infections, surgical removal of secondary lymphoid organs 
(SLOs), or destruction by tumor invasion leaving the host immune system incapable to mount 
effective immune responses with often lethal clinical outcomes. The function of the immune system 
is also severely compromised during aging due to immune senescence. Until today, no effective 
treatment regimens are available for such conditions. In order to restore the exhausted function of 
lymphoid tissues, a trial has recently been reported using therapeutic formation of TLOs in tumor-
bearing hosts by delivering molecules known to be involved in immune system homeostasis, such as 
lymphotoxin-α1β2 or LIGHT, which stimulate lymphotoxin-β receptors on tissue-resident stromal 
cells (1–7). Newly synthesized TLOs appear to be effective to suppress tumor growth under distinct 
experimental conditions (2, 3, 8). Although TLO formation has been thought to be associated with 
autoimmune disease progression rather than suppression, TLOs may play beneficial roles by enhanc-
ing protective immunity in a variety of disease conditions (8, 9).

Structures of both SLOs and TLOs resemble each other in many ways, including segregated T and 
B cell compartments, the presence of CD11c+ dendritic cells (DCs), networks of fibroblastic reticu-
lar cells (FRCs) and follicular DCs (FDCs), and the formation of high endothelial venules (HEV) 
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(10–15). It is well known that TLO neogenesis recapitulates 
many features of SLO formation involving molecules secreted 
from lymphoid inducer (LTi) cells, such as lymphotoxin α1β2 
and LIGHT (4–7). Rat insulin promoter (RIP)-LTα transgenic 
mice, which express Lta (lymphotoxin-α) gene driven by the 
RIP, develop TLOs in pancreatic islets, skin, and kidney (16). 
Transgenic mice expressing both LTα and LTβ (LTα1β2) under 
the control of RIP had larger lymphoid tissues with distinct T and 
B cell areas, well-developed FDC networks, and higher expression 
of CCL19, CCL21, and CXCL13 chemokines (also referred to as 
lymphorganogenic chemokines) in the pancreatic islets when 
compared to transgenic mice expressing only LTα (4).

Overexpression of CCL21 under control of either the thy-
roglobulin or RIP promoters developed TLOs in the thyroid 
or in the pancreatic islets, respectively (17, 18). The TLOs also 
showed PNAd positive HEVs and lymphatic vessels (19–21). 
Mice expressing CXCL13 under the control of RIP also developed 
TLOs with distinct B cell follicles and T cell areas in the pancreas 
(4, 22). Moreover, mice overexpressing CXCL12 in the pancreas 
showed lymphoid aggregates with accumulation of DCs, B cells, 
and plasma cells but few T cells (22). Transgenic mice with CCL19 
gene expression under control of RIP showed small cell infiltrates 
composed of lymphocytes and DCs (22). CXCL13 stimulated 
LTαβ expression in B cells, while CCL19 and CCL21 trigger LTαβ 
expression in CD4 T cells (22). LTαβ expression was also induced 
by the stimulation of naive T cells by IL-4 and IL-7 (19).

