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Abstract: A comparative study of the fracture features, strength and deformation properties of
pseudo strain-hardening composites based on alkali-activated slag and Portland cement matrices
with polypropylene microfiber was carried out. Correlations between their compositions and char-
acteristics of stress–strain diagrams under tension in bending with an additional determination of
acoustic emission parameters were determined. An average strength alkali-activated slag matrix
with compressive strength of 40 MPa and a high-strength Portland cement matrix with compressive
strength of 70 MPa were used. The matrix compositions were selected for high filling the composites
with polypropylene microfiber in the amount of 5%-vol. and 3.5%-vol. ensuring the workability at
the low water-to-binder ratios of 0.22 and 0.3 for Portland cement and alkali-activated slag matrices,
respectively. Deformation diagrams were obtained for all studied compositions. Peaks in the number
of acoustic signals in alkali-activated slag composites were observed only in the strain-softening zone.
Graphs of dependence of the rate of acoustic events occurrence in samples from the start of the test
experimentally prove that this method of non-destructive testing can be used to monitor structures
based on strain-hardening composites.

Keywords: sustainability; rheologically active inorganic filler; stress–strain deformation curve; acous-
tic emission technique; acoustic event; monitoring of structures

1. Introduction

Recently attention is paid to the development of new compositions of cement matrices
and the use of modified multicomponent fibers in strain-hardening cement composites
subjected to static and dynamic loads [1–4] since construction practice shows a high demand
for mineral composites with special deformation characteristics [5–8].

The important advantages of such composites are the significant increase (up to 40%
or more) of the value of tensile stresses corresponding to the sample destruction compared
with the value of tensile stresses corresponding to the first microcrack and sufficiently
large relative deformations of cement composite under uniaxial tension (up to values
of several percent) due to a significant increase of the volume of microcracking before
destruction [9–11].

A high relative deformation of up to 5% is the result of the sequential formation
of multiple, densely spaced microcracks under increasing uniaxial tensile loading [12].
This behavior of the material under tension is achieved by fulfilling a number of mi-
cromechanical conditions for the formation of microcracks, their propagation and overlap
with fibers [13–15]. This cement composite can be used not only as the main material in
structures but also as thin reinforcing layers for repairing and strengthening the existing
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structures taking into consideration its high deformation ability [16–19]. Another advan-
tage of these composites is the use of secondary mineral resources, such as microsilica, slag,
fly ash, ground rocks, or stone dust [20–24]. The application scope of a strain-hardening
cement composite (SHCC) depends on its strength and deformation characteristics [25–30].
The values of these characteristics are determined by properties of the cement matrix, mi-
crofiber, as well as by properties of the contact zone between matrix and microfiber [29,30].
Microcracking, namely the number and width of cracks determines the pseudoplasticity of
composites and affects their durability that depends on the composite permeability [31,32].

In this paper, the high-strength cement matrix with a compressive strength of 70 MPa
based on Portland cement and an average strength matrix with compressive strength of
40 MPa based on ground granulated blast furnace slag with alkaline activation were used.
Polypropylene microfiber was used as reinforcement. Polypropylene microfiber (PP) is a
widespread and affordable material since there is an overproduction of polypropylene in the
world [33]. Studies on the use of PP fibers in the amount of 0.1–0.5% in cement composites
are continuing, for example, reduction of shrinkage of concrete based on seawater and sea
sand is shown in [34]. The strain-hardening behavior of composites based on inorganic
binders with PP microfiber has not been sufficiently studied.

Cement composites with 2%-vol. of PP microfiber have shown a tensile strain capacity
in the range of 3–6%, with a first cracking strength of 1.6–2.1 MPa, an ultimate tensile
strength of 2.2–2.8 MPa and compressive strength of 15–45 MPa. These new composites are
significantly more ductile with higher tensile strain capacity at least 300 times more than
the tensile strain of reference composite without PP microfibers [35]. The addition of low-
modulus hydrophobic PP microfiber has improved the ductility and the strain-hardening
behavior of the cement composites containing polyvinyl-alcohol (PVA) microfiber [36].

