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Abstract 

Adult humans harbor at least as many microbial cells as eukaryotic ones. The largest compartment of this di v erse micr obial popula- 
tion, the gut microbiota, encompasses the collection of bacteria, ar c haea, viruses, and eukary otic organisms that populate the gastroin- 
testinal tract, and r e pr esents a complex and dynamic ecosystem that has been incr easingl y implicated in health and disease. The gut 
microbiota carries ∼100-to-150-times more genes than the human genome and is intimately involved in development, homeostasis, 
and disease. Of the several micr obial meta bolites that have been studied, short-chain fatty acids emerge as a group of molecules that 
shape gene expression in several types of eukaryotic cells by multiple mec hanisms, whic h include DN A methylation c hanges, histone 
post-tr anslational modifications, and microRN A-mediated gene silencing. Butyric acid, one of the most extensi v el y studied short- 
chain fatty acids, reaches higher concentrations in the colonic lumen, where it provides a source of energy for healthy colonocytes, 
and its concentrations decr ease tow ards the bottom of the colonic cr ypts, wher e stem cells reside . The low er butyric acid concen- 
tration in the colonic crypts allows undifferentiated cells, such as stem cells, to pr ogr ess thr ough the cell c ycle, pointing to war ds 
the importance of the crypts in providing them with a pr otecti v e nic he . In cancerous colonocytes, whic h meta bolize r elati v el y little 
butyric acid and mostly rely on glycolysis, butyric acid preferentially acts as a histone deacetylase inhibitor, leading to decreased cell 
proliferation and increased apoptosis. A better understanding of the interface between the gut microbiota metabolites and epigenetic 
changes in eukaryotic cells promises to unravel in more detail processes that occur physiologically and as part of disease, help develop 

novel biomarkers, and identify new therapeutic modalities. 
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The human microbiota and its composition 

in adults 

Microbial symbionts and their animal hosts have a history of co- 
evolution that goes back at least 500 million years (Cho and Blaser 
2012 , Christian et al . 2015 ). Various studies estimated the ratio 
betw een eukary otic and bacterial cells in the human body to be 
1:10 (Sav a ge 1977 , Bull and Plummer 2014 ), 1:2–3 (Gilbert 2015 ),
or closer to 1:1 (Sender et al. 2016 , Sender et al. 2016 ). Until re- 
cently, the importance of the human microbiota, previously called 

the normal flora (Cho and Blaser 2012 ), was lar gel y neglected (Riccio 
and Rossano 2020 ), but the topic has r eceiv ed incr easing attention,
as shown by the exponential growth in the number of papers on 

the gut microbiota published between 2010 and 2022 (Riccio and 

Rossano 2020 ). 
The composition of the human microbiota varies by anatom- 

ical location and across individuals for the same location, and 

some of the most extensiv el y studied sites include the skin, the 
colon, the v a gina, the or al cavity, the lung, the stomac h, and the 
hair (Cho and Blaser 2012 , Mathieu et al . 2018 , Lousada et al. 2021 ,
Hou et al . 2022 ). The collection of microbial genomes encoded by 
these bacteria, known as the human microbiome , was r eferr ed to as 
our second genome (Grice and Segre 2012 , Lemm 2018 ). 

The microbiota that colonizes the gastrointestinal tract, also 
known as the gut microbiota , comprises 10 13 –10 14 resident microor- 
ganisms that include bacteria, archaea, viruses, fungi, and pro- 
a  
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r e pr oduction in any medium, provided the original work is properly cited. For com
ozoa (Gill et al . 2006 , Martín et al. 2014 , Thursby and Juge 2017 ,
ibiino et al. 2021 ), and r epr esents a highl y div erse and dynamic
cosystem with critical roles in human health (Rodríguez et al.
015 ). Five bacterial phyla dominate the healthy gut microbiota in
dults, and eac h micr oor ganism encodes unique metabolic func-
ions (Bezek et al. 2020 , Ferraris et al . 2020 ). Most micr oor ganisms
hat comprise the gut microbiota are in the colon (J andhy ala et al.
015 , Ga gnièr e et al . 2016 , Sender et al . 2016 , Dieterich et al. 2018 ,
ibiino et al . 2021 ), which is the best studied compartment and
ne of the most densely populated microbial habitats known on
arth (Kelsen and Wu 2012 , Rinninella et al . 2019 ). 

As compared to the 24 000 protein-coding genes that are
resent in the human genome, the gut microbiome collectively 
ontains at least 100-to-150-times more (Hooper and Gordon 2001 ,
ill et al. 2006 , Karlsson et al . 2013 ), or > 3 million genes, whic h ar e

nvolved in a multitude of metabolic pathways (Ursell et al. 2012 ,
aldes et al. 2018 , Rinninella et al. 2019 ). 

he gut microbiota and its link to health 

nd disease 

he gut micr obiota, r ele v antl y r eferr ed to as foreign to us while at
he same time being part of us (Riccio and Rossano 2020 ), plays crit-
cal functions in the biology of the host (Guinane and Cotter 2013 ),
nd the two exist in a state of mutual symbiosis (Dur ac k and
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ync h 2019 ). Its micr obial members inter act closel y with intesti-
al epithelial cells, which are located at the interface with under-

ying host cells . T hese interactions result in a bidirectional com-
unication between host cells and r esident micr oor ganisms as
ell as micr obiota-deriv ed metabolites. Among the se v er al gr oups
f metabolites that are synthesized by the gut microbiota, the
ost extensiv el y studied ones include short- and br anc hed-c hain

atty acids, phenolic deri vati ves , polyamines , tryptophan, and bile
cids (Yang and Kweon 2016 , Wilson and Nicholson 2017 , Agus et
l. 2021 ). 

The taxonomical abundance of the gut microbiota and its com-
osition are shaped by factors that include microbial interactions,

ifestyle , medication use , social networks , en vironmental factors ,
iseases , host genetic factors , and age (Goodrich et al. 2014 , Blaser
016 , Lane et al. 2019 , Madison and Kiecolt-Glaser 2019 , Amato
t al . 2021 , Herzog et al. 2021 , Kaur et al. 2022 ). Twin studies sug-
est that en vironmental factors , such as diet, outweigh the con-
ribution of genetic factors to the gut microbiota composition and
unction (Rothschild et al . 2018 ). 

The human gut micr obiota serv es m ultiple functions in the
ost. Some of these include its contribution to the structure and
unction of the intestinal barrier, including that of the mucus
ayer, which at the same time provides nutrients for the microor-
anisms (Pickard et al . 2017 , Paone and Cani 2020 ); the breakdown
f endogenous mucus and the fermentation of non-digestible di-
tary fibers (Valdes et al. 2018 ), a process that harvests energy and
lso supports the production of short-chain fatty acids (SCFAs);
he metabolism of bile acids (Ramír ez-Pér ez et al . 2017 , Valdes
t al. 2018 ); the de v elopment of the immune system and protec-
ion a gainst autoimm une diseases (Wu and Wu 2012 , Rosser and
auri 2016 , Schluter et al. 2020 ); the synthesis of lipopol ysacc ha-

ides, se v er al essential vitamins, suc h as biotin, folate, and vita-
in K, and amino acids (Cummings and Macfarlane 1997 , Fan

nd Pedersen 2021 ); the breakdown of carcinogens (Morotomi and
utai 1986 , Kho and Lal 2018 ), xenobiotic compounds, and drugs

Nakov and Velikova 2020 ); the production of molecules that in-
ibit potentially pathogenic bacteria (Cipe et al. 2015 ); and the de-
elopment and functioning of the enteric nervous system (Ochoa-
epáraz and Kasper 2016 , De Vadder et al. 2018 , Geng et al . 2022 ). 