In tertiary lymphoid organs located in inflammatory tissues 
in humans, CCL19 and CCL21 are apparently secreted from the 
smooth muscle actin-positive stromal cells, in close proximity to 
HEVs (23). Mature DCs and lymph vessels also promote CCL21 
expression. The ligand for CXCR4, i.e., CXCL12, contributes to 
T  cell trafficking in lymph nodes and Peyer’s patches together 
with CCR7 ligands, i.e., CCL19 and CCL21 (24). Another impor-
tant chemokine for lymphocyte trafficking is CXCL13, which is 
expressed by stromal cells, including FDCs in germinal centers 
of SLOs. CXCL13 initiates migration of CXCR5-expressing 
B cells into follicles and thereby contributes to lymphoid organ 
formation (25). Importantly, CXCL13 also recruits follicular 
helper T (T-FH) cell into B cell follicles (26, 27). LTα1β2 is not 
only expressed by B cells but also by LTi cells thereby further 
promoting generation of an FDC network, including CXCL13 
expression in FDCs (28). These cell/cell interactions driven by 
lymphorganogenic chemokines stimulate recruitment of B cells 
and establish a positive feedback loop for B cell follicle homeosta-
sis (29). A crosstalk between lymphotoxin-expressing B cells and 
FRCs plays a role in promoting B cell follicle formation through 
activation of B cells expressing type 2 inflammatory cytokines 
(30). FRC networks containing lymph node-like conduits that 
promote lymph flow also provide tracks for T cell migration, 
which is promoted by CCR7 ligands, CCL19 and CCL21. FRCs 
produce various survival factors for lymphocytes besides CCL19 
and CCL21, such as IL-6, IL-7, and B cell survival factor BAFF 
(31), VEGF (32), and retinoic acid (RA) (33, 34). The conduit 
system is not only en-sheathed by FRCs and connected to the 
FRC network but FRCs generate conduits (35). Conduits also link 
to lymph vessels in draining lymph nodes (see contribution by 
Nancy Ruddle, this Research Topic). CCL21 secreted from FRCs 

promotes fluid flow in conduits, which enhances the organiza-
tion of FRC networks (36). Blocking lymph flow in peripheral 
lymph nodes downregulates CCL21 and CCL19 gene expression 
in FRCs. All these data together suggest that the increased lymph 
flow in inflammatory tissues promotes FRC networks resulting in 
enhancement of immune cell trafficking, sampling of lymph, and 
enhancing antigen-specific immune responses. CD4 depletion 
results in FRC loss because of lack of lymphotoxin-β produced 
by CD4 T cells. Thus, CD4 T cells appear to play a central role in 
maintaining lymphoid tissue structure and homeostasis through 
secretion of lymphotoxin-β (37). Thus, mutual interactions 
between FRC and CD4 T cells may play a role for formation of 
TLOs. RA may participate in homing of activated T cells through 
activation of DCs (38). The interaction of signal regulatory pro-
tein α (SIRPα), Ig superfamily protein, expressed on the DCs, and 
T cells with its counterpart CD47, expressed on non-hematopoi-
etic cells such as lymphoid stromal cells, play crucial roles in T cell 
homeostasis and formation of T cell area in the spleen white pulp 
(20), suggesting that interaction between SIRPα and its binding 
partner CD47 may be required for formation of SLOs as well as 
TLOs. These data indicate mutual interactions between lymphoid 
tissue organizer (LTo)-like stromal cells and immune cells, such as 
T cells, B cells, and DCs and these principles known for SLOs may 
also apply to TLOs. At inflammatory sites, such as aortic smooth 
muscle cells adjacent to atherosclerotic plaques (37, 39, 40) and 
local resident fibroblasts (41) give rise to LTo-like stromal cells, 
which express chemokines, such as CXCL13, CCL19, and CCL21 
upon stimulation with lymphotoxin-αβ through lymphotoxin-β 
receptor (LTβR).

Appearance of TLOs has been reported during allograft rejec-
tion (42–45), indicating that TLOs may play a role in induction 
of an effective immune response upon alloantigen stimula-
tion and serve as a site for local adaptive immune responses. 
Transplantation of skin grafts prepared from RIP-LTα transgenic 
mice into allogeneic splenectomized aly/aly mice, which lack 
SLOs, resulted in the rejection of skin grafts containing TLOs. 
Mice, which lack both spleen and peripheral lymph nodes, 
were resistant against viral infection but they mounted a strong 
immune defense by generating TLOs (9, 43). These reports 
indicated that antigen-specific activation of host-derived naive 
T cells as well as the establishment of memory T cells had taken 
place in the TLO. Thus, TLOs also play a role as an activation site 
of naive T cells to effector and memory T cells similarly to SLOs. 
It has been recently reported that TLO in the artery such as aorta 
could control aorta immunity and protect against atherosclerosis 
(39, 40). Taken together, TLOs may organize highly localized 
immune responses against microbial-derived antigens, tumor-
derived antigens, and auto- or alloantigens. It, therefore, appears a 
promising concept to construct artificial lymph node-like tertiary 
lymphoid organs (artTLOs) for the treatment of various clinically 
important diseases (46).

