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MOTIVATION Tissue clearing has been extensively used to explore cellular organizations in intact organs.
By imaging entire mouse brains with cellular resolution, the resulting datasets contain terabytes of images
to process and millions of labeled cells that need to be counted and classified based on morphology and
color. Therefore, automation of data processing and analysis is an urgent need. We present a workflow
(COMBINe) to automatically locate and classify labeled cells in such 3D datasets and to quantitatively
analyze the regional effects after registration to the referenced Allen Brain Atlas. We applied the approach
to study the effects of sparse epidermal growth factor receptor deletion on gliogenesis.
SUMMARY
Tissue clearing renders entire organs transparent to accelerate whole-tissue imaging; for example, with light-
sheet fluorescence microscopy. Yet, challenges remain in analyzing the large resulting 3D datasets that
consist of terabytes of images and information on millions of labeled cells. Previous work has established
pipelines for automated analysis of tissue-cleared mouse brains, but the focus there was on single-color
channels and/or detection of nuclear localized signals in relatively low-resolution images. Here, we present
an automated workflow (COMBINe, Cell detectiOn in Mouse BraIN) to map sparsely labeled neurons and as-
trocytes in genetically distinct mouse forebrains using mosaic analysis with double markers (MADM).
COMBINe blends modules from multiple pipelines with RetinaNet at its core. We quantitatively analyzed
the regional and subregional effects of MADM-based deletion of the epidermal growth factor receptor
(EGFR) on neuronal and astrocyte populations in the mouse forebrain.
INTRODUCTION

Recent advances in tissue-clearing methods have enabled

three-dimensional (3D) imaging of intact mammalian organs

and entire small organisms while preserving comprehensive

structural and cellular information.1–7 With light-sheet fluores-

cence microscopy (LSFM), high-speed imaging of cleared and

immunolabeled tissues can be achieved.8–11 Yet, challenges

remain in analyzing the large resulting 3D datasets with terabytes

of images and information onmillions of labeled cells. Hence, the

automation of data processing and cell detection is paramount

for high-throughput cellular profiling of cleared tissues.

Existing pipelines for automated analysis of tissue-cleared

mouse brains include BCFind,12,13 ClearMap,5 CUBIC,14 and
Cell R
This is an open access article under the CC BY-N
NuMorph.15 BCFind achieves fully automated detection of

neurons in 3D mouse brains by integrating a U-Net model for

semantic deconvolution and a blob detection algorithm for cell

identification. ClearMap presents an immunolabeling-enabled

tissue clearing method with superior efficiency in data process-

ing, accomplishing automated cell counting, dataset registra-

tion, and statistical analysis. The datasets are analyzed using

traditional image processing routines (e.g., morphological oper-

ations). CUBIC incorporates improved clearing, imaging, and

cell-nucleus-detection protocols, with the ability to quantify cells

of entire adult mouse brains. NuMorph is an advanced end-to-

end data processing tool for accurate cell-type quantification

within the mouse cortex, which reaches high precision in nuclei

detection. The previous pipelines achieved high efficacy, yet
eports Methods 3, 100454, April 24, 2023 ª 2023 The Author(s). 1
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Figure 1. Automated cell detection in

cleared MADM mouse forebrain

(A) Left: maximum intensity projection of fluores-

cence signals from a hemisphere of an Emx:

MADM:+/+ forebrain labeled with antibodies to

enhance the endogenous EGFP (green) and

tdTomato (tdT; red) signals (scale bar, 3 mm).

Right: a virtual 30 mm thick slice from the same

cleared sample (scale bar, 2.5 mm) with a

zoomed-in area (scale bar, 100 mm). EGFP,

enhanced green fluorescent protein; tdT, a red

fluorescent protein.

(B) Magnified images of six isolated MADM-

labeled neurons and astrocytes expressing EGFP

(green), tdT (red), or both (yellow) MADM re-

porters. Scale bar, 25 mm.

(C) The proposed COMBINe workflow for MADM

cell mapping (see also Figure S1).
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they focused on single-color channels and/or detection of nu-

clear signals in relatively low-resolution images. As such, the ex-

isting pipelines fail to capture cases where (1) whole cells or cell

membranes rather than nuclei are stained, (2) colocalization of

color channels is crucial, and (3) the cells can be classified based

on their morphology, which requires high-resolution imaging.

