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Abstract

Background: Various components of the immune system play a critical role in the prognosis and treatment
response in ovarian cancer (OC). Immunotherapy has been recognized as a hallmark of cancer but the effect is
contradictional. Reliable immune gene-based prognostic biomarkers or regulatory factors are necessary to be
systematically explored to develop an individualized prediction signature.

Methods: This study systematically explored the gene expression profiles in patients with ovarian cancer from RNA-
seq data set for The Cancer Genome Atlas (TCGA). Differentially expressed immune genes and transcription factors
(TFs) were identified using the collected immune genes from ImmPort dataset and TFs from Cistoma database.
Survival associated immune genes and TFs were identified in terms of overall survival. The prognostic signature was
developed based on survival associated immune genes with LASSO (Least absolute shrinkage and selection
operator) Cox regression analysis. Further, we performed network analysis to uncover the potential regulators of
immune-related genes with the help of computational biology.

Results: The prognostic signature, a weighted combination of the 21 immune-related genes, performed
moderately in survival prediction with AUC was 0.746, 0.735, and 0.749 for 1, 3, and 5 year overall survival,
respectively. Network analysis uncovered the regulatory role of TFs in immune genes. Intriguingly, the prognostic
signature reflected the immune cells landscape and infiltration of some immune cell subtypes.

Conclusions: We first constructed a signature with 21 immune genes of clinical significance, which showed
promising predictive value in the surveillance, and prognosis of OC patients.
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therapy
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Introduction

Ovarian cancer (OC) causes the most deaths among
gynecological cancers, with more than 22,000 new
cases and 14,000 deaths each year in the United States
[1]. It is challenging that the incidence, the recurrence
rate and chemotherapy-resistant cases is greatly in-
creased despite the development of aggressive frontline
treatment.

Evidence has shown that OC is immunogenic [2]. Im-
munotherapy has shown to be correlated with improved
clinical outcome. Hamanishi et al. reported that the
overall response rate for nivolumab treatment was 15%
and the disease control rate is 45% [3]. 2015 ASCO an-
nual meeting presented that pembrolizumab (anti-PD-1)
and avelumab (anti-PD-L1) can be used as the immune
checkpoint targets in clinical practice. Clinical trials,
NCT02718417 (Javelin Ovarian 100), ENGOT-0v29-
GCIG (ATALANTE), NCT02580058 (Javelin Ovarian
200), and NRG-GYO009 as indicated, are ongoing or
planned for the testing of potential efficacy of immunother-
apy. However, ovarian cancer is featured with high clonal
heterogeneity and specific dissemination patterns. Single
chemotherapy or immunotherapy was less effictive, while
combinatorial therapy may increase the risk of adverse
effects [4]. New biomarkers or the regulators of immune
system should be developed. Recent genome-wide studies
addressed the impact of diverse gene regulatory mecha-
nisms in immune homeostasis. Emerging evidence showed
that transcriptional networks drive functional changes dur-
ing immune activation and subsequent immune resolution.
Thus, finding the neo-antigens or effective biomarkers, and
identification of transcriptional regulators in the immune
system and the regulatory networks between immune genes
and transcriptional factors in the microenvironment is crit-
ical to improve the clinical outcome. The current study
aimed to identify the immune genes correlated with the
clinical prognosis in ovarian patients, and to develop and
validate an individualized prognostic signature based on
immune-related genes. Bioinformatics analysis was con-
ducted based on the combined transcriptomes and immune
gene profiling data from 376 ovarian cancer patients in
TCGA and 88 normal ovarian tissues in GTEx (Genotype-
Tissue Expression) dataset. A prognostic signature based
on 21 immune genes was identified, and it is closely related
with aggressive clinical outcomes of OC. Moreover,
network analysis showed the close association between
transcription factors and immune genes, thus describing
the regulatory network of the immune landscape in the
microenvironment.