Lymph node FRCs ectopically expressed peripheral tissue 
antigen (PTA) and directly presented it to naive T cells under 
steady state as well as inflammatory conditions (47). Moreover, 
lymph node-resident lymphatic endothelial cells directly present 
PTA to T cells and mediate peripheral tolerance independently 
of autoimmune regulator (Aire) (48). These findings suggest 
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that lymph node stromal cells (LTo) appear to be involved in not 
only the TLO formation but also the maintenance of tolerance to 
self-antigens in the periphery at adult stage. As discussed above, 
artery TLO, which emerge in the aorta adventitia adjacent to 
atherosclerotic plaques, regulate immunity in aorta, and protect 
against atherosclerosis through LTβR expressed on vascular 
smooth muscle cells (40). These diverse function displayed by 
stromal cells suggests that the artTLO may acquire the immu-
nological function when the stromal cells adopt or differentiate 
into LTo cells. These diverse functions may include not only 
promotion of antigen-specific protective immune response to 
treat autoimmune diseases. Therefore, our principal tenet has 
been to create artTLOs with various and even opposite functions 
to foster maintenance of immune homeostasis depending on the 
disease conditions.

We had previously reported synthesis of artTLOs with the 
ability to induce immune responsiveness in  vivo by applying 
lymphoid stromal cells and bone marrow-derived DCs (49–52). 
The stromal cell line TEL-2 (53), which had been established 
from neonatal mouse thymus, was transfected with LTα cDNA. 
The LTα-expressing stromal cells or TEL-2 cells stimulated 
with LTα-coated beads expressed VCAM-1 and ICAM-1, and 
secreted lymphorganogenic chemokines, including CCL19, 
CCL21, and CXCL13. LTα-expressing stromal cells were then 
mixed with bone marrow-derived DCs (49, 50). The cell suspen-
sion was first incorporated into collagen sponges, which were 
subsequently transplanted into the renal subcapsular space of 
mice. After 2–3  weeks, lymphocyte-rich cell-aggregates had 
emerged in the collagen sponges. The resulting structures con-
sisted of clearly segregated clusters of T and B cells, FDCs in B 
cell follicles, and FRC networks in T cell areas. HEVs, lymph 
vessels, and germinal center formation upon antigen stimulation 
were also evident (49). Thus, the grafts were termed as artificial 
lymph node tissues (aLN) but are more appropriately called 
artTLOs. When the artTLOs were generated in mice that had 
been preimmunized with antigen, they were capable of induc-
ing a strong secondary immune response in vivo upon antigen 
re-stimulation, as evidenced by the accumulation of effector 
memory and T-FH cells, as well as antigen-specific memory B 
cells (50). In addition, the artTLOs were capable of inducing 
a strong secondary immune response when re-transplanted 
into naive mice upon immunization with the antigen. Also, 
re-transplantation of the artTLOs into SCID mice, followed by 
immunization, let to a robust secondary immune response. The 
artTLOs as well as spleen cells in SCID mice produced large 
amounts of antigen-specific high affinity IgG class antibodies 
consistent with the possibility that somatic hypermutation, 
germinal center reaction, affinity maturation, and Ig class 
switching were conducted in the artTLOs (50). Furthermore, 
the artTLOs appeared to suppress tumor growth when they 
were transplanted into tumor-bearing mice (51, 52). This was 
the first proof of principle that artificial lymphoid tissues are 
transplantable and immunologically active.