These requirements are broadly paramount in neuroscience

research, especially those that require in situ analysis of multiple

genetic markers as in Confetti mice16 or mosaic analysis with

double markers (MADM).17–21 Here, we addressed this critical

gap by building on the strengths of existing pipelines while devel-

oping an automated workflow that was tested in MADM data-

sets. In these datasets, the fluorescent expression in neurons

and glia can indicate their distinct genotypes.

In the core of our workflow is deep learning, a data-

driven approach. Recent adaptation of deep learning22 in

biomedical studies has enabled automated and accelerated
2 Cell Reports Methods 3, 100454, April 24, 2023
image processing.23–25 In combination

with tissue clearing and 3D microscopy,

deep learning has been employed in

investigation of cancer metastasis in

mice,26 segmentation of mouse brain

vasculature,27 and detection of crown-

like structures in adipose tissues.28

Inspired by these studies, we surveyed

the deep learning literature and employed

a model (RetinaNet) that shows superior

performance in dense object detection

and applied it to a neurodevelopmental

problem.29–31

Using RetinaNet as its core, we devel-

oped an automated workflow we refer to

as COMBINe to map labeled neurons

and astrocytes in the forebrains of three

genetically distinctMADMmice (Figure 1).

We used a conditional mouse allele for

the Epidermal growth factor receptor

(Egfr) in combination with MADM alleles.

Using the established Emx1cre line to
restrict recombination to the dorsal telencephalon (cerebral

cortices and the hippocampal formation), three genotypes

were obtained: Emx:MADM:+/+, Emx:MADM:F/+, and Emx:-

MADM:F/F.32 We have recently reported on variable effects on

specification and differentiation of MADM glia in cerebral

cortices of these mice, which has led to the developmental

model that EGFR-dependent and EGFR-independent perinatal

gliogenesis regulate forebrain development cooperatively.32

Here, we used the Egfr MADM model to test COMBINe. Using

tissue clearing and a custom-built LSFM that changes its prop-

erties based on the sample, we generated high-quality MADM

datasets with cellular resolutions sufficient to morphologically

differentiate astrocytes from neurons. Employing RetinaNet,

0.5 million MADM cells across six classes (yellow, red, green:

neurons and astrocytes) were located and counted from each

MADM forebrain hemisphere. Taking advantage of available

packages, stitched volumes and detected cells were aligned to



Figure 2. Automated detection, stitching, and registration of MADM cells

(A) Images pre- and post-channel alignment from parallel illuminations (left panel: scale bar, 100 mm). Cells in the wrong z plane (arrowheads) disappear following

alignment. Boxed areas are zoomed-in images (scale bar, 30 mm).

(B) An overall average precision of 0.86 was achieved across the six cell classes using RetinaNet.

(C) Precision-recall curves.

(legend continued on next page)
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annotations provided by the Allen Brain Atlas (ABA) for regional

registration and analysis.33 Significant variations in cell popula-

tions corresponding to the MADM genotypes were confirmed,

matching our findings from laborious manual counting and

registrations.

RESULTS

Automated cell detection in cleared MADM mouse
forebrain
We combined the Emx1cre with MADM alleles to map neuronal

and glial lineages in the forebrain as before.17,18,20,34 MADM al-

lows simultaneous labeling and genetic manipulation in clones

of somatic cells in isolated and sparse populations of progeni-

tors35 and has been successfully employed in genotype-pheno-

type studies on neurogenesis and gliogenesis.21,36 MADM-

labeled neurons and glia can possess distinct genotypes, which

was tracked by permanent labeling of two mitotically derived

daughter cells with two distinct and nonoverlapping fluorescent

markers: enhanced green fluorescent protein (EGFP) and/or

tdTomato (tdT; Figure 1A). MADM cells in forebrain samples

can be counted and classified into six groups based on

morphology and color: red (tdT), green (EGFP), and yellow

(both reporters coexpressed) neurons and glia (Figure 1B).

The notation Emx:MADM:+/+ represents wild-type (WT) mice,

whereas Emx:MADM:F/F indicates mice with complete deletion

of Egfr in the dorsal forebrain (cerebral cortices and hippocampal

formation). Both groups of mice have sparse MADM-labeled

populations of cells in the dorsal forebrain with identical geno-

types (i.e., WT or Egfr-null, respectively). The Emx:MADM:F/+

mice are unique in that the vastmajority of cells in the dorsal fore-

brain are heterozygous forEgfr deletion, but spare populations of

MADM neurons and glia are genetically guided to have three

distinct genotypes reported by red, green, or both (yellow)

MADM colors: WT, red MADM; homozygous Egfr-null, green

MADM; and heterozygous Egfr-null, yellow MADM (for details

on the genetics of thesemice, see Zhang et al.32). In other words,

the red MADM cells in the dorsal Emx:MADM:F/+ forebrain ex-

press EGFR in excess to their bulk environment, and the green

MADM cells lack EGFR expression. The yellow MADM cells

are genotypically identical to the majority non-MADM back-

ground cells, which are all heterozygous for the Egfr-null allele.