Materials and methods

Data collection and preprocessing

The work flow is shown in Fig. S1. RNA-Seq data as well
as clinical information was downloaded from TCGA
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dataset including 379 serous ovarian cancer cases, and
three overlapping samples (TCGA.13.1489.02A, TCGA.
29.2414.02A, TCGA.61.2008.02A) were removed. RNA-
Seq data and clinical information for 88 normal ovarian
samples were obtained from GTEx in xena (// xenab-
rowser.net/). GEO (Gene Expression Omnibus) datasets,
with accession number GSE26712 and GSE63885 based
on GPL96 [HG-U133A] Affymetrix Human Genome
U133A Array were downloaded for validation datasets.
Clinical and pathologic characteristics of cases included
was summarized in Appendix Table 1. Gene expression
level was defined as the average value for multiple
probes. All statistics were under R condition, and Nor-
malizeBetweenArrays was used to normalize expression
distribution.

Differentially expressed immune gene (DEIGs)

1811 immune related genes were downloaded from
ImmPort database (https://immport.niaid.nih.gov) in-
cluding genes related to cytokines, T-cell signaling path-
way, B-cell signaling pathway, NK (natural killer) cells
signaling pathway etc. RNA-Seq data in TCGA and
GTEx were used to identify the DEIGs between serous
ovarian cancers and normal cases. The P-value thresh-
olds were established by Bonferroni-correction method,
which set the significance level to be 0.05 divided by
number of tests. Consequently, DEIGs were selected by
p-value <2.76x107° (0.05/1811) and absolute fold
change >2. The R package “Limma” was used to find
out differentially expressed immune genes.

Immune-gene based prognostic signature construction

First, survival-associated immune genes (SAIGs) were
selected using the univariate Cox regression analysis in
terms of overall survival (OS) of patients . LASSO
(Least absolute shrinkage and selection operator) Cox
regression analysis, by constructing a penalty function,
was used to identify the predictive genes and construct
the multi-gene-based prognostic model. Based on the
expression level of each gene and the regression coeffi-
cient, we conducted the gene signature with the risk
score (RS) (RS = Zf:l/)’ilfxpi, Exp; represents the ex-
pression level of each gene involved in the model and
B: represents the corresponding regression coefficient).
Based on the median of RS, patients were divided into
high-risk and low-risk groups. The Kaplan-Meier (K-
M) survival analysis was used to compare the survival
outcome between groups, and the ROC (receiver oper-
ating characteristic) curve was performed to determine
the prediction value of this prognostic model with area
under curve (AUC). Additionally, multivariable Cox re-
gression analysis was used to define the independent
prediction value of risk score from other prognostic
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factors including age, grade, stage, and debulking status.
GSE26712 and GSE63885 datasets were used to validate
the prediction value of the prognostic model.

Transcription factors - immune genes regulatory network
318 transcription factors were obtained from Cistoma data-
base (http://cistrome.org/). Differentially expressed tran-
scription genes (DETGs) were identified with p < 1.57 x
10~ * (0.05/318, Bonferroni-correction method) and abso-
lute fold change > 2. We analyzed the correlation between
318 DETGs and 71 SAIGs, and constructed the regulatory
network with the following condition: P-value < 221 x 10™°
(0.05/(318*71), Bonferroni-correction method) and Pearson
correlation coefficient > 0.3. Cytoscape software was used to
visualize the network.

Correlation between immune genes and clinical features

To evaluate the correlation between immune genes and
clinical features including age, grade and stage, we com-
pared the risk score of patients with age<60 or age > 60,
stage I or stage II or stage III in high grade serous ovarian
cancer. Student’s t-test (for binary clinical variables) and
ruskal Wallis test (for multiple clinical variables) were used.