Taken together, these previous data led us to develop 
new strategies to artificially synthesize transplantable and 
immunologically functional lymphoid tissues/organs in the 
absence of stromal cells, i.e., LTo cells. We hypothesized that 

in vivo transplantation of a combination of lymphorganogenic 
chemokines and cytokines as a substitute for LTo cells would 
be feasible. Here, we report that functionally highly active 
artTLOs can indeed be generated by applying slow-releasing 
gels containing lymphotoxin-α1β2 and additional chemokines 
on a collagen matrix.

resUlTs

Preparation of gels and Formation of 
artTlOs
Although application of stromal cell lines is an effective 
strategy for the construction of artificial lymphoid tissues (47, 
48), the approach has major limitations in clinical practice. 
Consequently, we sought to establish a cell-free method. For this 
purpose, we transplanted collagen sponge scaffolds containing 
the slow-releasing Medgel beads in which lymphotoxin-α1β2, 
CCL19, CCL21, CXCL12, CXCL13, and soluble RANK ligand 
(sRANKL) were trapped (experimental strategy is outlined in 
Section “Materials and Methods” and legend for Figure  1A). 
Gel-beads gradually release each protein over extended period 
of time and are concomitantly resolved by the endogenous col-
lagenase. The collagen sponge containing randomly arranged 
gel-beads was transplanted into the renal subcapsular space of 
mice. After 3 weeks, grafts were removed and the resulting cell 
aggregates were examined by immunofluorescence microscopy. 
Medgel alone without any chemokine did not give rise to any 
tissue graft. Although Medgels containing lymphotoxin-α1β2 or 
any of each recombinant CCL19, CCl21, CXCL12, or CXCL13 
chemokine formed more or less of a tertiary lymphoid tissue-like 
cell mass, referred to as artTLO, as suggested by the previous 
reports mentioned in the Section “Introduction,” mixtures of 
gels containing lymphotoxin-α1β2 and four different types of 
chemokines, CCL19, CCL21, CXCL12, and CXCL13, together 
with sRANKL gave constantly the most advanced lymphoid 
structures. They consist of segregated B cell and T cell areas 
(Figure  1B), DCs in T cell areas (Figure  1C), FDC and FRC 
networks (Figure 1D), and appearance of HEVs-like structure 
(Figure 1B, right side). Besides, angiogenesis was prominent in 
the lymphoid tissues and lymph capillary vessels appeared in the 
periphery (Figure 1B, middle).

Memory B and T cells are Major 
cellular constituents in artTlO
artTLOs were formed in renal subcapsuler space of Balb/c 
mice that had been preimmunized with NP hapten-coupled 
chicken egg albumin (NP-OVA) in alum more than 1  month 
before artTLO formation was initiated. ArtTLOs and spleens of 
recipient Balb/c mice were then excised. The artTLOs and spleens 
were minced and single-cell suspension was prepared from each 
artTLO or spleen, followed by fluorescence flow cytometer analy-
sis (Figure  2). A large number of anti-NP antibody-secreting 
cells were detected in artTLO but few in the recipient spleen 
(the second column from left). Furthermore, B220+CD38+IgG+ 
memory B cells (third column from left) and CD3+CD4+CD44+

CD62L− effector memory T cells (fourth column from left) were 
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FigUre 1 | strategy to construct functional artTlOs. (a) The slow-releasing gel-beads (Medgel) containing each recombinant chemokine and cytokine 
protein indicated in the Figure were prepared. Briefly, solution (100 μg/ml) of each soluble recombinant protein (CXCL12, CXCL13, CCL19, CCL21, LTα1β2, and 
sRANKL) was added to the dry powder of the Medgel in 1.5 ml micro tube, respectively, and was incubated for 2 h at 37°C. Then, Medgels containing each 
chemokine and LTα1β2 were combined and mixed. The combined gels were incorporated into the collagen sponges as described in the Section “Materials and 
Methods.” The collagen sponges were then transplanted into the renal subcapsular space of NP-OVA preimmunized Balb/c mouse. After 3 weeks, artTLO had 
formed. (B) Lymphoid cell assembly consisted of segregation of T cell area and B cell follicles. Functional capillaries and lymph vessels were detected. 
Functional arteries and high endothelial venules (HEV) were well developed. (c) Distribution of dendritic cells in T cell area. (D) FDC network in B cell follicle and 
FRC network in T cell area.
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highly enriched in artTLOs when compared to recipient spleens. 
IgG class anti-NP antibody-forming cells (AFCs) were also 
enriched (second column). These results indicated that artTLOs 
possess a remarkable property to efficiently accumulate memory 