Therefore, a single mouse (Emx:MADM:F/+) provided for both

overexpression and knockout experimental conditions in the

same tissue, which is an advantage of MADMgenetics for study-

ing gene-microenvironment interactions.

Increased understanding of the complexities in MADM data in

the mouse forebrain inspired the need for classification of

MADM-labeled cells based onmorphology and color. Therefore,

we designed a workflow that spanned tissue clearing to quanti-

tative analysis (Figure 1C). Emx:MADM mouse brains were split
(D and E) Representative images in which the program made predictions with a

Figure S2.

(F) Stitching and merging of detected cells in 3D for each tile were according to

rejected, and redundant detections across different z planes were excluded acc

(G) Detected cell clouds and corresponding regional densities after registration

forebrain.
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into hemispheres, cleared using the iDISCO+ protocol,5 and

imaged by a custom-built LSFM.37–39 The LSFM was equipped

with an autofocus algorithm to correct the shift between the

light-sheet illumination beam and the detection focal plane,

and therefore our images were crisp and focused throughout

acquisition. Before imaging, illumination beams of different

wavelengths were aligned parallel to ensure accurate data pro-

cessing (see later in Results). Through imaging with subcellular

resolution, the acquired two-channel datasets consisted of

�400GBdata per hemisphere. Channel alignment was achieved

using NuMorph,15 which locally evaluated the translation be-

tween the color channels, followed by a RetinaNet model trained

to detect six classes of labeled cells simultaneously.29,30 The

aligned tiles and detected cells were then stitched according

to TeraStitcher40 and registered to the ABA by ClearMap5 for

regional analysis in the forebrain. By mixing and matching codes

from different packages, we were able to build on their relative

advantages (Figure S1). Taking advantage of the above-

mentioned tools, we were able to analyze a single Emx:MADM

hemisphere in 4 days using a regular desktop computer and em-

ploying the proposed pipeline. For completeness, glia labeled

using Emx:MADM forebrains consisted of oligodendrocytes

and astrocytes. However, themorphology and size of mature as-

trocytes were highly distinguishable, whereas oligodendrocytes

were small and difficult to detect, and their numbers were small

compared with neurons and astrocytes.32 Thus, we trained our

platform to distinguish between neurons and astrocytes.

COMBINe is highly suitable for automated detection,
stitching, and registration of MADM cells in the P30
cleared forebrain
RetinaNet was adapted to detect six classes of MADM cells

(yellow, red, and green: neurons and astrocytes). RetinaNet is

a state-of-the-art object detection network that includes a back-

bone of a feature pyramid network on top of a ResNet to

generate a multiscale feature pyramid, with two subnetworks

to regress and classify anchor boxes.29 The output of

RetinaNet is a list of bounding box coordinates, classification la-

bels, and confidence scores for the detected objects. We

selected the RetinaNet model because of its superior perfor-

mance in dense object detection of real-world images41 and in

cell detection of fluorescence microscopy images.31

Since local translation was sufficient to register the color chan-

nels under parallel beam condition, cell detection was performed

after color registration (Figure 2A; see next section). Cell detec-

tion was implemented in 2D instead of 3D due to the difficulty

of labeling and training, as well as the variance in resolution along

different axes in 3D images. We explored the training regime of

the network and applied it to fluorescence images of MADM

brain sections in a pervious study.30 We again employed the

data augmentation of color swap and saturation to balance the
ccurate (D) and inaccurate (E) color registrations (scale bar, 50 mm). See also

TeraStitcher parameters. Replicates in overlapped regions across tiles were

ording to signal intensities. Scale bars, 50 mm.

to the Allen Brain Atlas (ABA) in a single hemisphere of an Emx:MADM:+/+
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color classes and utilized transfer learning to train the network on

a pre-trained backbone. After training, the model that performed

best on validation data was selected as the inferencemodel. The

inference model reached an average precision of 0.862 across

six classes on unseen test data (Figure 2B). An average precision

of 0.897 was achieved for detection of neurons, while an average

precision of 0.826 was achieved for detection of astrocytes.