Correlation between immune genes and immune cells
CIBERSORT algorithm, namely gene expression deconvo-
lution Algorithm, was used to evaluate the relative abun-
dance of 22 kinds of immune cell with normalized gene
expression data. It outperforms previous deconvolution
methods with respect to noise, unknown mixture content,
and closely related cell types. The 22 cell types inferred by
CIBERSORT encompass T cells, B cells, natural killer cells,
macrophages, dendritic cells, and neutrophils, amongst
others. We uploaded TCGA RNA-Seq data to the CIBER-
SORT web portal (http://cibersort.stanford.edu/), and set
the default signature matrix as 1000 permutations. We se-
lect samples with CIBERSORT-P value <0.05 for further
analysis. Correlation analysis was conducted to estimate the
relationship between risk score and immune cells.

Functional annotation and analysis

To show the biological understanding of the SAIGs, en-
richment analysis was performed with DAVID (Database
for Annotation, Visualization and Integrated Discovery)
Bioinformatics Resources (version 6.8; https://david.
ncifcrf.gov/). The 71 survival associated immune genes
were uploaded and the biological processed of gene
ontology with P < 0.05 were examined.

Results

The prognostic signature is established with 21 immune-
based genes

A total of 376 ovarian cancer cases and 88 normal
ovarian tissues were included in the eanalysis. Among
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1811 immune related genes downloaded from the
ImmPort database, as shown in Fig. la-c, a total of
495 differentially expressed genes were identified with
p-value <276 x10"° and absolute fold change > 2,
containing 188 downregulated and 307 upregulated
genes (Table S1). 71 survival-associated immune
genes with p-value <0.05 by univariate COX analysis
were identified among 495 differentially expressed
genes in terms of overall survival (Fig. S2). We then
constructed an prognostic model consisting of 21 hub
genes among the top 40 survival-associated immune
genes by ranking p-value from low to high from this
set of genes by using LASSO cox regression (Fig. S3),
and the 21 hub genes included IL27RA, GAL, RBPI,
ANGPT4, EBI3, C5AR1, MSR1, HCK, SYK, CYBB,
PI3, CD86, FABP4, CX3CR1, ITGB2, PENK, PRLR,
RARG, ESM1, BCL10, and OBP2A. The risk score of
376 patients in TCGA dataset were defined with the
21 hub genes and the coefficient, as shown in Table
S2. On the basis of the median value of risk score,
we stratify patients into the high or the low immune
risk groups in terms of overall survival (OS). As ex-
pected, higher risk score was related with poorer
prognostic survival and clinical outcome (Fig. 2a &
b), and the proposed model could successfully separ-
ate OC samples into high and low OS patients (Fig.
2¢, P=2.92e-14). Moreover, the ROC curve analysis
addressed that the prognostic signature had good pre-
diction value for clinical outcome of ovarian cancer
patients, with the AUC 0.746, 0.715, and 0.749 for 1
year, 3year, and 5year overall survival, respectively
(Fig. 2d). Figure 2e showed the expression profiles
pattern of these 21 hub genes in the final model.

The prognostic signature is closely correlated with
clinicopathological factors

The clinicopathological factors-based stratification ana-
lyses showed that the risk score is positively related with
patients’ age and stage (Table S3). Comparing to the pa-
tients with age <60, elder patients had a higher risk score
indicating poor clinical outcome(P = 0.019, Fig. S4A). In
addition, the comparison of patients with stage II, III, IV
showed that patients with advanced stage had a higher
risk score (P = 0.048, FigS4B).

The prognostic signature is an independent prognostic
factor in OC patients

As indicated in published articles, elder age, advanced
stage, sub-optimal debulking status remained the poor
prognosis factors in ovarian cancer. Our result by univari-
ate Cox regression analysis showed the same association
between these factors and overall survival, as well as
higher risk score (Fig. 3a). In addition, the risk score
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Fig. 1 DEIGs between ovarian cancer and normal cases. a Heat map of the DEIGs. The above horizontal axis shows the information of samples including
normal cases (N =88) and ovarian cancer cases (N = 376), respectively. The left longitudinal axis shows the clustering results. The color change from red to
green represents the expression of immune genes changed from high to low. b Volcano Plot of the DEIGs. The red and blue points in the figure show the
DEIGs with statistical significant (p-value < 2.76 x 10~ and absolute fold change > 2). () DEIGs among 1811 immune related genes downloaded from the
ImmPort database, with p-value < 2.76 x 10-5 and absolute fold change > 2. DEIG, differential expression immune genes