The microbiota modulates multiple gut-organ axes, such as the
ut-brain, gut-lung, gut-skin, gut-bone, and gut-heart axis (Enaud
t al. 2020 , Afzaal et al. 2022 , Bulanda and Wypych 2022 ), and
ontributes to the de v elopment and functioning of the nervous,
ndocrine, and immune systems (Clarke et al. 2014 , Obata and
 ac hnis 2016 , Foster et al . 2021 ). Imbalances in the gut microbiota
nd its metabolites have been implicated not only in gastroin-
estinal pathologies, but also in extra-intestinal, systemic diseases
Guinane and Cotter 2013 , Bull and Plummer 2014 , Carding et al.
015 , Tang et al. 2015 , Li et al. 2017 ). Animal and human studies
ave established links between perturbations in the intestinal mi-
r obiota and v arious medical conditions, including inflammatory
o w el disease (Zheng and Wen 2021 ), Crohn’s disease (Manichanh
t al. 2006 ), obesity (Iatcu et al . 2021 ), metabolic syndrome (Iatcu
t al. 2021 ) and metabolic diseases (Woting and Blaut 2016 ), type
 diabetes (Han and Lin 2014 , Gurung et al. 2020 ), cardiovascu-
ar disease (Nov ak ovic et al. 2020 ), depression (Winter et al. 2018 ,
imbana et al. 2020 , Liu et al. 2020 ), occupational sleep apnea-
nduced hypertension (Mashaqi and Gozal 2019 ), Alzheimer’s dis-
ase (Ko w alski and Mulak 2019 , Liu et al. 2020 ), Parkinson’s disease
Sampson et al . 2016 , Kang et al . 2021 , Wang et al. 2021 ), autism
pectrum disorder (Rosenfeld 2015 ), and cancer (Singh et al. 2017 ).
r ief descr iption of epigenetic changes 

mong the mechanisms that underlie the communication be-
ween the gut microbiota and host cells, the ability of microbial

etabolites to epigenetically modulate eukaryotic gene expres-
ion has r eceiv ed consider able attention, particularl y in r ecent
ears (Sharma et al . 2019 , Woo and Alenghat 2022 ). The term epi-
enetics was coined by Conrad Waddington in 1942, as a refine-
ent to the concept of epigenetic landscape that he introduced

arlier (Waddington 1940 ), to r efer to inter actions between genes
nd the environment that shape phenotypes during development
Waddington 1942 , Deichmann 2016 , Tr onic k and Hunter 2016 ).
ver the past 80 years, the term itself has de v eloped, along with
dvances in molecular biology (Choudhuri 2011 , Felsenfeld 2014 ).

Epigenetic changes involve potentially heritable alterations in
ene expression without changes in the DNA sequence itself and,
n addition to de v elopment, ar e implicated in regulating stem cell
otential, tissue homeostasis, the r esponse to envir onmental fac-
ors, and disease pathogenesis (Johnstone and Baylin 2010 , Hamil-
on 2011 , Beerman and Rossi 2015 , Allis and Jenuwein 2016 , Zoghbi
nd Beaudet 2016 , Kang et al . 2019 ). Three major categories of epi-
enetic changes were described in eukaryotes, and they include
NA methylation, histone post-translational modifications, and
N A interference (RN Ai), a pr ocess in whic h micr oRNAs, a class of
on-coding RNA species, inhibit messenger RNA (mRNA) transla-
ion (Stephens et al. 2013 , Du et al . 2015 , Fessele and Wright 2018 ,
hang et al . 2019 , Aure et al. 2021 , Liu et al. 2022 ). Proteins and pro-
ein complexes that epigenetically modify DNA and histones were
lassified into epigenetic writers , readers , and erasers (Biswas and
ao 2018 ). Writers include enzymes that deposit epigenetic modi-
cations; readers recognize and bind the covalent epigenetic modi-
cations; and erasers r emov e the epigenetic marks (Torres and Fu-

imori 2015 , Biswas and Rao 2018 ). 
DN A methylation, mediated b y DN A methyltr ansfer ases (DN-

Ts), involves the covalent attachment of a methyl group to the
-5 position of cytosine in the DNA, leading to the formation
f 5-methylcytosine (5-mC) (Jin et al. 2011 , Schmitz et al . 2019 ).
ost instances of cytosine methylation were described when cy-

osine is part of the CpG dinucleotide, but non-CpG methyla-
ion, whic h r efers to cytosine methylation at CpA, CpC, and CpT
ites, was also described (He and Ecker 2015 , Jang et al . 2017 ).
n human somatic cells, > 98% of the DNA methylation occurs
n the CpG context, and non-CpG methylation is m uc h mor e
bundant in embryonic stem cells (Lister et al . 2009 , Jin et al .
011 ). Histone post-translational modifications involve the co-
 alent attac hment of functional gr oups to amino acids, mostl y
n the N-terminal histone tails, and include acetylation, methy-
ation, phosphorylation, ubiquitylation, SUMOylation, glycosyla-
ion, and ADP-ribosylation (Bowman and Poirier 2015 , Ramazi
t al . 2020 ). Histone acetyltr ansfer ases (HATs), sometimes also
 eferr ed to as lysine acetyltransferases (KATs), comprise a su-
erfamily of enzymes that attach acetyl groups to the ε-amino
r oup of l ysine r esidues on both histone and non-histone pro-
eins, and histone deacetylases (HDACs) (Fig. 1 ) catalyze the re-

oval of the acetyl groups (Hodawadekar and Marmorstein 2007 ,
erndsen and Denu 2008 , Gong and Miller 2013 , Marmorstein and
hou 2014 , Wang et al. 2014 ). An example of acetyl-lysine read-
rs are the bromodomain-containing proteins (Wu et al. 2019 ).
cetylation transforms condensed chromatin into a more relaxed
tructur e, making it mor e accessible and facilitating gene expres-
ion, and deacetylation leads to c hr omatin compaction, whic h
akes genes less accessible for transcription (Liu and Xu 2004
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Figure 1. Histone acetylation and deacetylation. The acetylation of histone lysine residues involves the covalent attachment of an acetyl group to the 
ε-position of the lysine side chain, which creates an open chromatin structure that is more permissible for gene transcription. Lysine deacetylation 
involves the removal of the acetyl group, leading to a more compacted chromatin structure that is less accessible for active gene expression. Created 
with BioRender.com. 
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, Berndsen and Denu 2008 , Verza et al. 2020 ). Finall y, micr oRNAs 
(miRNAs), a class of small non-coding RNAs, are 19–24 nucleotides 
long single-stranded RNA molecules that regulate gene expres- 
sion by causing gene silencing or, occasionally, by translational ac- 
tivation (Chuang and Jones 2007 , Truesdell et al . 2012 , Bhaskaran 

and Mohan 2014 , O’Brien et al . 2018 ). Extensiv e cr oss-talk was de- 
scribed among different types of epigenetic changes; for example,
DNA methylation influences and is influenced by histone post- 
translational modifications (Miller and Grant 2013 , Rose and Klose 
2014 , Weinberg et al. 2019 ), and microRNAs regulate DNMTs and 

HDACs (Bourassa and Ratan 2014 , Lopez-Bertoni et al. 2015 ). 