Given a confidence threshold of 0.5, the mean values of preci-

sion, recall, and F-score across six classes on test data were

0.848, 0.771, and 0.806 respectively (Tables S1–S3). The

adjusted precision-recall curves used tomeasure average preci-

sion across six classes are shown in Figure 2C, with several ex-

amples of the model predications shown in Figure 2D. Color

classification was robust even in cases with minor misalignment

between the two-color channels (Figure 2E). Examples of

manual annotation versus automated prediction on a field of

view are shown in Figure S2.

After detecting the cells in raw tiles, the displacement

parameters between individual tiles were estimated using

TeraStitcher,40 but the high-resolution volume was not stitched.

A custom script using the displacement parameters was created

for excluding duplicate detections in overlapping regions be-

tween adjacent tiles and for removing redundant detections

across different z planes (Figure 2F; see STAR Methods). Anal-

ysis of a cleared MADM hemisphere was accomplished in

4 days using a standard computer, with generated datasets con-

taining approximately 100,000 images per sample (more than 1.6

million image patches for cell detection). More than 400,000

MADM cells were detected in each cleared hemisphere. A

low-resolution stitched volume of the hemisphere was later

registered to brain regions annotated by ABA using ClearMap.

Detected MADM cells and corresponding regional density

maps of a representative Emx:MADM:+/+ sample are visualized

in Figure 2G using a custom script. Nearly all Emx:MADM:+/+

cells were in the dorsal forebrain consisting of the olfactory

bulb, the cortex, and the hippocampus, which was consistent

with previous observation on 2D slices.19 As a quality check

for our color registration process, the yellow, red, and green

neuron portions of the total population were approximately

50%, 25%, and 25% respectively, which was in line with previ-

ous estimates.35

In summary, COMBINe can detect and classify cells in an entire

MADMmouse brain hemisphere. The raw datasetswere acquired

using our custom adaptive LSFM, and since commercial LSFMs

are not adaptive and do not change their properties on the fly,

we have tested the effect of two realistic acquisition scenarios

on the performance of the RetinaNet model in the next section

(1) when the cells are slightly out of focus and (2) when the illumi-

nation beams (one per color) are not perfectly parallel.

RetinaNet accurately detects out-of-focus cells
LSFM images can seem out of focus when the objective focal

plane does not perfectly overlap with the illumination beam.42

Therefore, we tested the performance of our network in images

containing blurry cells using the same tiles that were acquired

in and out of focus. To our surprise, the RetinaNet model per-

formed well in detection and color classification of cells,

although degradation in image quality was observed in the out-
of-focus images. This finding illustrated the robustness of the

RetinaNet model and its ability to generalize well in less-than-

optimal conditions (Figure 3A). We synthetically defocused the

test data according to Yang et al.43 to compare themodel perfor-

mance with and without defocus and found negligible decrease

in performance within 5 mm from the focal plane (Figure S3). We

chose to defocus our images synthetically because (1) it allows

for direct evaluation of model performance in blurry images; (2)

labeling real cells in out-of-focus LSFM datasets is ambiguous,

as some cells may seem sharp but very dim, and their accurate

z position is difficult to derive; and (3) it will enable future use of

this approach to augment existing datasets. It is important to

note that while training the RetinaNetmodel, cells from the edges

of the field of view that exhibited lower contrast compared with

the center of the field of view were included. This phenomenon

of fluctuations in image quality as a function of position within

the field of viewwas an inherent property of using aGaussian illu-

mination beam. Consequently, the network was trained with

variability in image contrast, which may explain the robustness

of the network in correctly detecting out-of-focus cells (Fig-

ure 3A, parallel beam scenario).

We next tested our pipeline when the illumination beams of

different color channels propagated through slightly different

light paths during LSFM imaging. This can occur when themicro-

scope setup is out of alignment due to angular drift of the scan-

ning galvo in relation to the room temperature, the shift of the

laser beam after long period of imaging (e.g., air bubbles), and

more. This situation resulted in only partial overlap of the color

channels, i.e., misalignments in some regions even after registra-

tion of the color channels using NuMorph. Importantly, misalign-

ment of the color channels influenced the subsequent quantita-

tive analyses (see pie charts in Figure 3B). InWTMADMmice, we

expected a color ratio of 50% yellow, 25% red, and 25% green

neurons, and we have used this distribution to test the perfor-

mance of our color registration. This approximate ratio was

achieved when the illumination beams were parallel to each

other, and the different color channels were registered using

local x-y-z translation. However, with slightly tilted illumination

beams, this ratio was greatly distorted. We observed fewer yel-

low cells and more green cells.