remained as an independent prognostic factor after adjust-
ing for clinical factors such as age, debulking status, and
stage by applying the multivariate Cox regression analysis
(HR =1.483, 95%CI:1.355-1.622, p < 0.001, Fig. 3b).

The prognostic signature has great prediction value in
other two independent datasets

The gene profiling and clinical information of two inde-
pendent groups, GSE26712 and GSE63885 datasets, were
downloaded to further validate the prediction value of
the model. The corresponding risk score of each patients
were calculated with the constructed model above, and

the patients were divided into high-risk and low-risk
sub-groups by the medium of risk score. As expected,
Kaplan-Meier curves illustrated that risk score is corre-
lated with clinical prognosis, showing that patients in
high-risk subgroup was correlated with poor prognosis
when comparing with patients in low-risk group (Fig. 4a
& b, P=0.032 and P = 0.022, respectively).

Immune gene-based prognostic signature is related with
infiltration of specific immune cell subtypes

The immune landscape presented with immune genes is
mainly contributed by immune cells. To understand the
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Fig. 2 Prognostic signature Construction. a & b Patients with higher risk score in this model predicted poor prognostic survival and clinical
outcome. ¢ Kaplan-Meier curve of prognostic predictors for ovarian cancer. d ROC curves of prognostic predictors for ovarian cancer with 1 year,
3year, and 5 year overall survival. e The expression distribution of the 21 hub genes in the prognostic model. LASSO, Least absolute shrinkage
and selection operator; ROC, Receiver operating characteristic

correlation between immune gene signature and specific
immune cell infiltrates, we performed CIBERSORT algo-
rithm to determine the proportions of 22 immune cells
infiltrates. As indicated, high density of Macrophages MO
(Cor=-0.263, p =2.235e- 04, FigS5A), NK cells resting
(Cor=-0.155, p=0.032, FigS5B), and T cells follicular
helper (Cor =-0.163, p =0.024, FigS5C) infiltration was
negatively correlated with higher risk score, while

Macrophages M2(Cor = 0.262, p = 2.356e- 04, FigS5D), Neu-
trophils (Cor=0.176, p=0.014, FigS5E), and T cells
CD8(Cor =0.171, p=0.018, FigS5F) were positively corre-
lated with higher risk score.

Functional annotation of the immune gene-based signature
Enrichment analysis of the 71 survival associated immune
genes was performed and we identified the biological
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processed in gene ontology (Fig. S6). As indicated, the
inflammatory response is the most significant pathway in-
volved. Intriguily, most biological processed were corre-
lated with microenvironment including extracellular
region, cytokine activity, angiogenesis etc.

The prognostic signature is related with and regulated by
transcription factors

The immune response is strictly controlled and regu-
lated for the production of inflammatory cytokine. Tran-
scription factors showed critical role in regulating gene
expression, allowing immune response to occur in a

controlled effective manner [5]. Besides, transcription
factor can act as an immuno-metabolism regulator and
control immune cell metabolism, playing an important
role in the regulation of immune, malignant, and meta-
bolic diseases [6]. Hence, to identify the interaction net-
works between transcription factors and immune genes
is imperative in ovarian cancer. Firstly, 130 differentially
expressed TFs were identified between ovarian cancer
cases and normal tissues among 318 genes downloaded
from Cistoma database (http://cistrome.org/) (Table S4).
Regulatory network was built with 71 survival-associated
immune genes and 130 TFs. As demonstrated in Fig. 5, there
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Fig. 5 The correlation network analysis between survival-associated transcription factors and immune genes in serous ovarian cancer patients
constructed by Cytoscape. Survival-associated immune genes (circle) positively (red lines) or negatively (green lines) correlated with transcription
factors (triangle), which predicted good (green circle) or poor (red circle) clinical survival in serous ovarian cancer patients