The use of industrial by-products gives economic and environmental benefits [37–39].
The mechanical properties of alkali-activated ladle slag mortars reinforced by multifilament-
PP fiber (PP-MF) or split-film-PP fiber (PP-SF) in the amount of 2%-vol. reveals that the
effect of PP microfibers is evident with an increase of up to 300%, 80%, 7.6 times and
150 times of flexural strength, tensile strength, fracture toughness and fracture energy,
respectively. Furthermore, the PP-SF microfiber offers a better mechanical response than
the PP-MF microfiber in post peak load carrying capacity of the reinforcement at uniaxial
tension. Pseudo strain-hardening behavior was observed along with multiple microcracks
under the uniaxial tensile test [40].

The mechanical properties of composite based on ladle slag and gypsum (LSG) were
significantly improved by using the PP microfiber as reinforcement. The LSG composites
with the 2%-vol. of PP microfiber had pseudo strain-hardening behavior and high ductility.
Multiple microcracks along with pseudo strain-hardening behavior were observed by
the DIC technique under uniaxial loading. The mechanical properties of 2%-PP-LSG
mortars have increased up to 130%, 40%, 5.30 times and 124.8 times for flexural strength,
compressive strength, fracture toughness and fracture energy, respectively, after 28 days of
curing in a water bath [41].

The partial replacement of PVA microfiber with PP microfiber in cement compos-
ites with 1.2%, 1.5% and 2% of PVA microfiber was studied in [42]. The PP microfibers
with different cross-sectional shapes were used in the amount of 25 and 40 vol.% of the
PVA microfiber. It was found that PP microfiber with non-round cross-sectional shapes
(i.e., triangular and trilobal) considerably improved the deformability of composites under
the bending load but reasonably decreased the flexural strength of composites. The main
effect of low modulus PP fibers was the improvement of composite deformability which
increased the energy absorption capacity up to 75%. The results indicated that cementitious
composites with moderate strength, high deformability and lower cost can be obtained
using the replacement of PVA fiber with non-round low modulus PP fiber [42].

From the analysis of the published results, it can be concluded that the use of PP
microfiber contributes to the enhancement of ductility, but the results vary significantly.
The difference in the mechanical properties of PP microfiber may be one of the reasons.
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The microfiber manufacturers can add fillers and other modifying additives that lead to a
change of properties of PP microfiber. PP microfibers properties of the above-cited papers
are presented in Table 1.

Table 1. Characteristics of PP microfibers of cited papers.

Microfiber Tensile
Strength, MPa

Fiber
Diameter, µm

Fiber
Length, mm

Young’s
Modulus, GPa

Elongation
at Break, %

Density,
g/cm3 Reference

PP fiber 850 12 10 6 21 0.91 [35]

PP-MF
Multi-fiber >220 20 12 1 100–200 0.91

[40]
PP-SF

Split-film fiber >340 38 20 4 11 0.91

PP-MF
Multi-fiber 910 12 10 9 22 0.91 [41]

PP-Circular 326 25 12 2.74 - -

[42]
PP-Triangular 247–300 32 12 2.39 - -

PP-Trilobal 141–234 38 12 1.25 - -

PVA 1600 38 8 42.8 - -

A method is needed to assess the strength and deformation properties of the material
in the structure under operating conditions [43–45]. The analysis of deformation curves
and acoustic emission parameters can be used to evaluate the destruction of composites.
Acoustic emission (AE) testing is a technique to detect the formation and growth of cracks
both on the surface and inside the material. Crack formation and propagation in brittle
materials are combined with a local rapid release of stored strain energy. The resulting
elastic waves propagate through the material and can be detected by piezoelectric sensors
on the surface. The characteristics of the elastic waves and hence the electric signals from
the sensors depend on the crack type and the acoustic properties of the material [46].
Analysis of the signal parameters (e.g., amplitude and average frequency) makes it possible
to classify the cracks, e.g., as described in papers [47–49]. In combination with the stress–
strain curves one can draw conclusions about the destruction mechanism of SHCCs [46,50].

The aim of the paper is to study the strain-hardening behavior under tension in
bending of composites based on inorganic binders with polypropylene microfiber with the
additional determination of acoustic emission parameters.

2. Materials and Methods
2.1. Materials and Mixture Composition

Ordinary Portland cement (CEM I 42.5) was used for the study. The microfillers
were obtained by grinding quartz sand and marking it as A1.5 (D50 = 1.5 µm) and A4
(D50 = 4 µm). The ground quartz sands with different fineness were marked as A1.5; A4;
A15. The properties of polypropylene (PP) microfiber are presented in Table 2. Mix
proportions are presented in Tables 3 and 4.