Together, these findings suggest that the pipeline and the

RetinaNet model were robust and highly effective for detection

and color classification, even in cases containing unfocused im-

ages or slightmisalignments between the color channels, as long

as the light-sheet illumination beams were parallel to each other.

COMBINe faithfully captures and detects elevation of
red (WT) astrocytes and depletion of green (Egfr-null)
astrocytes in the Emx:MADM:F/+ forebrain
To test the capacity and accuracy of COMBINe, we applied it

to known phenotypes that we had already captured in

Emx:MADM:F/+ forebrains, where neuronal production is largely

preserved, while gliogenesis is disrupted during perinatal

development.32 As described earlier, red and green cells in

Emx:MADM:F/+ forebrain correspond toWT and Egfr-null geno-

types, respectively. COMBINe confirmed this effect in that both

red neurons and green neurons were present and relatively

similar in density, while a significant increase in WT red MADM
Cell Reports Methods 3, 100454, April 24, 2023 5



Figure 3. RetinaNet detection is robust for out-of-focus cells

(A) Representative predictions in images of out-of-focus cells (scale bar, 50 mm). See also Figure S3.

(B) Illustrations of LSFM geometry for tilted (top) and parallel (bottom) illuminations. Images from the same field of view (scale bar, 200 mm) are shown with three

zoomed-in areas (scale bar, 25 mm). Unparallel beams during imaging result in misalignment between the two channels (e.g., the two-color channels are

appropriately overlapped in zoomed region 1 but misaligned in regions 2 and 3 as marked by arrowheads). Erroneous color classification ensues, resulting in

fewer yellow cells detected (pie charts).
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astrocytes and a severe absence of green Egfr-nullMADMastro-

cytes were observable throughout the labeled regions of the

forebrain (Figures 4A and 4B). In addition, no significant differ-

ences in total volume of the hemisphere or regional volumes

were observed, suggesting that heterozygous bulk deletion of

Egfr or the sparse MADM phenotypes do not cause changes in

overall forebrain architecture. Figure 4C shows further region-

wise comparison of red and green astrocyte densities between

Emx:MADM:+/+ and Emx:MADM:F/+ brain hemispheres. Visual-

ized in the left columns are percentage changes of regional cell

densities, while adjusted p values obtained from unpaired t tests

are displayed on the right (see also Figure S4). Among 1,326

ABA-annotated regions, 31 regions showed significant elevation

ofWT red astrocytes in the Emx:MADM:F/+ forebrain (Table S4).

Using hierarchical analysis to discover major trends in
regional densities of astrocytes
While statistical analysis of all ABA annotated forebrain regions

(�1,000) was useful, the average size of each brain region was

relatively small. As such, the accuracy of registration to the

ABA reference atlas is crucial to identify significantly altered den-

sities of cell types wherein small errors in the registration process
6 Cell Reports Methods 3, 100454, April 24, 2023
can potentially mask significant differences. Therefore, we

sought to merge regions based on anatomical similarities

using the hierarchical structure of annotation in the ABA and im-

plementing hierarchical analysis of region-wise statistics

(Figures 5A and 5E; e.g., three-level hierarchical annotation of

the somatomotor areas). Comparison of forebrain regions at

multiple hierarchies revealed significant differences in red

MADM astrocyte densities (Figure 5B; see also Table S5 for re-

gions showing significant differences). Among the high-hierar-

chy regions, the corpus callosum showed significant increase

of red astrocyte density in Emx:MADM:F/+ brain hemispheres

compared with the control group (Figures 5C and 5D), which

was consistent with manual observation of the acquired images.