T and memory B cells as well as antigen-specific AFCs that had 
been recruited from the recipient Balb/c mouse lymphoid tissues 
during lymphocyte cell trafficking between recipient mouse and 
artTLO tissue through blood vessel. The artTLOs, which were 
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FigUre 2 | accumulation of antigen-specific memory B cells and cD4 positive T cells in artTlOs. artTLOs were constructed in Balb/c mice, which had 
been preimmunized with 100 μg NP-hapten conjugated ovalbumin (NP-OVA) in alum as described in the Section “Materials and Methods.” After 3 weeks, artTLO 
were formed in the subcapsular space of kidney. artTLO and spleen were removed from recipients for flow cytometer analysis. Flow cytometer profiles of artTLO and 
spleen cells of recipient mice are shown. Note that IgG1 class anti-NP antibody-forming cells as well as memory B cells and effector memory T cells are remarkably 
enriched in artTLOs, compared to the recipient spleen cells. Representative data are shown from FACS analysis of 10 individual artTLO. Data were highly reproducible.
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constructed in antigen-primed recipients by applying the gel-
trapped chemokines, work as an efficient reservoir for memory 
T and B cells and also for antigen-specific AFCs.

artTlOs Function as highly active immune 
Tissues Following Transplantation into 
immuno-compromised recipients
artTLOs, which had been formed in antigen (NP-OVA)-
preimmunized mice and then excised, were re-transplanted 
into renal subcapsular spaces of immune-deficient SCID mice 
having no mature T and B lymphocyte (Figure  3). Two weeks 
after transplantation, half of the SCID mice carrying artTLO 
were intravenously immunized with the same antigen. The 
other half of the SCID mice carrying artTLO remained un-
immunized. One week later, artTLOs and spleen of recipient 
SCID mice were removed. Cell suspension was prepared from 
each individual artTLO and spleen. IgG1 class anti-NP-specific 
AFCs in artTLOs as well as recipient SCID spleens were counted 
as shown in Figure 3. Total (NP30) and high affinity (NP3) of 
NP-specific AFCs were measured. Low but significant numbers 
of anti-NP AFCs were detected in re-transplanted artTLO in 
non-immunized SCID mice. They were remnant of the AFCs that 
had been migrated from the first NP-OVA preimmunized Babl/c 
mouse. On the other hand, numbers of antigen (NP)-specific 
high affinity as well as total IgG class antibody-producing cells 
were remarkably increased in re-transplanted artTLOs upon 

immunization (Figure  3, left side), indicating that secondary 
immune response was efficiently induced by memory B and T 
cells that had been accumulated in the re-transplanted artTLO as 
shown in Figure 2. Anti-NP AFCs were hardly detected in spleen 
of artTLO-re-transplanted SCID mice without immunization of 
SCID mice with NP-OVA (Figure 3, right side), indicating that 
no migration of AFCs occurred in the artTLO-carrying SCID 
mice even though the presence of empty space in SCID mouse 
spleen for lymphoid cells and even though that lymphocyte could 
freely communicate between artTLO and SCID mouse immune 
tissues through blood vessels. Surprisingly, extraordinarily large 
numbers of anti-NP AFCs appeared in spleens of the artTLO-
carrying SCID mice as shown in Figure 3 (right side), suggesting 
that NP-specific memory B cells and T cells are migrating from 
artTLO into empty SCID spleen and they quickly maturate and 
explosively expand into NP-specific AFCs in the empty space 
in SCID mouse spleen upon antigen stimulation. Thus, artTLOs 
constructed by the present gel-trapped lymphoorganogenic 
chemokines are effective immune tissues, especially in immune-
compromised hosts, in which the artTLO could induce a strong 
specific immune response upon antigen stimulation.