The compositions based on Portland cement differed in the microfiber amount. The
compositions based on alkali-activated slag binder differed in the water-to-binder ratio.

2.2. Manufacturing Procedure

The workability of the fresh mixture decreases with an increase in the microfiber
quantity. Summarizing the experience of other scientists and own experience it is advisable
to develop new compositions of strain-hardening of inorganic composite according to the
scheme in Figure 1. Development of new strain-hardening inorganic composite can be in
mixture composition and in manufacturing technology. In study of mixture compositions
the following results were obtained: the use of microfiber in the amount of 2% by volume
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or more [51–55]; the use of rheologically active mineral additives in cement matrices
with a superplasticizer to ensure workability at low W/C ratio and at high microfiber
amount [56,57]; the use of mineral additives that improve workability and setting time in
alkali-activated slag matrices [58–61]; the use of quartz sand with a low fineness modulus
as a fine aggregate to obtain a homogeneous matrix and ensure a dense and uniform contact
of matrix with the microfiber surface [62–68]. Manufacturing technology takes into account:
the sequence of addition of components into a mixture [69–73]; mixing modes [62,74–77].

It is shown in papers [1–3,62] that it is necessary to increase the matrix density to
achieve strain-hardening in composites with hydrophobic microfiber. An increase in
density can be achieved by reducing the water-to-cement ratio using a superplasticizer
and rheologically active mineral additives. High filling with microfiber can be achieved
by justifying the choice of the type of concrete mixer [68–71], the sequence of addition of
components [72–74], and the speed and duration of mixing [62,75–77].

A laboratory automatic mixer for mortars from Tinius Olsen was used to prepare the
mixtures (Figure 2). It has three mixing modes with different speeds.

At first, the fresh mixture was made without fiber. In both cases at preparing the
cement matrix or the slag-alkali matrix, the fresh mixtures were obtained with high fluidity
despite the low values of the water-to-cement ratio. This was achieved by taking into
account the recommendations from Figure 1. Then the PP microfiber was added and the
mixer was started at the second speed for 180 s. Composition of matrices with maximum
microfiber quantity (5.5 and 3.5%) was selected taking into account the mixture workability.
The spread diameter of mixtures on the shaking table was 160 mm after 15 shakes.

Table 2. PP microfiber characteristics.

Average diameter 20 µm

Length 6 mm

Shape round

Density 0.91 g/cm3

Tensile strength 350 MPa

Tensile modulus 5.7 GPa

Elongation at break 250%

Softening temperature 150 ◦C

Ignition temperature >320 ◦C

Water wettability of fiber surface hydrophobic

Table 3. Mix proportions of PP microfiber reinforced Portland cement composite (kg/m3).

Mix 2 Mix 6

Cement CEM I 42.5 1418 1392

Ground quartz sand A1.5 282 282

Quartz sand 0.06–2 mm 145 145

Polycarboxylate-based superplasticizer 35 35

PP microfiber 40 50

Water 312 310

W/C 0.22 0.22

Density after mixing, kg/m3 2232 2213

Density at the age of 28 days, kg/m3 2120 2070

PP microfiber % by vol. 4.4% 5.5%
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Table 4. Mix proportions of PP microfiber reinforced alkali-activated slag composite (kg/m3).

Mix 3 Mix 4

Ground granulated blast furnace slag 1133 1275

Ground quartz sand A4 224 232

Quartz sand 0.06–2 mm 113 120

PP microfiber 32 32

Liquid glass with the density of 1.3 g/cm3 and with the silicate module equal to 1.5 120 122

NaOH 38 41

Water 338 280

Water-to-slag ratio 0.3 0.22

Density after mixing, kg/m3 1998 2102

Density at the age of 28 days, kg/m3 1961 2025

PP microfiber % by vol. 3.5% 3.5%
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A cement mixture with 2.5% vol. of PP microfiber is shown in Figure 3. This cement
mixture was very fluid and made it possible to increase the microfiber amount up to 5.5%
by volume.