Variance in astrocyte distribution between rostral and
caudal Emx:MADM:F/F cortices is quantitatively
captured using COMBINe
Analysis of neurons and astrocytes in the Emx:MADM:F/F

forebrain hemispheres using COMBINe confirmed a pheno-

type analyzed in our recent publication in rostral-caudal differ-

ences in EGFR-dependent and EGFR-independent astrocyte

production.32 It is important to be reminded that all cells in the



Figure 4. Elevated density of red MADM astrocytes and absence of green MADM astrocytes are faithfully captured by COMBINe in F/+

cortices
(A) Cell density comparison between Emx:MADM:+/+ and Emx:MADM:F/+ mouse brain hemispheres (mean ± SD, number of animals = 3; *, p < 0.05). In the

Emx:MADM:F/+ forebrain, red and green cells correspond to Egfr-null and wild-type (WT) genotypes, respectively. While both red and green neurons were

present, a substantial increase in WT red astrocytes was revealed by COMBINe.

(B) Representative images of the cortex and the hippocampus. Scale bar, 100 mm.

(C) Region-wise analysis of average red and green astrocyte densities between Emx:MADM:+/+ and Emx:MADM:F/+ datasets. Left: percentage change in

average cell densities of Emx:MADM:F/+ brain hemispheres comparedwith Emx:MADM:+/+ brain hemispheres. Right: adjusted p values (number of animals = 3).

See also Figure S4 for analysis of other cell types. AP, anteroposterior distance taken from the bregma; FDR, false discovery rate.
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Emx:MADM:F/F forebrain are Egfr-null regardless of their MADM

color. Figure 6A shows the average region-wise cell density

maps onto the Emx:MADM:F/F isocortex as defined by the

ABA. Hence, we compared the average astrocyte densities of

selected regions and found that there was a significant differ-

ence in astrocyte distribution between rostral and caudal regions

(Figure 6B). While astrocyte densities of control Emx:MADM:+/+

and Emx:MADM:F/F brain hemispheres appeared similar in

caudal regions, the rostral regions of Emx:MADM:F/F cortices

contained few, if any, astrocytes (Figure 6C). As expected, neu-

rons that, in general, do not express EGFR showed similar distri-

butions in the Emx:MADM:F/F and Emx:MADM:+/+ (Figure S5).

To summarize, we automatically calculated and compared the

densities of sparse neurons and astrocytes in distinct Emx1cre-

induced MADM brain hemispheres with and without conditional

deletion of Egfr. Region-wise analysis after registering the sam-

ples to ABA guided us to devise a hierarchical analysismethod to

characterize the variances observed in different cell populations

among distinct genotypes. The revealed patterns matched labo-
rious manual counting results, which validated the COMBINe

approach with high confidence.

DISCUSSION

In this article, we present COMBINe, an automated framework

that can be applied to 3D imaging datasets that are captured

with multiple color channels. To demonstrate the applicability of

COMBINe, we imaged tissue-cleared MADM-labeled mouse

forebrains with cellular resolution. We have tested the influence

of out-of-focus artifacts on the cell classification accuracy and

show that if the illumination beams are parallel, the RetinaNet per-

forms adequately. COMBINe uses minimal storage space, as the

datasets are not repeatedly saved per pipeline stage (e.g., after

stitching and registration with the ABA). We accomplish that by

applying a bookkeeping strategy that uses the calculated trans-

formation matrices in the stitching and registration parts to

move the detected cells’ coordinates from one representation

to the other. Consequently, only the raw tiles and a low-resolution
Cell Reports Methods 3, 100454, April 24, 2023 7



Figure 5. Hierarchical analysis reveals elevation in red MADM astrocytes in the Emx:MADM:F/+ corpus callosum
(A) Example of hierarchical annotations of somatomotor (MO) cortical areas according to the ABA. Mop, primary motor area; MOs, secondary motor area.

(B) Results of hierarchical analysis revealed that the corpus callosum contains significantly elevated densities of red MADM astrocytes at hierarchy level 1.

(C) 3D structure of the corpus callosum provided by ABA.

(D) Representative images of the corpus callosum (scale bar, 500 mm) and zoomed-in regions (scale bar, 100 mm).
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stitched volume are required to complete the analysis. We also

introduce a complementary method to perform the statistical

analysis of our results by comparing the cell densities on the hier-

archical structure of the brain, provided by the ABA annotation.

This method allows us to average the cell densities across larger

brain areas that are morphologically and functionally connected

and to minimize the penalty for multiple comparisons.

COMBINe can be adapted for other neuroscience studies that

require quantitation of elements in the mouse brain using tissue

clearing and immunofluorescence labeling. By enriching the

framework components (e.g., adding features of segmentation

and more), COMBINe can be applied to diverse neuroscience

questions in need of analyzing 3D mouse brain datasets.