DiscUssiOn

The major conclusion of the data detailed above is that immu-
nologically highly active and transplantable artTLOs can be 
generated in the absence of LTo cells in mice by providing suitable 
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FigUre 3 | enrichment of antigen-specific high-affinity antibody-producing cells in artTlO upon transplantation into immunodeficient sciD 
mice. ArtTLO were first formed in eight NP-OVA preimmunized Balb/c mice as described in Figure 2. Four artTLO (two artTLO in each kidney) in one 
mouse were constructed. Then, artTLO were individually extirpated and collected from Balb/c mice and re-transplanted into renal subcapsular space of 
eight SCID mice. Four artTLO were re-transplanted into each SCID mouse. Two weeks after re-transplantation, four of artTLO-carrying SCID mice were 
intravenously immunized with 10 μg NP-OVA. The other four SCID mice were not immunized. One week after, artTLO and recipient spleen were extirpated 
individually from SCID mice and single cell suspensions were prepared. Numbers of high affinity as well as total IgG class anti-NP antibody-forming cells 
(AFCs) in individual artTLO and in spleens of recipient SCID mice were counted by an immunospot analyzer. Numbers of AFCs were calculated from 16 
individual artTLO for each group.
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factors that are usually secreted from LTo upon stimulation by 
lymphoid tissue inducer cells (LTi). We successfully constructed 
immunologically functional artTLO by applying slow-releasing 
gels containing combination of four chemokines (CXCL12, 
CXCL13, CCL19, and CCL21) and sRANKL together with lym-
photoxin α1β2 protein. We propose that the strategy applied here 
may lead the way to the generation of artTLOs not only in mouse 
but also in human to ameliorate untreatable diseases as varied 
as severe infection (sepsis), primary and secondary immune 
deficiency syndromes, autoimmunity, and a large number of 
clinically important chronic inflammatory diseases, including 
atherosclerosis, rheumatoid arthritis, and inflammatory bowel 
and brain diseases (37, 39, 40, 54–62). It is well known that 
T cell immune responses are actively induced in tumors (63). 
However, tumors have evolved to acquire immunosuppressive 
mechanisms or they apply other immune evasion mechanisms. 
Recent advances in checkpoint therapy for cancers will be an 
effective strategy to overcome some of these hurdles (64, 65). 
The artTLO may provide the machinery to assist checkpoint 

therapy for cancers. Also, atrophy of primary and SLOs, which 
occur during aging associated with immuno-senescence (66, 67), 
gives rise to fatal infectious diseases in the elderly. The artTLO 
may play a role in reinforcement of immune function in the 
elderly. Moreover, artTLOs should be examined for their ability 
to counteract the compromised immune system in patients who 
receive radiation therapy or chemotherapy. We further envisage 
application of artTLO in patients that undergo hematopoitic stem 
cell transplantation during conditioning regimens, including 
non-myeloablative conditioning to overcome a window in time of 
severely compromised immune function, since the immune cells 
in the artTLO rapidly may expand and maturate in the patients 
much as they would in a SCID mouse as shown in Figure 3.