Materials 2022, 15, x FOR PEER REVIEW 6 of 23 
 

 

At first, the fresh mixture was made without fiber. In both cases at preparing the 
cement matrix or the slag-alkali matrix, the fresh mixtures were obtained with high fluid-
ity despite the low values of the water-to-cement ratio. This was achieved by taking into 
account the recommendations from Figure 1. Then the PP microfiber was added and the 
mixer was started at the second speed for 180 s. Composition of matrices with maximum 
microfiber quantity (5.5 and 3.5%) was selected taking into account the mixture workabil-
ity. The spread diameter of mixtures on the shaking table was 160 mm after 15 shakes. 

A cement mixture with 2.5% vol. of PP microfiber is shown in Figure 3. This cement 
mixture was very fluid and made it possible to increase the microfiber amount up to 5.5% 
by volume. 

   
Figure 3. Workability of cement mixture with 2.5% vol. of PP microfiber. 

2.3. Experimental Devices and Procedures 
2.3.1. Mechanical Properties 

The study to determine the mechanical properties was carried out using the MTS 816 
servo-hydraulic system that tests samples at compression and three-point bending (Figure 
4). Three specimens were tested for each bath at the age of 28 days. The cube samples had 
a side of 7.07 cm; the beam samples had dimensions of 4 × 4 × 16 cm. 

(a) (b) 

  

Figure 4. MTS servo-hydraulic system: (a) compression test; (b) three-point bending test. 

Figure 3. Workability of cement mixture with 2.5% vol. of PP microfiber.

2.3. Experimental Devices and Procedures
2.3.1. Mechanical Properties

The study to determine the mechanical properties was carried out using the MTS
816 servo-hydraulic system that tests samples at compression and three-point bending
(Figure 4). Three specimens were tested for each bath at the age of 28 days. The cube
samples had a side of 7.07 cm; the beam samples had dimensions of 4 × 4 × 16 cm.
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The calculation of the specific fracture work was performed as the ratio of the area
under the deformation curve to sample volume. Strain-hardening after the formation of
the first microcrack was defined as the difference between the strength corresponding to
the sample destruction and the strength corresponding to the first microcrack.
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2.3.2. Acoustic Emission (AE)

A set of equipment was used to study the acoustic emission (AE) of samples consisting
of the following main parts: MTS 816 servo-hydraulic system; ErgoTech acoustic emission
control system; data collection and processing system, and specialized ASC software.

The ErgoTech acoustic rock emission system makes it possible to study the processes
of micro- and macro-cracking in rocks under complex loading conditions using acoustic
emission sensors. The ErgoTech acoustic emission control system includes a measuring
unit with sensors; an acoustic signal preamplifier (Figure 5) for signal amplification and
transmission to the information acquisition system; a unit for generating, collecting and
processing acoustic signals.
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The data collection and processing system, as well as the specialized software of
ASC company, are designed for automated control of the process of data registration from
sensors in the mode of constant and trigger control, waveform configuration, digital signal
processing and filtering, localization and visualization of the received data in graphical and
digital form. The data collection and processing system is made in the form of a server.

The type of sensor was a piezoelectric inducer with a 1.3 MHz resonant frequency
(Ergotech manufacturer). Preamplifier type was ASC Pulser Amplifier (PAD-006). Lower
and upper thresholds were 100 kHz and 2 MHz, accordingly. Calibration of sensors was
performed by the Ergotech manufacturer. Calibration by the Nelson method (fracture of
the lead) was performed before the tests.

3. Results
3.1. Compressive Strength and Tensile Strength in Bending

The mechanical properties of four types of composites are summarized in Table 5
including the compressive strength and the tensile strength in bending at the age of 28 days.

The results of Table 5 show that the increase of PP microfiber amount from 4.4% to 5.5%
by volume in cement composites led to a decrease in bending strength. This contradicts
the well-known pattern that the bending strength increases with increasing the microfiber
quantity. However, this pattern has been stated for microfiber quantity in the range from
0 to 2.5% by volume [15,64]. If polypropylene microfiber is used in larger quantities (5.5%
by volume) the interface area between microfiber and matrix increases and, possibly, the
strength of the contact zone between microfiber and cement matrix begins to prevail.
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Table 5. Compressive strength and tensile strength in bending.