SCFAs in the large intestine 

Based on their carbon chain length, fatty acids are classified as 
short- ( < 6C), medium- (6–12C), and long-chain ( > 12C) (Nogal et al.
2021 ). Short-chain fatty acids (SCFAs) are organic linear carboxylic 
acids that harbor an aliphatic tail of two to six carbon atoms (Tan 

et al. 2014 , He et al. 2020 ) and are produced in the colon as a result 
of the anaerobic fermentation of dietary fiber by the gut micro- 
biota (P ar ada Venegas et al . 2019 ). Acetic acid (C2), propionic acid 

(C3), and butyric acid (C4) are the most abundant SCFAs in the 
human large intestine ( ≥95%) (Fig. 2 A) and have received particu- 
lar attention due to their ability to modulate multiple metabolic 
pathways r ele v ant to human health (Morrison and Preston 2016 ,
Boets et al. 2017 , Sun et al. 2017 , Overby and Ferguson 2021 , Portin- 
casa et al . 2022 ). Other SCFAs, such as isov aler ate and isobutyr ate,
ar e pr esent in onl y tr ace amounts (Swer et al. 2022 ). 

Differ ent intestinal micr obes pr oduce differ ent amounts of 
SCFAs (Macfarlane and Macfarlane 2003 , He et al. 2020 ). In the 
human large intestine, members of the Bacteroidetes synthesize 
mainly acetate and propionate, and members of the Firmicutes 
mostl y pr oduce butyr ate (P ar ada Venegas et al. 2019 ). The amount 
and the rate of SCFA production depends on the host species, the 
composition of the microbiota, the fermentation substrate, and 
he transit time in the large intestine (Wong et al. 2006 ). Small
mounts of SCFAs originate in the diet (Shimizu et al. 2019 , He et
l . 2020 ), can form by the fermentation of amino acids (Nogal et
l. 2021 ), and are also synthesized in the liver (Tan et al. 2014 ).
heir le v els ar e v ery low, but measur able, in germ-fr ee animals

Høv erstad and Midtv edt 1986 ). SCFAs enter colonocytes thr ough
he apical membrane by passive diffusion and active transport 
hat is mediated by H 

+ -de pendent monocarbo xylate transporters
MCTs), pr e viousl y r eferr ed to as solute carrier famil y (SLC) tr ans-
orters (Fr ederic ks et al. 2020 , Deleu et al. 2021 , Portincasa et al.
022 ). Colonocytes derive 60%–70% of their energetical needs from
xidizing SCFAs (Roediger 1982 , den Besten et al. 2013 ), with bu-
yr ate pr oviding their main ener gy source, and SCFAs that ar e not
sed for their energetic needs are transported across their baso-

ater al membr ane into the portal v ein and, thr ough the peripher al
lood, to v arious or gans, wher e they can be used for metabolic
rocesses or signaling (Sun et al . 2017 , He et al . 2020 , Thomas and
enu 2021 ). 
The highest SCFA concentration in the human gastrointestinal 

ract is in the colon (P ar ada Venegas et al. 2019 ), where the molar
atio of acetate to propionate to butyrate is about 3:1:1 (Chambers
t al . 2018 , Deleu et al. 2021 , Nogal et al. 2021 ), but this ratio changes
n the peripheral veins to 91:5:4 (Cummings et al . 1987 ). Acetate,

ore abundant than butyrate and propionate, is the most abun-
ant SCFA in the distal gut and in the systemic circulation (Qin
nd Wade 2018 , Rahman et al. 2023 ). The concentration of SCFAs
s about 5-times higher in the portal vein than in the peripheral ve-
ous blood, suggesting that the gut is their primary source (Cum-
ings et al. 1987 ). In addition to serving as an energy source for the

ells of the colon and ileum (Yao et al . 2022 ), SCFAs influence mi-
robial composition (Overby and Ferguson 2021 ), pH (Overby and
erguson 2021 ), the integrity of the intestinal barrier (Overby and
erguson 2021 ), glucose and lipid metabolism (Morrison and Pre-
ton 2016 , Nogal et al . 2021 ), appetite (Morrison and Preston 2016 ,
laak et al. 2020 ), are involved in mucus production (Blaak et al .
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Figure 2. Short-chain fatty acids in the large intestine have important local and systemic biological functions. (A) Acetic, propionic, and butyric acid 
are the three most abundant SCFAs in the large intestine, where they are synthesized by the gut microbiota from dietary fiber. (B) Schematic 
r epr esentation of the butyrate paradox. Butyric acid creates a colonic lumen-to-crypt decreasing concentration gradient, which promotes the growth 
or decreases the proliferation of healthy colonocytes, but selectively inhibits undifferentiated cells, such as cancer cells and stem cells, by 
mechanisms that include epigenetic changes. Created with BioRender.com. 
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020 ), and regulate inflammation (He et al . 2020 ) and the immune
esponse (Kim et al . 2014 , Blaak et al. 2020 , Yao et al . 2022 ). 

CFAs impact histone acetylation 

icr obial-deriv ed SCFAs ar e one of the best understood media-
ors of the micr obiota-host inter actions (Fellows and V arga-W eisz
020 ) and, along with other metabolites, emerge as important
articipants to the micr obiota-gut-br ain axis (Swer et al. 2022 ).
n 1978, Sealy and Chalkley reported, in rat hepatoma cells that
er e tr eated with SCFAs such as sodium butyrate or acetic, isobu-

yric, or propionic acid, a global increase in histone acetylation as
 result of the noncompetitive and reversible inhibition of HDAC
ctivity (Sealy and Chalkley 1978 ). The same year, Boffa et al . re-
orted that in HeLa cells, sodium butyrate causes an increase in
istone acetylation by inhibiting HDAC activity (Boffa et al. 1978 )
nd Ree v es and Candido found that sodium butyr ate suppr essed
istone deacetylation in Friend erythroleukemic cells in culture