is close correlation between immune genes and transcription
factors, showing that most of the survival-associated immune
genes in the network are positively correlated with transcrip-
tion factors. Specially, we identified four TFs, whose expres-
sion levels were significantly correlated with survival-
associated immune genes, including CIITA, BATF, VDR,
and CBX2. Furthermore, we searched the ENCODE dataset
(https://www.encodeprojectorg/) and GTRD databases
(http://gtrd.biouml.org), and downloaded the ChIP-seq data
of CIITA, BATEF, VDR, and CBX2 that reflects the binding
and regulatory effect directly. 28 immune related genes were
identified among the 46 genes that we have shown to be cor-
related with TFs (Table S5). Thus, we addressed the regula-
tory network directly or indirectly between TFs and immune
genes, which demonstrated the regulatory mechanism
among these immune-related genes.

Discussion

Immune related genes play a significant role in tumor
progression and immunotherapy. An integrative,
genome-wide profiling study to establish the immune
gene-based signature to predict the clinical prognosis is
urgently needed, and the molecular regulatory mecha-
nisms of immune related genes and immune-tumor
interation have not been identified. In the present study,

we conducted comprehensive analysis and developed a
prognostic signature based on 21 survival associated im-
mune genes with the TCGA dataset as the training set
and two independent GEO datasets as the validation set.
Our immune-gene based prognostic signature can strat-
ify clinical patients into high or low-risk subgroups with
different clinical outcomes. We further leveraged the
additional value of clinical and molecular features and
showed that the immune genes could provide the valu-
able clinical biomarkers and regulated by transcription
factors in serous ovarian cancer. The network analysis
showed that immune genes were closely related with
transcription factors, and this has been a critical regula-
tory mechanism for immune response.

Patients with ovarian cancer are at substantial risk
for recurrence and chemotherapy resistant. Immuno-
therapeutic approaches such as personalized antigen-
specific immunotherapy have been recognized as cura-
tive potential targets [7]. Currently, the immune-based
interventions have gained approval in many solid tu-
mors and hematologic malignancies. However, ovarian
cancer has the features of extensive malignant and
immunologic heterogeneity. New tumor antigens and
prediction signature are critically needed to select
cases that can benefit from the immune-based therapy.
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Previous studies demonstrated that next-generation
sequencing or large-scale sequencing analysis is now
available to identify the tumor neo-antigens for
personalizing cancer immunotherapies [8], but they
had the limitation of small sample size and inter-study
heterogeneity [9]. Bioinformatics systematic analysis
will enable a more in-depth exploration. In this study,
we combined gene expression profiling from TCGA
dataset, which had relative large samples with 376
cases, and GEO datasets. The 21 immune genes were
identified as reliable biomarkers of ovarian cancer.
Besides, exploration of immune gene patterns and
survival-associated immune genes with computational
biology that are specifically designed to perform ana-
lysis across different platforms can minimize the tech-
nical or samples bias, providing further and general
insights into biomarkers identification. As such, this
immune-gene based prognostic signature may serve as
a generalized, individualized estimate of survival of
ovarian cancer.