Since artTLOs in the present study are formed on the scaffold 
of a collagen sponge, it is easily removable and transplantable. 
As the characteristics of biomaterials are important in tissue 
engineering strategies, a collagen sponge was applied. In order 
to efficiently generate artTLOs, the scaffold should be carefully 
prepared to mimic the natural environment of TLO neo-genesis. 
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Scaffolds for the synthesis of immune tissues are required to 
allow the LTo cells and respective immune cell populations to 
organize themselves to create microenvironments that allow 
artTLO neo-genesis. Such scaffolds should also maintain the 
three-dimensional structure that allows immune cells to move 
effectively for both optimal recruitment and egression (through 
the newly formed HEVs, blood vessels, and lymphatics), and 
maintain a reservoir of soluble factors, such as chemokines and 
cytokines expressed by stromal cells. A number of synthetic 
biomaterials have been developed, which are all able to duplicate 
the three-dimensional microenvironments that are provided by 
natural extracellular matrices, such as fibril or non-fibril collagen, 
proteoglycans, matrix cellular proteins (68), and their hydrogels 
(69). It has been demonstrated that structurally engineered macro-
porous scaffolds, which combine polyethylene glycol hydrogels 
with collagen, support T cell, and DC migration (70). The first 
in  vivo synthesis of artificial lymphoid tissues was achieved by 
using a porous biocompatible collagen matrix, prepared from the 
bovine Achilles tendon (referred to as a collagen sponge) (49). It 
has a non-homogeneous pore size ranging from 50 to 300 μm. 
A key in lymphoid tissue engineering is to properly modulate 
and mimic dynamics of lymphocyte trafficking. In addition, 
it is important to recruit the appropriate immune cells to the 
lymphoid tissues. Finally, the gradients of the soluble factors 
secreted from stromal cells need to be adjusted. Biomaterials that 
release soluble factors simultaneously not only uniformly but also 
gradually with temporal differences have been described (71). In 
the present study, Medgels, which consist of collagen gels, were 
applied. Medgels maintain and slowly release soluble protein 
molecules. The 3D scaffold in which cell-specific chemokines/
cytokines are geometrically positioned and fixed based on the 
histological patterns are expected to be advantageous for the 
formation of more sophisticated and functional artTLOs. In 
order to do so, a manufacturing approach using 3D bioprinters 
should be attempted.

There has been much progress in the establishment and analy-
sis of humanized mice (72–77). As a result, humanized mice will 
be utilized as human disease models. They can be experimentally 
manipulated and used to directly study infectious diseases, 
immunological disorders, and cancers (78–80). These model sys-
tems could be suitable candidates for generating human artTLOs 
in future by applying the present slow-releasing gels containing 
chemokine cocktail and lymphotoxin-α1β2.

cOnclUsiOn

Tertiary lymphoid organs are unique lymphoid tissues in which 
interaction of antigen-presenting cells with effector T- and 
B-lymphocytes is organized and followed by induction of protec-
tive adaptive as well as innate immune responses. The synthesis of 
artificially constructed TLO tissues (artTLOs) that function as the 
effective substitutes for SLOs may be a promising novel strategy 
to treat both local and systemic infections, autoimmune diseases, 
and cancer. Development of functionally active human artTLOs 
or similar devices is expected in the near future. In this report, we 
have attempted to construct artificially made functional TLOs by 

applying gel-trapped lymphorganogenic soluble factors, instead 
of using lymphoid tissue stromal cells. They showed a remark-
able immune function especially as a reservoir of antigen-specific 
memory B and T cells.

MaTerials anD MeThODs

antibodies and reagents
Fluorescein-, phycoerythrin-, or biotin- labeled anti-B220 
(clone:RA3-6B2), anti-CD3 (Clone:145-2c11), anti-Thy1.2 (clone: 
30-H12), anti-CD11c (clone:N418), anti-CD21/35 (clone:7G6), 
anti-FDC-M1 (clone:FDC-M2) were obtained from BD 
Pharmingen. Anti-ER-TR7 was from Abcam plc., anti-PCAM-1 
(clone:390), and anti-PNAd (clone:MECA-79) were from 
Biolegend. Anti-IgG1 and goat anti-hamster IgG and fluores-
cein- or phycoerythrin-labeled streptavidin were all purchased 
from BD Bioscience. NP-OVA and NIP-BSA were purchased from 
Bioresearch Technology. Lymphotoxin α1β2 was purchased from 
R&D System. CXCL13 (cat no.:300-47), CCL19 (cat. No:300-
29B), CCL21 (cat. No:300-35), CXCL12 (cat no:300-28A), and 
sRANKL (cat. No:310-01) were purchased from Peprotech. 
Medgel was obtained from MeDGEL Co., LTD (Japan).