Compressive
Strength,

MPa

Standard
Deviation,

MPa

Coefficient of
Variation, %

Tensile Strength in
Bending at First
Microcrack, MPa

Standard
Deviation,

MPa

Coefficient of
Variation, %

Mix 2 (CEM) 79.59 2.89 4.63 7.93 1.42 17.89

Mix 6 (CEM) 68.06 2.72 3.99 5.81 0.76 13.05

Mix 3 (slag) 42.37 2.86 4.52 3.85 0.56 14.57

Mix 4 (slag) 39.86 2.91 4.21 3.45 0.30 8.60

The surface of PP microfiber is hydrophobic so there is no chemical interaction between
the surface of this fiber and the cement matrix. In this case, the strength of the contact zone
between the PP microfiber and cement matrix is due to friction forces. Hence, the strength
of the contact zone between the microfiber and cement matrix, with the increase of PP
microfiber amount, affects the bending strength corresponding to the first microcrack in the
matrix, namely, reducing it. Accordingly, the bending strength of the 6 Mix with 5.5% fiber
is lower than the bending strength of the 2 Mix with 4.4% fiber as shown in Figures 6 and 7.
The strain-hardening zone appears on the curves of both mixes. However, this zone in
samples of the 6 Mix is of interest because the bending strength corresponding to the
sample destruction exceeds the bending strength corresponding to the first microcrack.
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The results show a contradictory pattern in the case of composites with alkali-activated
slag matrix (compositions 3 and 4). The bending strength decreases with the decrease of the
water-to-binder ratio at a constant microfiber amount according to Table 5 and Figures 8 and 9.
However, the strain-hardening zone appears in composition 4 with W/B = 0.22, which is
more pronounced compared to the zone on the deformation curve of composition 3 with
W/B = 0.3, namely, the bending strength corresponding to sample destruction exceeds the
bending strength corresponding to the first microcrack. Thus, strain-hardening behavior
in which the strength value corresponding to sample destruction exceeds the strength
value corresponding to the first crack appears in the studied alkali-activated slag matrix of
medium strength with the decrease of the water-to-binder ratio up to 0.22.
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Figure 8. Deformation curves of three samples of alkali-activated slag composite with 3.5% vol. of
PP microfiber and W/B = 0.3.
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Figure 9. Deformation curves of three samples of alkali-activated slag composite with 3.5% vol. of
PP microfiber and W/B = 0.22.

Thus, the effect of the PP microfiber amount and the water-to-binder ratio is studied in
this paper. Analysis of sample destruction showed that the characteristics of deformation
curves significantly depend on the compositions. In general, the low-strain hardening
composites and the high-strain hardening composites can be distinguished depending on
the nature of deformation [78].
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When operating construction structures made on the basis of strain-hardening com-
posites reliable methods of monitoring changes in mechanical and deformation properties
are needed, for example, the acoustic emission method.

3.2. AE Measurements

Flow characteristics, such as the number of signals and activity are used to describe
the patterns of AE behavior during sample loading [79,80]. The signal number of AE is
registered for a certain time interval that counts from the beginning of observation. The
activity is a derivative of the number of signals in time. Activity shows an increase in the
number of AE signals registered per unit of time.

The linkage of the flow characteristics of acoustic emission with the loading process
has been studied and is shown in Figures 10 and 11 for a sample of cement-based composite
with 4.4% vol. of PP microfiber and for a sample of slag-alkali-based composite with
5.5% vol. of PP microfiber, respectively. The diagrams “load—strain on the traverse” are
shown in Figures 10a and 11a. The load speed is shown in Figures 10b and 11b up to
the deformation equal to 5 mm or up to the moment of sample destruction. The number
of recorded acoustic signals per second in the time interval at which the load speed is
indicated is shown in Figures 10c and 11c. The total number of acoustic signals from the
start of the test is shown in Figures 10d and 11d.

Each of the presented materials has deformation features. The strain-hardening zone is
observed on the deformation diagram of cement composite with 5.5% vol. of PP microfiber.
A sharp increase in the number of acoustic signals is observed at the beginning and end
of the strain-hardening zone in Figure 11b,c. A strain-hardening zone is almost absent in
cement composite with 4.4% vol. of PP microfiber. Several splashes of acoustic signals are
observed in this sample only in the strain-softening zone.

Stable relationships between mechanical and AE parameters are observed in the above
dependencies despite significant differences in the mechanical characteristics of the studied
cement-based composites.