Ree v es and Candido 1978 ). 
SCFAs generated in the gut mediate at least part of their local
nd systemic biological effects by signaling thr ough G pr otein-
oupled receptors (GPCRs), including GPR41 (FFAR3), GPR43
FFAR2), and GPR109A (HCAR2), inhibiting HDACs, and their in-
uence on cellular energy metabolism (Canani et al. 2011 , Vinolo
t al . 2011 , Tan et al . 2014 , Dalile et al. 2019 , Gasaly et al . 2021 , No-
al et al . 2021 ). The main HDAC inhibitor is butyric acid, which
nhibits mostly HDAC enzymes from classes I, IIa, and IV (Davie
003 , Licciardi et al. 2010 , Fock and P arnov a 2023 ). While the mech-
nisms that explain the ability of SCFAs to inhibit HDACs are in-
ompletely understood, it was proposed that they may act dir ectl y
n the HDAC or indir ectl y, thr ough GPCR activ ation (He et al . 2020 ).
utyrate, by being metabolized to acetyl-CoA, also increases his-
one acetylation (Donohoe et al. 2012 ). An analysis that conducted
eep profiling of histone modifications using mass spectrometry
nd c hr omatin imm unopr ecipitation sequencing found r educed
istone H4 mono-, di-, and tri-acetylation at gene bodies across
he genome of cecal and colonic epithelial cells. Isotope tracing
tudies using labeled fermentable fiber confirmed that the iso-
ope becomes incor por ated into acetylated H4 and H3, support-



Stein and Riber | 5 

Figure 3. Short-chain fatty acids and some of their target organs and cells. SCFAs generated in the large intestine influence se v er al gut-or gan axes and 
epigenetically modulate gene expression in multiple cell types in the body. Created with BioRender.com. 

Figure 4. Histone lysine crotonylation, an evolutionarily conserved post-translational epigenetic modification, involves the reversible covalent 
attachment of a crotonyl group to the ε-amino group of the lysine side chain, and histone lysine decrotonylation involves the removal of the crotonyl 
gr oup. Se v er al histone acetyltr ansfer ases also have histone crotonyltransferase activity, and several histone deacetylases have histone decrotonylation 
activities as well. Based on information from references (Madsen and Olsen 2012 , Bao et al . 2014 , Sabari et al . 2015 , Liu et al . 2017 , Wei et al . 2017 , Xu et 
al . 2017 , Fellows et al . 2018 , Kollenstart et al . 2019 ). Created with BioRender.com. 
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ng the view that butyrate generated from fiber, under the influ-
nce of the micr obiota, pr ovides carbon sources for histone acety-
ation (Lund et al . 2022 ). Propionate and butyrate also activate the
300 acetyltr ansfer ase, whic h r ecentl y emer ged as a pr e viousl y
nknown mechanism (Thomas and Denu 2021 ). 

Butyrate, the most studied SCFA (Vinolo et al . 2011 ), is the most
otent, and acetate is the least potent HDAC inhibitor (Vinolo et
l. 2011 ). The ability of SCFAs to inhibit HDAC activity was shown
n the gut epithelium (Li et al . 2017 , Han et al. 2018 , Mirzaei et al.
021 ), the associated immune cells (Chang et al. 2014 , Kim et al .
016 , Schulthess et al. 2019 , Sanchez et al. 2020 , Kibbie et al. 2021 ,
e y et al. 2023 ), sk eletal (Gao et al. 2009 ) and vascular smooth mus-
le cells (Mathew et al. 2010 , Mathew et al. 2019 , Zhong et al. 2022 ),
ndothelial cells (Li et al. 2018 ), and car diomy oc ytes (Zhang et al.
019 , Umei et al . 2020 ), and was documented at se v er al sites in the
ody, including the central nervous system (Ziemka-Nalecz et al.
017 , Red d y et al . 2018 , J aw orska et al. 2019 , Silva et al. 2020 ), the
idneys (Liu et al. 2021 ), and the lungs (Folkerts et al. 2020 , Karoor
t al. 2021 , Yip et al . 2021 ). In addition to being an HDAC inhibitor,
utyrate was linked to DNA methylation changes in eukaryotic
ells (de Haan et al . 1986 , Wippermann et al . 2017 , Wang et al. 2022 ,
ie et al. 2022 ) and was shown to signal thr ough micr oRNAs. For
xample, butyr ate decr eased the expr ession of se v er al micr oRNA
lusters in human colon cancer cells (Hu et al . 2011 , Hu et al. 2015 ),
nd in mouse and human B cells, butyrate and propionate up-
 egulated micr oRNAs that tar geted the 3’-untr anslated r egion of
icda/AICDA and Pr dm1/PRDM1 mRN As and dose-dependently

nhibited their translation as a result of their HDAC inhibitory ac-
ivity (Sanchez et al. 2020 ). 

 he b utyr a te par adox 

he butyric acid that is generated in the colon by microbial fer-
entation establishes two concentr ation gr adients (Donohoe et al.

012 , v an Deur en et al. 2022 , v an Deur en et al . 2022 ). A pr oximal-
o-distal concentration gradient occurs because most butyrate
s produced in the proximal colon, and the butyrate that is not
sed by colonocytes for their metabolic r equir ements tr av els dis-
ally as a result of peristaltic movements (Donohoe et al . 2012 ,
iu et al . 2018 ). A second gr adient is gener ated along the lumen-
o-crypt axis (Fig. 2 B), with larger butyrate concentrations in the
olonic lumen and lo w er concentrations at the base of the crypts
f Lieberkühn (Bultman 2016 ). Butyrate concentrations are about
 mM in the colonic lumen of mice (Louis and Flint 2007 , Kaiko
t al. 2016 , Vemula and Jala 2016 , Linder and Mostoslavsky 2017 )
nd 10–70 mM in the colonic lumen of humans (Cummings et al .
987 , Vemula and Jala 2016 , Ota and Sakuraba 2022 ), but were es-
imated to be 50–800 μM in the mouse colonic crypts (Donohoe et
l . 2012 ). 

The effects of butyrate on the colonic epithelium are com-
lex and depend on its concentration and on the state of cellular
iffer entiation. While butyr ate pr omotes the gr owth of healthy
olonocytes, or decreases their proliferation, depending on its
oncentration (Lupton 2004 , Comalada et al . 2006 , Canani et al .
011 , Donohoe et al . 2012 , Li et al . 2018 , Hajjar et al . 2021 ), it
electiv el y inhibits undiffer entiated cells, suc h as cancer cells
Barnard and Warwic k 1993 , Arc her et al . 1998 , Gonçalves and Mar-
el 2013 ) and stem cells (Kaiko et al. 2016 , Singh et al . 2016 ). In
 arious studies, butyr ate inhibited the pr olifer ation of color ec-
al cancer cells and cell lines in a dose- and time-dependent

anner, caused cell cycle arrest mostly in the G 1 phase, in-
r eased differ entiation, and induced a poptosis (Siavoshian et al .
997 , Orchel et al . 2005 , Hong et al . 2015 , Ryu et al . 2018 , Chen
t al. 2019 , Klepinina et al . 2021 , Salvi and Cowles 2021 , Xi et al .
021 ). This poorly understood duality, which has become known
s the butyr ate par adox (Donohoe et al . 2012 , Gasaly et al . 2021 ,
alvi and Cowles 2021 ), is explained by the fact that healthy
olonocytes primaril y br eak down butyr ate by β-oxidation and
se it as a source of ener gy, but undiffer entiated colonocytes,
ue to the Warburg effect, preferentially use glucose over bu-
yrate for their energetic needs and, as a result, butyrate accumu-
ates and epigenetically induces gene expression changes (Dono-
oe et al. 2012 , Han et al . 2018 , Jung et al . 2021 , Salvi and Cowles
021 ). 