To test the RetinaNet model detection and classification suc-

cess, we have used the average precision measure, which is a

widely used evaluation metric for object detection tasks.44 The
8 Cell Reports Methods 3, 100454, April 24, 2023
inference model (specific RetinaNet model) that is employed in

the workflow achieved an average precision of 0.86 across

six classes, showing its efficacy in cell detection and classifica-

tion. However, when applied to large datasets, sample-wise

quality control and common sense is necessary when utilizing

learning-basedmethods. For example, in this study, the color ra-

tio of neurons is referred to as an internal control to assess the

cell detection process. Additionally, in the control brains,

assessment that the color ratio is maintained across all tiles is

used to assess outlier tiles.

Although we report an average precision of only 86%, such an

evaluation is performed based on human-annotated ground

truth. Since there is a considerable variability even between hu-

man annotators, there are no perfect models for automated anal-

ysis. Hence, it is crucial to keep the analysis process consistent

and eliminate potential biases.



Figure 6. Variance in astrocyte distribution

between rostral and caudal cortices is

quantitatively captured using COMBINe

(A) Average regional cell density maps of Emx:-

MADM:F/F brain hemispheres (number of ani-

mals = 3).

(B) Significant difference in MADM-labeled astro-

cyte densities was observed between rostral and

caudal regions in Emx:MADM:F/F brain hemi-

spheres (bar chart: mean ± SD, number of ani-

mals = 3; ****, p < 0.0001). See also Figure S5 for

analysis of neuron densities.

(C) Representative images of rostral and caudal

areas (scale bar, 100 mm). Almost no MADM-

labeled astrocytes are observable in rostral areas

of Emx:MADM:F/F brain hemispheres.
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Most of the data processing procedures in the current study

were performed in 2D given the large size of the datasets and

the differences in resolution along axes. Compared with 3D pro-

cessing, 2D processing has been intensely investigated and is

applicable to diverse image data. Also, labeling and manipula-

tion of data in 2D are easier and more intuitive than in 3D. How-

ever, there are situations where 3D processing is favored. For

example, when segmenting and tracing nerves, the structural in-

formation is mostly maintained in 3D. To summarize, processing

in 2D or 3D should be carefully chosen given the specific needs

in the analysis.

All in all, performance of COMBINe in analysis of Emx1cre

MADM forebrains is in line with results obtained by manual

counting in several ways: (1) restricted distribution of MADM

cells, (2) quantitative differences between neurons and astro-

cytes, and (3) the distribution of different cell colors across the

brain. We did not observe volumetric changes when the experi-

mental groups were compared with the control, confirming that

sparse alterations using MADM, which are estimated to occur

in 1:1,000 cells in the brain,34,35 have undetectable effects on

overall tissue development and homeostasis.

From the biological perspective, COMBINe quantitatively and

unbiasedly confirms two important phenotypes in the three

Egfr genetic backgrounds described here. The findings from
Cell Re
Emx:MADM:F/+ forebrains suggest that

when faced with a largely Egfr-heterozy-

gous forebrain background, sparse

populations of red WT MADM cells may

overexpand to generate a larger number

of astrocytes than their normal capacity

during perinatal development when glio-

genesis occurs. In contrast, Egfr-null

MADM cells fail to generate astrocytes

in the rostral part of the isocortex. We

found similar results in comprehensive

study of the role of EGFR in forebrain

gliogenesis32 and in a clonal study using

tamoxifen-inducible Nes-creER:MADM:

F/+ alleles to label gliogenic progeny at

clonal densities.21 Since theWT glial pro-

genitors are essentially overexpressing
EGFR relative to their surrounding cells in the Emx:MADM:F/+

background, these results constitute a gain-of-function scenario

that explains the strong effect on astrocyte production. An

unexpected result in our current study was the region-restricted

presence of glia in Emx:MADM:F/F forebrains since the F/+ find-

ings suggested that no astrocytes should be produced in the

homozygous Egfr-null background. However, the astrocytes in

this case were largely in the caudal, but not rostral, forebrain re-

gions. This suggests the possibility of an EGFR-independent

gliogenic progenitor pool in the caudal aspect of the forebrain

appears capable of compensating for the loss of EGFR-depen-

dent glia, which are critical for astrocyte production in rostral

forebrain regions.32 Interestingly, the EGFR-dependent astro-

cytes appear to occupy neocortical and possibly other neofore-

brain areas, whereas the EGFR-independent populations that

are present in the Emx:MADM:F/F appear to seed evolutionary

older paleocortical and hippocampal areas. The precise identity

and anatomical domain of the EGFR-independent glia-produc-

ing progenitors remain to be determined.