The relationship of flow characteristics of the acoustic emission with the loading
curve has been studied and is shown in Figures 12 and 13 for alkali-activated slag based
composites with 3.5% vol. of PP microfiber and with different W/C ratios. The diagrams
“load—strain on the traverse” are shown in Figures 12a and 13a. The load speed is shown
in Figures 12b and 13b up to the deformation equal to 5 mm or up to the moment of sample
destruction. The number of recorded acoustic signals per second in the time interval at
which the load speed is indicated is shown in Figures 12c and 13c. The total number of
acoustic signals from the start of the test is shown in Figures 12d and 13d.
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Figure 10. (a) Deformation curve; (b) Loading speed; (c) The number of acoustic signals per second
in the range from 0 to 325 s; (d) The total number of acoustic signals from the start of the test.
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Figure 11. (a) Deformation curve; (b) Loading speed; (c) The number of acoustic signals per second
in the range from 0 to 260 s; (d) The total number of acoustic signals from the start of the test.

A smaller number of acoustic signals by 3–4 times is typical for samples on alkali-
activated slag binder. Peaks in the number of acoustic signals in these samples were
observed only in the strain-softening zone.

Graphs of dependence of the occurrence rate of acoustic signals (the first derivative)
in the sample from the start of the test, obtained in the work, experimentally prove that
this method of non-destructive testing can be used to monitor structures based on strain-
hardening composites operating in difficult conditions. These graphs make it possible to
use the AE method to estimate the residual resource of the material during deformation.

In further studies linking the AE parameters with microscopic fracture parameters, it is
necessary to formulate a number of diagnostic AE indicators for monitoring and evaluating
the resource of material.
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Figure 12. (a) Deformation curve; (b) Loading speed; (c) The number of acoustic signals per second
in the range from 0 to 300 s; (d) The total number of acoustic signals from the start of the test.
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Figure 13. (a) Deformation curve; (b) Loading speed; (c) The number of acoustic signals per second
in the range from 0 to 300 s; (d) The total number of acoustic signals from the start of the test.

4. Discussion

The characteristics of the studied materials obtained from deformation curves are
presented in Table 6.

Table 6. Specific fracture work.

Composition. Mix 2 Mix 6 Mix 3 Mix 4

Compressive strength, MPa 79.59 68.06 42.37 39.86

Tensile strength in bending, MPa
(at the first microcrack) 7.93 5.81 3.85 3.45

Specific fracture work, J/m3 22,200.4 23,176.9 10,351.5 13,281.2

Strain-hardening after the
formation of the first microcrack,

MPa
0 0.64 0 0.23

Deflection value, mm 1.15 1.17 1.04 1.08

According to the study of beam samples in three-point bending with controlled
deformations, it was found that the frequency of occurrence of acoustic events is associated
with the deformation curve. The recorded acoustic signals can be combined into seven
groups depending on the stage of sample deformation as shown in Figures 14 and 15.
These seven groups are outlined with red lines that limit the areas where the values of
the number of acoustic signals per second are grouped. At the initial stage of loading, as
the traverse displacement increases, the accumulation of stresses occurs in the stretched
and compressed zone of a beam-sample. The periodic appearance of signals is typical for
this zone (1). Zones 1 and 2 have a very conditional separation and are determined by
the nature of deformation of a beam-sample at the initial stage during compression and
stretching deformations in a matrix. The duration of signal registration is determined by
the fracture work and the elasticity modulus of the material. A drastic increase of acoustic
events per second is observed in zone (3), while the size of this zone is associated with the
potential for strain-hardening. The formation of microcracks begins and for this reason the
dependence of “stress–strain” becomes nonlinear. The frequency of signals per unit of time
in this zone indicates the trajectory of destruction: with an instantaneous burst of a series
of signals the destruction occurs according to a fragile scenario, with a periodic, prolonged
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appearance of signals, the destruction occurs with the involvement of microfiber and the
development of plastic deformations. The development of cracks acquires an unstable,
avalanche-like character during the transition from zone 3 to zone 4. An increase of acoustic
events per unit of time is observed in the deformation area from zone 4 to zone 6, which is
probably due to more intensive crack development. Characteristically, this phenomenon is
observed for beam-samples of all mixes with the same deflection in the range from 1.2 to
2.2 mm. Zone 7 is characterized by a more intense release of signals in a sample, which has
a more fragile destruction trajectory. This can probably be explained by the interaction of
matrix particles with each other, while a sample that has collapsed along a plastic trajectory
involves microfibers more effectively.
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The proposed approach in substantiating the selected zones makes it possible to obtain
tools for indirect inspection and monitoring of building structures, as well as to predict and
control the stages of crack development in the bent elements of the structures.
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The use of strain-hardening composites based on inorganic binders is actually in
structures for which the presence of a strain-hardening zone on the deformation curve
of material is of priority importance compared to the value of compressive or bending
strength. Walling of mine workings can be one of the areas of application. Often, sprayed
concrete with steel mesh reinforcement is used to fasten support. The sprayed concrete
support repeats the shape of the mine surface. Dispersed reinforcement with metal or
synthetic fiber is performed to improve the mechanical properties of the sprayed concrete
support. The main requirement for the mechanical behavior of fiber-reinforced sprayed
concrete for walling mine workings is imposed on the post peak zone. The value at which
the structure completely loses its ability to resist the load and its destruction occurs are
taken as the value of the maximum bearing capacity of the support. Multiple cracking
of concrete requires the development of non-destructive methods of structural control in
difficult operating conditions [81,82].