Mice
Balb/cAnNcrj mice and SCID mice (C.B.-17/IcrCrj-scid/scid) 
were purchased from Japan SLC, Inc. All mice were housed under 
specific pathogen-free condition in the animal facility of Medical 
Research Institute, Kitano Hospital. All experiments described 
herein were approved by the Kitano Hospital animal use com-
mittee and were performed in accordance with the applicable 
guidelines and regulation.

immunization
For pre-immunization, 100 μg NP15-OVA precipitated in alum 
was injected i.p. into 7- to 10-week-old Balb/c mice. Four or 
more weeks after immunization, mice were used as donors for 
the generation of artTLO.

synthesis of artTlOs
Since Medgel releases the protein (chemokines, lymphotoxin) 
very slowly in  vivo and it is difficult to determine the opti-
mal dose of each protein for in  vivo formation of lymphoid 
tissues, large excess amounts of chemokine or lymphotoxin 
were added to Medgel. Twenty-microliter solution of each 
kind of soluble factor (CXCL12, CXCL13, CCL19, CCL21, 
LTα1β2, and sRANKL; 100  μg/ml each) was added to dry 
powder of Medgel (400  μg) in 1.5  ml microtubes followed 
by an incubation for 2  h at 37°C. Then, all soluble factor-
containing Medgels were once mixed in a microtube. About 
50 μg of the mixtures of Medgels was absorbed into a collagen 
sponge piece (2  ×  mm  ×  2  ×  mm square, CS-35; KOKEN). 
Approximately 30–40 Medgel-adsorbed collagen sponges were 
prepared at once and transplanted into renal subcapsular space 
of 8–10 adult (7- to 10-week-old) Balb/c mice (4 pieces in one 
mouse). The artTLOs were constantly formed 3  weeks after 
transplantation.
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immunohistochemical staining
artTLOs and lymphoid tissues from recipient mice were embed-
ded in Tissue-Tek OCT compound (SAKURA FINETEK), and 
snap frozen in liquid nitrogen. Five-micrometer-thick cryostat 
sections were prepared and placed on APS-coated glass slides 
(Matsunami Glass Ind. Ltd.). Sections were fixed with cold 
acetone for 5  min, dried, and kept at −80°C until use. After 
blocking with 5% normal rat serum and 1% BSA in TBS-T (Tris-
buffered saline with 0.005% Tween20) for 1 h at 20°C, sections 
were incubated for 1  h at 20°C with appropriate antibodies or 
streptavidin-fluorochrome reagents diluted in blocking buffer 
and washed with PBS three times every 5 min.

elisPOT for Measurement of nP-specific 
igg1 and igM antibody-Forming cells
The frequency of high- and low-affinity NP-specific AFCs  
among cells collected from artTLOs or spleen cells from 
donor mice was measured by ELISPOT using NP3-BSA- and 
NP30-BSA-coated filter paper for low-affinity AFC, respec-
tively, as shown previously (50). Hydrophobic PVDF filters 
on MultiScreenIP Filter Plates (MAIPS4510, Millipore) were 
coated with 50 μg/ml NP3-BSA, NP30-BSA, or BSA in PBS at 
4°C overnight, and then blocked with 1% BSA in PBS. Cells 
(0.2–1  ×  105 cells/well) were incubated for 2  h at 37°C and 
washed once with PBS containing 50  mM EDTA, twice with 
TBS-T, and once with PBS. After washing, filters were visual-
ized with BCIP/NBT (Chemical International) and AEC (BD 
Biosciences-Pharmingen). Numbers of AFCs were counted by 
ImmunoSpot Analyzer (C.T.L.).

statistics
All the statistical analysis were performed by using an unpaired 
two-tailed Student’s test. A P-value of less than 0.05 was consid-
ered significant.

sTUDies inVOlVing aniMal research

Animal research in this review were approved by the ethics com-
mittee of The Tazuke-Kofukai Medical Research Institute and 
Kitano Hospital, Osaka, Japan, and carried out in accordance 
with the recommendation of animal research guidelines issued 
from the ethics committee.
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