In a study that unveiled fundamental differences in energy
etabolism between healthy and malignant colonocytes, Dono-

oe et al . proposed a model to explain the ability of the lumen-
o-crypt butyrate gradient to shape gene expression in the colon
pithelium in a dose-dependent and cell type-specific manner. At
he low concentrations of butyrate ( ∼0.5 mM in mice) that ex-
st near the base of the colonic crypts, most of the butyrate is

etabolized and contributes to histone acetylation by a mecha-
ism that involves the formation of acetyl-CoA and histone acetyl
r ansfer ases, and supports the pr olifer ation of mitoticall y activ e
olonocytes. Tr anscriptome pr ofiling r e v ealed that tar get genes
pregulated by this mechanism are enriched for functions related
o cell pr olifer ation. Healthy colonocytes pr efer entiall y use bu-
yrate as an energy source and metabolize it in the mitochondria
y β-oxidation. The higher butyrate concentrations ( ∼5 mM in
ice) that exist near the lumen exceed the concentration at which

utyrate can be efficiently metabolized, which is approximately 1–
 mM. As a r esult, butyr ate accum ulates in the nucleus of colono-
ytes, acts as an HDAC inhibitor, and decreases cellular prolif-
r ation. Tr anscriptome pr ofiling sho w ed that the targets of this
ec hanism ar e enric hed for a poptotic genes, supporting the abil-

ty of the higher butyr ate le v els to promote colonocyte apoptosis
nd exfoliation. In cancer ous colonocytes, whic h due to the War-
urg effect rely on glycolysis but metabolize relatively little bu-
yr ate, the HDAC inhibition mec hanism pr edominates and leads
o decreased cell proliferation and increased apoptosis (Donohoe
t al. 2012 ). 

In studies that sought to further interrogate the cellular and
olecular intricacies of the butyrate paradox, Kaiko et al. sho w ed

hat in zebr afish, whic h do not have colonic crypts (Chen et al .
012 , Flores et al. 2020 , Tavakoli et al . 2022 ) but their intestinal stem
ells are exposed to the intestinal lumen, and also lack intestinal
acteria that synthesize butyrate, a marked inhibition of intesti-
al pr olifer ation occurs when the m ucosa is exposed to butyr ate

Kaiko et al . 2016 ). This suggested that the placement of intestinal
tem cells and progenitor cells in colonic crypts (Fig. 2 B) protects
hem from the growth inhibitory effects of butyr ate, whic h could
therwise suppress their division. The metabolization of butyrate
nto acetyl-CoA in the neighboring colonocytes protects stem cells
n the crypts from the effects of butyr ate (Kaik o et al . 2016 ), a phe-
omenon that was r ele v antl y r eferr ed to as a metabolic sinkhole

Singh et al . 2016 ). Due to the ability to protect stem cells from
he anti-pr olifer ativ e effects of butyr ate (Salvi and Cowles 2021 ),
he colonic crypts emerge as their natural gatekeepers (Vemula and
ala 2016 ). In intestinal stem cells and pr ogenitor cells, butyr ate
ncreased H3K27 and H3K9 acetylation in a manner dependent,
t least in part, on the Forkhead box O3 (Foxo3) transcription fac-
or, which bound the promoters of Cdkn1a, Cdkn1c, and Gadd45b,
egative cell cycle regulators that are involved in cell cycle arrest,
uppressing cellular proliferation (Kaiko et al . 2016 ). In a human
olorectal cancer cell line, butyrate activated pyruvate kinase M2,
he pyruvate kinase isoform expressed in cancer cells and stem
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cells, and induced a metabolic phenotype that inhibited cellular 
pr olifer ation (Li et al . 2018 ). 

Relativ e butyr ate le v els wer e shown to increase about 4-fold 

in infants between 6 and 12 months of life (Nilsen et al . 2020 ).
Based on the fact that butyrate levels in the intestine increase as 
the number of stem cells and the intestinal crypt length increase 
early during postnatal life (Midtvedt and Midtvedt 1992 ), Gasaly 
et al . hypothesized that colonization with butyr ate-pr oducing in- 
testinal micr oor ganisms occurs later during infancy so that bu- 
tyrate would not interfere with stem cell function and epithelial 
remodeling during the early postnatal life (Gasaly et al . 2021 ). 

Epigenetic effects of SCFAs on cells of the 

immune system 

Accum ulating e vidence indicates that metabolites deriv ed fr om 

the gut microbiota, including SCFAs, modulate gene expression 

in cells of the innate and ada ptiv e imm une system, and some of 
these effects involve epigenetic mechanisms. In vitro , sodium bu- 
tyrate inhibited the proliferation of mouse malignant mast cells 
by inducing cell cycle arrest in G 1 , increased caspase 3-dependent 
a poptosis, and incr eased H3K9 acetylation at the IL-6 and TNF- α
pr omoters, decr easing cytokine pr oduction by acting as an HDAC 

inhibitor (Zhang et al . 2016 ). Butyr ate and pr opionate bloc ked the 
formation of dendritic cells from bone marrow stem cells, and 

this was dependent on their HDAC inhibitory activity (Singh et 
al . 2010 ). Propionate and butyrate decreased the production of 
TNF- α, CINC-2 αβ (cytokine-induced neutrophil chemoattractant- 
2) and nitric oxide (NO) by lipopol ysacc haride-stim ulated neu- 
trophils and they also inhibited HDAC and the activation of NF- 
κB, and in a rat model, the administration of tributyrin, a pro- 
drug of butyr ate, decr eased the migr ation of neutr ophils to the 
peritoneum after the intr a peritoneal administr ation of gl ycogen 

(Vinolo et al . 2011 ). 
Butyr ate incr eased the antimicr obial activity of monocytes 

that were differentiating into macrophages against several Gram- 
negativ e and Gr am-positiv e pathogens through a mechanism that 
involved HDAC3 inhibition. Macrophages differentiated in the 
pr esence of butyr ate sho w ed a significant decrease in H3K27 tri- 
methylation, which is associated with c hr omatin r epr ession, and 

an increase in H3K27 acetylation, which is associated with more 
open c hr omatin. These effects wer e r ele v ant in vivo , as sho wn b y
the higher antimicrobial activity of colonic macrophages, and a 
lo w er dissemination of pathogens from the large intestine to pe- 
ripher al or gans in mice who r eceiv ed butyr ate in the drinking wa- 
ter, as compared to control animals (Schulthess et al . 2019 ). 