The main advantages when using the fiber-reinforced spray concrete for walling the
mine workings are as follows [83–88]:

- fibers in a large amount contribute to the appearance of strain-hardening of material
after the formation of microcracks under external loading;

- mechanical properties of lining increase under complex loading since reinforcement is
carried out in all directions of walling;

- residual strength of fiber-reinforced spray concrete is higher than the strength of
ordinary concrete;

- connectivity of sprayed concrete with the rock contour increases since there are no
voids that can form between the rock contour and the sprayed concrete in the case of
mesh reinforcement;

- ensuring the strength properties of concrete under elevated temperature [89,90].

It should be noted that the cost of fiber-reinforced concrete increases significantly with
the increase of microfiber amount. The use of ground slags and affordable polypropy-
lene microfiber can solve this problem. Further research should be carried out in or-
der to develop new compositions of strain-hardening composites with inorganic binders
based on by-products of the industry including the possibility of applying mixtures using
shotcrete technology.

5. Conclusions

Strength and deformation properties of pseudo strain-hardening composites based
on inorganic binders with polypropylene microfiber under compression and tension in
bending with the additional determination of the quantity of acoustic emission signals
were carried out. The following new knowledge is obtained in the work: new compositions
of strain-hardening material with alkali-activated slag matrix; data on the value of strain-
hardening in composites with polypropylene microfiber depending on its quantity and
water-to-binder ratio, and data on the number of acoustic signals when approaching the
ultimate strength and in the area of residual strength.

A high-strength Portland cement matrix with compressive strength of 70 MPa and
alkali-activated slag matrix with a compressive strength of 40 MPa were used. The matrix
compositions were selected for high filling the composites with polypropylene microfiber in
the amount of 5.5% vol. and 3.5% vol. for Portland cement and alkali-activated slag binder,
respectively. Recommendations for the development of new strain-hardening composites
with good workability are given.

The increase of PP microfiber amount from 4.4% to 5.5% by volume in Portland cement
composites led to a decrease in bending strength. The strain-hardening zone appears on
the deformation curves of both mixes. However, this zone in samples with 5.5% vol. of PP
microfiber is of interest because the bending strength corresponding to sample destruction
exceeds the bending strength corresponding to the first microcrack.

The results show a contradictory pattern in the case of composites with alkali-activated
slag matrix. The bending strength decreases with the decrease of the water-to-binder ratio
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from 0.3 to 0.22 at the constant microfiber amount of 3.5%. The strain-hardening zone
appears in composition with W/B = 0.22, which is more pronounced compared to the zone
on the deformation curve of composition with W/B = 0.3, namely, the bending strength
corresponding to sample destruction exceeds the bending strength corresponding to the
first microcrack.

Hydrophobic PP microfibers, in large amounts, reduce the compressive and tensile
strength in bending. However, the use of these microfibers in large quantities makes
it possible to obtain significant strain-hardening, which is of priority in some areas of
construction, for example, in walling of mine workings.

The acoustic emission method was used to assess the destruction of composites. A
smaller number of acoustic signals, by 3–4 times, was observed for alkali-activated slag
composites. Peaks in the number of acoustic signals in these samples were observed only
in the strain-softening zone.

The recorded acoustic signals can be combined into seven groups depending on the
stage of sample deformation. The proposed approach in substantiating the selected zones
makes it possible to obtain tools for indirect inspection and monitoring of building structures.
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