The responses of immunotherapy in ovarian cancer
are variable with high cost for treatment. Prognostic or
predictive biomarkers related with tumor immune
microenvironment are urgently needed. Significant
research on immune relevant prognostic signature
proposed by Wen Jiang et al. aimed to find biomarkers
predicting prognoses and immunotherapeutic re-
sponses in bladder cancer. Wen’s article only used the
samples of patient to identify the differentially
expressed genes associated with immune infiltration,
while we used the cases including ovarian cancer pa-
tients and normal ones to identify the differentially
expressed genes between cancer and normal cases.
Thus, Wen constructed the tumor immune infiltra-
tion—associated gene (TIM) signature that can predict
the immunotherapeutic response and reflect the im-
mune cells infiltration, while the gene signature con-
structed in this article was based on survival-associated
immune genes and can stratify ovarian cancer patients
into two distinct subgroups related with survival out-
comes. Combinatorial prognostic immune gene-based
signature can illuminate how specific genomic aberra-
tion types associated with clinical outcome [10]. The
correlation between the gene signature and prognostic
factors provoked perspectives on the good predictive
value of gene signature on distinct grade or stage
disease and further on overall survival in OC.

However, immunotherapy can be prevented by tumor
immunological function disruption, and the off-target
activity of immune-stimulatory factors may result in se-
vere toxicity. Individual immunotherapy is not efficiency
for strong anti-tumor potential, while combinatorial
immunotherapy may increase the risk and severity of
adverse effects [4]. Thus, finding tumor-mediated
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immunosuppression or immunostimulation targets is
still challenging [11]. Immunomodulatory gene circuit
platform is potential for tumor-specific immune-
stimulation by de novo cancer-specific promoter synthe-
sis, with RNA-based design and transcription factors
encoding. Differentiated TFs were identified, thus
multiple binding motifs for cancer-specific TFs will
beencoded to generate synthetic OC-specific promoters,
resulting in compact and tumor-specific promoters [12].
It is promising that we can identify the specific TFs for
promoters encoding. In the present study, we have dem-
onstrated the interaction between transcription factors
and immune genes, showing that the majority of poor
survival-associated immune genes were positively corre-
lated with the high expression of TFs in serous OC. The
most critical TFs were CIITA, BATF, VDR, and CBX2.
Among them, CIITA has been shown to drive MHC
Class II expressing tumor cells as professional antigen
presenting cell (APC) performers, thus activating the im-
mune cells and constructing the specific optimal anti-
tumor vaccine [13]. BATF can induce the T cell exhaus-
tion during chronic infection, which is characterized by
expression of inhibitory receptors and protect cells from
excessive immunopathology [14, 15]. Besides, BATF in-
hibition can ameliorate the pathophysiologic responses
in allergic asthma acting as the important transcription
factor by regulating T and B-cell differentiation [16].
Vitamin D and the vitamin D receptor (VDR) is
important in immunological regulation in disease such
as inflammatory bowel diseases (IBD) and human
immunodeficiency virus infection by modulating the
function of monocytes/macrophages during infection
[17, 18]. Furthermore, polycomb chromobox (CBX)
proteins, especially CBX2 were down-regulated in
macrophage upon viral infection. Cbx2 knockdown or
silencing inhibited IFN-B production and played a
critical role in antiviral innate immunity [19]. On the
basis of the aforementioned findings, the specific TFs
for promoters encoding may be readily translated to
clinical practice.

Immune cells infiltration is the important features in
tumor microenvironment (TME) of ovarian cancer.
Early immune response is always presented with mul-
tiple types of immune cell infiltration and immunity-
associated gene expression alteration. Previous studies
showed that alternatively activated macrophages (M2)
and neutrophils possess the pro-tumor roles and T
follicular helper cells (Tth) play an important role in
immune cells recruitment. In our study, we showed
that the genes in patients with high risk scores were
correlated with enrichment in pro-tumor or anti-
inflammatory pathways relating with M2 macrophages
and neutrophils infiltration, while the genes in patients
with low risk scores were correlated with enrichment in
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inflammatory pathways relating with MO macrophages,
Tth cells and NK cells. The article reflected the landscape
of immune infiltration in TME of ovarian cancer. The
association between gene signature and immune cells
infiltration would demonstrate the differences of immune
cells infiltrates with different clinical prognosis, and it
would be an attractive target for prediction of immune
infiltration and therapy intervention.