In vitro , butyrate decreased the production of proinflammatory 
molecules such as NO, IL-6, and IL-12 in bone marrow-derived 

macr opha ges and in macr opha ges fr om the lamina pr opria of 
the colon, and sho w ed similar effects on colon lamina propria 
macr opha ges when or all y administer ed to mice, and these ef- 
fects occurred through the inhibition of HDACs (Chang et al. 2014 ).
Butyr ate pr omoted the pr oduction of the anti-inflammatory cy- 
tokine IL-22 in vitro in CD4 + T cells and innate lymphoid cells,
and in vivo in mice who r eceiv ed it or all y in drinking w ater, b y 
G-pr otein r eceptor 41 (GPR41)-mediated signaling and HDAC in- 
hibition. This occurred by its ability to increase the binding of 
hypoxia-inducible factor 1 α (HIF1 α) to the hypoxia response ele- 
ment (HRE) of the Il22 promoter through histone modification. As 
part of this effect, butyrate increased H3K9 acetylation and sup- 
pressed H3K9 trimethylation at the HRE site of the Il22 promoter 
(Yang et al . 2020 ). In another study, butyrate modulated the func- 
ion of Th17 lymphocytes depending on their state of differentia-
ion: in naïve CD4 + T cells undergoing differentiation to Th17 cells,
t downregulated the ROR γ t transcription factor and decreased IL-
7 production, but in already differentiated Th17 cells it induced
OR γ t expression and IL-17 secretion, an effect that was medi-
ted by histone H4 acetylation near the ROR γ T proximal promoter
Sałkowska et al. 2017 ). Butyrate, and to a lesser extent acetate and
r opionate, decr eased the human gut lamina propria CD4 + T cell
ctivation and proliferation in vitro by increasing H3K9 acetyla- 
ion and lo w er ed the pr oduction of inflammatory cytokines suc h
s IL-17 and IFN γ (Kibbie et al . 2021 ). Butyrate increased the ex-
r ession of Tr eg-associated FoxP3 in a concentr ation-dependent
anner and enhanced the differentiation of T cells into regula-

ory T (Treg) cells over inflammatory T helper (Th) cells, including
h17 cells (McBride et al . 2022 ). Mice that were fed butyrylated
igh-amylose maize starc h, whic h w as formed b y the treatment
f starch with butyric anhydride, showed an increased differentia- 
ion of Treg cells from the colon lamina propria and in the number
f IL-10 pr oducing Tr eg cells as compared to animals fed a con-
rol diet. At least one of the mechanisms explaining this effect
nvolved the epigenetic upregulation of the F oxp3 gene , as shown
y an increased histone H3 acetylation in the promoter and con-
erved noncoding sequences of the gene (Furusawa et al. 2013 ). 

ntestinal SCFAs epigenetically change gene 

xpression at extraintestinal sites 

nimal and human studies implicated gut dysbiosis in the de v el-
pment of neur opsyc hiatric conditions (Ko w alski and Mulak 2019 ,
i et al. 2021 , Romano et al. 2021 , Chen et al. 2022 ), and manip-
lating the gut micr obiota decr eased neur oinflammation and/or

mpr ov ed certain cognitive or pathological features (Sampson et
l. 2016 , Bonfili et al. 2021 , Qian et al. 2022 , Wang et al. 2022 ), im-
licating the gut microbiota in the regulation of the gut-brain axis.
s part of this connection, microbial metabolites such as SCFAs
av e r eceiv ed incr easing attention (Silv a et al. 2020 , Begum et al.
022 , O’Riordan et al. 2022 ). 

In 1973, Oldendorf reported that 14 C-SCFAs injected in the 
arotid artery of rats cross the blood-brain barrier (BBB), and the
 elativ e order of crossing was butyr ate (highest), pr opionate, and
cetate (Oldendorf 1973 ). This finding, and the bioactive proper-
ies of SCFAs in the br ain, wer e subsequentl y confirmed by other
tudies, and while initially it was believed that SCFA levels are
 uc h lo w er in the brain than in the plasma, the br ain le v els

f butyrate and propionate are higher than originally thought 
Wishart et al. 2018 , Dalile et al . 2019 , Silva et al . 2020 , Wen-
el et al . 2020 , Colombo et al . 2021 , Fillier et al. 2022 , Fock and
 arnov a 2023 ). SCFAs emerge as a potential link between the gut
icrobiota and the pathology of several neurodegenerative dis- 

ases. In human neur oblastoma-deriv ed and r at mesencephalon-
erived cell lines, sodium butyrate partially prevented the apop- 
otic cell death caused by the mitochondrial toxin 1-methyl-4- 
henylp yridinium, and this w as accompanied b y a significant

ncrease in histone H3 acetylation (Kidd and Schneider 2010 ).
n another study, sodium butyrate increased brain-derived neu- 
 otr ophic factor (BDNF) and glial cell line-derived neurotrophic
actor (GDNF) transcription in primary cortical astrocyte cultures,
long with an increase in histone H3 acetylation at the GDNF pro-
oter (Wu et al . 2008 ). Butyrate inhibited the a ggr egation of β-

myloid 1–40 and 1–42 monomers into fibrils in vitro by interfer-
ng with pr otein-pr otein inter actions (Ho et al . 2018 ), and sho w ed
enefits in se v er al mouse models of Alzheimer’s disease (Cao et
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l . 2018 ). In a mouse model of early Alzheimer’s disease, the oral
dministration of sodium butyrate decreased β-amyloid levels
nd impr ov ed cognitiv e memory (Fernando et al. 2020 ), and in a
resenilin-1 and presenilin-2 conditional double knockout mouse
odel it significantly increased neurogenesis in the subgranular

one of the dentate gyrus, r estor ed contextual memory, and re-
ersed the dysregulated histone acetylation in the hippocampus
nd the cortex (Cao et al . 2018 ). A cross-sectional study of elderly
ndividuals found that brain amyloid deposition and endothe-
ial dysfunction were positiv el y corr elated with blood acetate lev-
ls and negativ el y corr elated with butyr ate le v els (Marizzoni et
l . 2020 ). In a mouse model of Parkinson’s disease, butyrate pre-
ented the DNA damage caused by α-synuclein, possibly by upreg-
lating DNA repair genes, and in cell lines it rescued the decrease

n histone H3 acetylation that was mediated by α-synuclein (P aiv a
t al. 2017 ). In a rat model of 6-hydroxydopamine-inducecd ex-
erimental P arkinson’s disease, intr a peritoneal sodium butyr ate
ttenuated the motor deficits, increased dopamine levels in the
triatum, and lo w ered o xidati v e str ess, along with incr easing stri-
tal global histone H3 acetylation le v els (Sharma et al. 2015 ). 

The micr obiota additionall y r egulates the gut-br ain axis
hr ough se v er al metabolites that pr eserv e the integrity of the BBB,
ncluding SCFAs, by mechanisms that include epigenetic changes
Fock and Parnova 2023 ). Germ-free mice have an increased BBB
ermeability starting with the intrauterine life and continuing

nto adulthood, as compared to pathogen-free mice harboring a
ormal gut micr obiota, significantl y lo w er le v els of occludin and
laudin-5 in the tight junctions from the frontal cortex, striatum,
nd hippocampus, and fewer intact tight junctions in the stria-
um. The colonization of germ-free mice with pathogen-free gut

icr obiota, or the administr ation of bacteria making SCFAs, such
s Clostridium tyrobutyricum , which produces mainly butyrate, or
acteroides thetaiotaomicron , which produces mostly acetate and
r opionate, decr eased the permeability of the BBB, an effect that
as also ac hie v ed by the administr ation of sodium butyrate by
r al gav a ge. Sodium butyr ate incr eased the expr ession of occludin
n the frontal cortex and the hippocampus, and monocoloniza-
ion of germ-free mice with C. tyrobutyricum , or the administration
f sodium butyr ate, incr eased histone H4 acetylation in extr acts
rom the frontal cortex (Braniste et al. 2014 ). 

In vitro , SCFAs downregulated the production of pro-
nflammatory molecules by downregulating nuclear factor- κB
NF- κB) (Liu et al . 2012 ), and in a rat model of transient focal
er ebr al isc hemia, v alpr oic acid, an HDAC inhibitor, reduced the
egradation of tight junction proteins and the nuclear translo-
ation of NF- κB, effects that were mimicked by sodium butyrate
Wang et al . 2011 ). In a rat model of middle cer ebr al artery occlu-
ion, the administration of a selective HDAC3 inhibitor early after
he occlusion decreased cerebral edema and BBB leakage, and
hese effects were at least in part mediated by upregulating tight
unction proteins and decreasing NF-kB-mediated inflammation
Lu et al . 2023 ). In a mouse model of type 2 diabetes, which sho w ed
ncreased hippocampal and cortical Hdac3 levels and activity, in-
ibition of Hdac3 significantly upregulated several tight junction
nd adherens junction proteins and improved BBB permeability.
he miR-200a/K ea p1/Nrf2 was r equir ed for this effect, pointing
o w ar ds the possibility that the epigenetic modification of Nrf2
ould explain the protection that SCFAs confer to the integrity of
he BBB (Zhao et al . 2019 ). 

Se v er al studies support the benefits of butyrate in ischemic
troke . T he first study to show that sodium butyrate causes epige-
eticall y mediated selectiv e gene expr ession c hanges in micr oglia

n ischemic stroke was a mouse model of cer ebr al artery occlu-
ion, which found that intraperitoneally administered sodium bu-
yr ate downr egulated pr o-inflammatory mediators, suc h as TNF-

and ST A T1, and upregulated the anti-inflammatory mediator
L-10, due to its ability to modulate H3K9 acetylation le v els (P at-
ala et al. 2017 ). In a rat model of ischemic stroke, sodium bu-
yr ate r educed the size of the injury and suppr essed neur ologi-
al deficits, likely by several mechanisms, including suppression
f inflammation, and the benefits a ppear ed to be explained by
he HDAC inhibitor-induced apoptosis of microglia and mono-
ytes/macr opha ges, whic h decr eased neur oinflammation (Kim et
l. 2007 ). In another study that investigated a rat model of perma-
ent br ain isc hemia, the subcutaneous injection of butyr ate stim-
lated neurogenesis in the subventricular zone and hippocampal
entate gyrus, two neur ogenic r egions of the brain, and this was
orrelated with increased acetylated histone H3 levels in these
 egions, and upr egulated the le v els of BDNF, phospho-CREB, and
FAP in se v er al r egions of the br ain (Kim et al . 2009 ). 
SCFAs can induce epigenetic changes in v arious imm une cells

r om m ultiple body compartments (Yip et al. 2021 ). Germ-free
ice exhibited structural and functional defects in microglia, and

ome of the genes that were dysregulated, such as Hdac1 , Sirt2 ,
nd Mll3 , encode w ell-kno wn epigenetic regulators . T hese phe-
otypes wer e mimic ked b y the deficienc y of the FFAR2 receptor

or SCFAs and were reversed by SCFA supplementation (Erny et al .
015 ). Mice fed with inulin had increased levels of all three SCFAs
n the cecum and increased levels of butyric and propionic acid in
he hepatic portal vein, and in ex vivo experiments, their microglia
ecr eted significantl y less tumor necr osis factor α (TNF- α) in the
resence of lipopolysaccharide as compared to mice fed a control
iet. This suggested that part of the SCFAs generated in the large

ntestine may regulate microglial activation. In vitro , butyrate and
cetate inhibited the inflammatory response of microglia stimu-
ated with lipopol ysacc haride, most likel y thr ough an epigenetic

echanism that involved inhibition of HDAC and NF- κB activity
Caetano-Silva et al . 2023 ). 

Propionate and butyrate affected the adhesion of human
osinophils to endothelial cells in vitro , impaired their viability,
nd activated apoptosis, and butyrate impaired their ability to
igrate, effects that were accompanied by increased histone H3

cetylation (Theiler et al . 2019 ).When administered in the drinking
ater or intr anasall y to mice, butyrate regulated the function of

ype 2 innate lymphoid cells in the lungs and attenuated airway
yperreactivity and inflammation, effects that occurred through
DAC inhibition and were accompanied by increased histone H3

ysine 9 and 14 acetylation (Thio et al. 2018 ). A high fiber diet or ac-
tate administered to mice protected against allergic airway dis-
ase in a manner that r equir ed HDAC9 inhibition and was depen-
ent on Treg cells, and maternal high fiber diet or acetate also con-
err ed pr otection to the offspring when allergic airway disease was
nduced. These effects were mediated in utero and were not depen-
ent on the transfer of microbiota to the fetus. In both adult mice
nd the offspring, there was an increased acetylation of histone
4 and histone H3K9 at the Foxp3 pr omoter, an incr eased Foxp3
xpression in the lungs, and an increase in the number and func-
ion of Treg cells in the lungs (Thorburn et al . 2015 ). 

SCFAs epigeneticall y r egulate m ultiple gut-or gan axes and v ar-
ous cell types in the body (Fig. 3 ). A study on mice found that the
ut microbiota regulates global histone acetylation and methyla-
ion in se v er al host tissues, including colon, liver, and white adi-
ose tissue, in a manner that is shaped by diet, and the oral ad-
inistration of SCFAs to germ-free animals recapitulated some of

he c hr omatin modification states associated with gut micr obiota
olonization (Kr autkr amer et al . 2016 ). In mouse adipocytes, bu-
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tyr ate and pr opionate stim ulated lipol ysis in vitro , an effect that 
w as mimicked b y the HDAC inhibitor trichostatin A (Rumberger 
et al . 2014 ), and in rats with type 2 diabetes mellitus fed a high- 
fat diet and administered streptozotocin, intraperitoneal sodium 

butyr ate significantl y r educed plasma glucose, insulin r esistance,
and liver steatosis, effects that occurred through HDAC inhibition 

and were accompanied by histone H3 hyperacetylation in liver 
tissue (Khan and Jena 2016 ). In another study, the oral adminis- 
tration of sodium butyrate to mice fed a high fat diet alleviated 

obesity, impr ov ed glucose toler ance, r estor ed plasma insulin and 

leptin le v els, and significantl y r educed lipid deposition in skeletal 
muscle . T hese effects appeared to mainly occur through HDAC 

inhibition, and H3K9 acetylation was increased at the promot- 
ers of Adipor1 and Adipor2 , which encode adiponectin receptors,
and Ucp2 (uncoupling protein 2) and Ucp3 (uncoupling protein 

3), whic h ar e involv ed in mitoc hondrial thermogenesis and β- 
oxidation (Hong et al . 2016 ). 