Our study has some advantages. Firstly, we performed
analysis with TCGA dataset which showed larger sample
size, thus our gene signature was reliable and general.
Secondly, the current study was based on the immune-
related genes downloaded from the ImmPort database
which showed a strong immune-based biological back-
ground, thus our study has the advantage on other
models which screened from RNA-seq or the whole gen-
ome profiling, providing the novel immune landscape of
microenvironment and immune-based biomarkers and
targets for early diagnosis and molecule-targeted therapy
exploration. Thirdly, our prognostic model had a prom-
ising survival prediction ability which was shown in
ROC curves, and our signature simplified the compli-
cated effects of immune genes in clinical outcomes and
immunotherapy responses, making it easier for progno-
sis and therapy response prediction.

But our study also showed some limitation. First, we
used the datasets from both GEO and TCGA to get more
sufficient validation, and we downloaded the gene profiling
information from GTEx dataset for the normal cases.
Undoubtly it will show some statistic cohort bias and het-
erogeneity for the difference of platforms and differences
in clinical care, clinical setting, and treatment. Second, only
overall survival was remained to estimate the association
between immune gene signature and clinical outcome to
decrease the missing rate. This approach increased statis-
tical power and data integrality, but it is also a limitation
insofar as some patients’ information will be lost, and the
signature will be more accurate if other survival parameters
are included. Third, this study is developed with genes in
ImmPort database, further biological experiments and val-
idation are warranted in ovarian cancer. At the same time,
the gene signature was validated in other two independent
GEO datasets, but it will be more reliable with prospective
cohort study in the future.

In summary, the current study constructed prognostic
signature with the immune-related genes, providing a good
ability for prognostic prediction. Network analysis revealed
the regulatory relationship and the interaction between im-
mune genes and transcription factors, providing the bio-
markers for immunomodulators. Prospective and validation
studies are necessary for further establishment of prediction
accuracy with this gene signature. The network analysis is
warranted to be validated to identify the critical role of
transcription factors in survival outcome.
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Additional file 1: Figure S1. Study flowchart for profiling the immune
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using univariate COX analysis. TGCA, The Cancer Genome Atlas; DEIG, dif-
ferential expression immune genes. Figure $3. LASSO COX regression to
construct prognostic signature. LASSO, Least absolute shrinkage and se-
lection operator. Figure S4. The correlation between gene signature and
clinical features. Risk score correlated with age (A), and stage (B) in high
grade serous ovarian cancer. Figure S5. The correlation between gene
signature and immune cell. Risk score in the gene signature negatively
correlated with Macrophages MO (A), NK cells resting (B), and T cells fol-
licular helper (C). Risk score in the gene signature positively correlated
with Macrophages M2(D), Neutrophils(E), and T cells CD8(F). Figure S6.
Biological function and GeneOntology analysis with 71 survival associated
immune genes.

Additional file 2: Appendix Table 1. Clinical properties of the ovarian
cancer patients used in the analysis.

Additional file 3: Table S1. Differentially expressed immune genes for
serous ovarian cancer patients (p-value < 2.76 x 10~ ° and absolute fold
change > 2). ConMean = Mean expression level of control group;
treatMean = Mean expression level of treatment group; FC = fold change.
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ovarian cancer patients. Index = risk score; HR, hazard ratio; HR.95 L,
hazard ratio with lower 95% confidence index; HR.95H, hazard ratio with
high 95% confidence index.

Additional file 5: Table S3. The correlation between gene signature
and clinical features. P values were shown in ()

Additional file 6: Table S4. Differentially expressed transcription factors
for serous ovarian cancer patients (p-value < 1.57 x 10~ * and absolute
fold change > 2). ConMean = Mean expression level of control group;
treatMean = Mean expression level of treatment group; FC = fold change.
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ChIP-seq data of CIITA, BATF, VDR, and CBX2 from ENCODE and GTRD
databases.
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