In rat neonatal car diomy oc ytes, butyrate increased histone 
H3 acetylation as a result of HDAC inhibition and suppressed 

endothelin-1-induced car diomy oc yte h ypertroph y (Umei et al .
2020 ). Sodium butyrate attenuated angiotensin II-induced cardiac 
h ypertroph y in rats and, in vitro , this w as sho wn to r equir e the in-
hibition of the COX2/PGE2 pathway in an HDAC5- and HDAC6- 
dependent manner (Zhang et al . 2019 ). Butyrate lo w ered LDL 
c holester ol le v els in HepG2 cells through HDAC inhibition (Bridge- 
man et al. 2022 ), a significant finding considering that the liver can 

extr act butyr ate that is absorbed fr om the lar ge intestine (Guil- 
loteau et al . 2010 , Blaak et al . 2020 ). In an observational study of 
92 consecutive patients, the levels of propionate and butyrate in 

blood and fecal samples negativ el y corr elated with the v ascular 
calcification score of the aorta, and sodium propionate adminis- 
ter ed or all y or r ectall y to r ats amelior ated calcium deposition in 

the ascending aorta and decreased plasma levels of inflamma- 
tory cytokines (Yan et al . 2022 ). This is a r ele v ant finding, consid- 
ering that butyrate conferred atheroprotective functions in vitro 
by inhibiting the pr olifer ation of v ascular smooth m uscle cells as 
a result of epigenetic changes in histone and non-histone pro- 
teins and through additional mechanisms (Mathew et al . 2010 ,
Cantoni et al . 2013 , Aguilar et al . 2014 ). In a genome-wide asso- 
ciation meta-anal ysis, se v er al single nucleotide pol ymor phisms 
at the HD A C9 locus were associated with the ather oscler otic cal- 
cification of the abdominal aorta, an association that is intrigu- 
ing, considering that mice deficient in Hdac9 exhibited reduced 

aortic calcification and impr ov ed surviv al, and in human aortic 
smooth muscle cells, HD A C9 ov er expr ession incr eased mRNA le v- 
els of RUNX2 , a master regulator of the osteogenic phenotype,
and led to calcification and reduced contractility (Malhotra et al 
. 2019 ). 

In the first study to show that dietary modification of the 
gut microbiota can prevent experimental acute kidney injury, 
the administration of a high fiber diet to mice with folic acid 

nephropathy, or supplementation with acetate , butyrate , or pro- 
pionate in the drinking water, decreased the expression of sev- 
er al pr o-inflammatory cytokines and c hemokines and pr otected 

against the development of acute and chronic kidney injury. In 

this study, the high fiber diet or the administration of acetate 
or propionate in the drinking water significantly downregulated 

the kidney tissue le v els of HDAC4, which has immunomodula- 
tory functions, and HDAC10, which contributes to DNA repair, au- 
topha gy, and cancer pr ogr ession, as compar ed to contr ols (Liu et al.
2021 ). 
r otonyla tion and HDAC-dependent gene 

xpr ession r egulation 

esides acetylation, cr oton ylation has emer ged as a ne w epige-
etic change involved in the communication between the gut mi-
robiota and the host (Tan et al . 2011 , Fellows and V arga-W eisz
020 ). Cr oton ylation is an e volutionaril y conserv ed histone post-
r anslational modification, pr esent fr om yeast to humans, whic h
nvolves the reversible covalent attachment of a crotonyl group to
he ε-amino group of the lysine side chain (Liu et al . 2018 , Wang et
l. 2021 ), and was r ecentl y also described on serine r esidues (Liao
t al. 2020 ). Cr oton ylation was described on histone H1 and all the
ore histone proteins (Tan et al. 2011 ) as well as on non-histone
roteins (Xu et al . 2017 ), and is involved in many cellular func-
ions (Wei et al . 2017 ). X-r ay crystallogr a phy sho w ed that cr oton y-
ation on histone H3 weakens the hydrogen bonds between the hi-
tones and DNA and decreases their interaction, opening the chro-
atin structure (Suzuki et al. 2016 ). HATs have histone crotonyl-

r ansfer ase (HCT) activities, and HD AC1, HD AC2, and HD AC3 are
he major histone decr oton ylases (Sabari et al. 2015 , Wei et al.
017 , Fellows et al. 2018 ), but no cr oton yl-specific writers hav e yet
een identified (Jiang et al . 2021 ) (Fig. 4 ). In cell-free assa ys , his-
one cr oton ylation catal yzed by the HAT p300 stim ulated gene
ranscription to a greater degree than the one catalyzed by the
300 histone acetylation (Sabari et al. 2015 ). A study of histone
r oton ylation in se v er al mouse tissues found that the colon and
he brain had the highest le v els of H3K18 cr oton ylation, and while
e v er al l ysine r esidues wer e cr oton ylated in the small intestine,
he H3K18 cr oton ylation mark was the most abundant one. In
he colon epithelium, H3K18 cr oton ylation was associated with
ranscription start sites. Antibiotic treatment of the mice led to
 decrease in the SCFAs in the colon and serum, and a decrease
n histone H3K18 and H4K4 cr oton ylation in the colon. Butyrate
r omoted histone cr oton ylation in human colon carcinoma cells
nd in gut organoids (Fellows et al . 2018 ). Histone crotonylation is
inked to cell cycle pr ogr ession (Fellows et al . 2018 ), it is r equir ed
or various processes, including spermatogenesis (Liu et al. 2017 ),
he r ene w al of mouse embry onic stem cells (Wei et al . 2017 ), and
he regulation of telomeres (Fu et al . 2018 ), and was shown to be
ysr egulated in se v er al cancer types (Wan et al. 2019 ). In a rat
odel of neonatal hypoxic-ischemic brain damage, sodium bu- 

yr ate decr eased the dama ge in the cer ebr al cortex and the hip-
ocampus , ameliorated beha vioral function, and improved H3K9 
r oton ylation at se v er al neur otr ophic genes wher e it w as do wn-
egulated during the hypoxic-ischemic encephalopathy, such as 
dnf , Manf , Ogdh, and Cdnf (He et al . 2022 ). 

onclusions and Perspectives 

uring the past se v er al decades, an increasing number of studies
av e underscor ed the importance of the gut micr obiota in sha ping
ost physiology, and connected intestinal dysbiosis with various 
iseases that affect organs within and beyond the gastrointestinal 
r act. Consequentl y, significant attention was dedicated to iden-
ifying the microbial metabolites that orc hestr ate these connec-
ions. SCFAs ar e emer ging as k e y molecules that explain the abil-
ty of the gut microbiota to shape the function of multiple types
f eukaryotic cells fr om differ ent or gans and body sites. In addi-
ion to their effects on the cells lining the gastrointestinal tract,
here their effects depend on their concentration and the cel-

ular state of differentiation, SCFAs modulate gene expression in 
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252–74.
ells of the innate and ada ptiv e imm une system, adipocytes, and
keletal, cardiac and vascular smooth muscle cells, and shape the
unction of organs that include the brain, the lungs, and the kid-
eys . T he mechanisms in volved in these effects include epigenetic
hanges, and the ability of SCFAs to increase histone acetylation,
nd to act as histone deacetylase inhibitors, is emerging as an im-
ortant topic that will support efforts to better understand physi-
logical pr ocesses, interr ogate disease pathogenesis, and de v elop
ovel biomarkers and therapeutic approaches. 
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