Limitation of study
Currently, deep learning is still considered a black box since the

relationships between input data and the neural networks that

‘‘learn’’ patterns are not clearly explainable, which makes it
ports Methods 3, 100454, April 24, 2023 9
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difficult to evaluate the errors and failures and improve themodel

performance.45 Moreover, as deep learning is a data-driven

method, additional training is required before applying it to

different sample types. Furthermore, the packages utilized/

modified in this study were built on different operating systems

(e.g., Linux and Windows), and modifying them to run in a

different operating system is challenging and inconvenient. In

addition, performance of the brain registration approach adop-

ted in this pipeline should be in line with previous publication

that tested ClearMap/Elastix relative to other registration ap-

proaches. However, one should be aware that the accuracy of

the registration to the ABA drops if the sample phenotype in-

cludes anatomical defects. This issue highlights the need for

the presented hierarchical approach to compare regional

changes in the brain but also the continued need for validation

by the human expert. Last, some of the steps presented in

COMBINe require manual checks to ensure proper functioning.

For example, it is highly recommended to manually inspect a

few images in each tile after channel alignment to ensure accu-

racy, and the cell detection model needs to be validated every

time when analyzing a new batch of datasets.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Alon

Greenbaum (greenbaum@ncsu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d An example mouse brain dataset has been deposited at Dryad and is publicly available as of the date of publication. The DOI is

listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. The DOI is listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice were housed in a 12-hour light:dark cycle with ad libitum access to food and water. All procedures were performed under

the regulations and approval from Institutional Animal Care and Use Committee at North Carolina State University. Emx1cre:

MADM11TG/GT:Egfr+/+, Egfr F/+ and EgfrF/Fmicewere generated using breeding schemes previously described21. Sixmales and three

females were sacrificed at P30. Three brain hemispheres collected from three mice of each genotype were tissue cleared and

analyzed. Sex was not considered as a variable in this study.

METHOD DETAILS

Tissue clearing
The iDISCO+ protocol5 was used to stain and clear the mouse brain hemispheres. Brain hemispheres were dehydrated at room tem-

perature (RT) using methanol gradients diluted in ddH2O: 20%, 40%, 60%, 80%, 100%, 100%; 1 h each. Brain hemispheres were
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then chilled at 4 �C for 2 h and submerged in the mixture of dichloromethane and methanol (v:v=2:1) overnight at RT. After washing

twice in 100% methanol at RT, brain hemispheres were chilled at 4�C for 2 h and decolorized in chilled fresh 5% H2O2 in methanol

overnight at 4�C. After bleaching, brain hemispheres were rehydratedwithmethanol series diluted in ddH2O (100%, 80%, 60%, 40%,

20%), followed by one wash with PBS and two washes with PBS with 0.02% Triton X-100, 1 h each at RT. Next, brain hemispheres

were permeabilizedwith permeabilization solution (0.2%Triton X-100, 0.3MGlycine, 20%DMSO in PBS) for 2 d at 37�Cand blocked

with blocking solution (0.2% Triton X-100, 6% donkey serum, 10%DMSO in PBS) for 2 d at 37�C. Brain hemispheres were then incu-

bated with chicken anti-GFP (1:200, Aves Labs) and rabbit anti-RFP (1:200, Rockland) in PTwH (0.2% Tween-20, 10 mg/L heparin in

PBS) with 5%DMSO (v/v) and 3%donkey serum (v/v) for 7 d at 37�C. After primary staining, brain hemispheres were washed 5 times

with PTwH, 2 h each until the next day. Next, brain hemispheres were incubated with donkey anti-chicken AlexaFluor 647 (1:200,

Jackson ImmunoResearch) and donkey anti-rabbit Cy3 (1:200, Jackson ImmunoResearch) in PTwH with 3% donkey serum for

5 d at 37�C, followed by 5 washes with PTwH. For optical clearing, brain hemispheres were dehydrated with methanol series diluted

in ddH2O (20%, 40%, 60%, 80%, 100%), 1 h each at RT, and incubated in the mixture of dichloromethane andmethanol (v:v=2:1) for

3 h at RT. Brain hemispheres were then submerged in dichloromethane 15 minutes twice at RT. All the incubation steps above were

performed with gentle shaking. Brain hemispheres were cleared with dibenzyl ether at RT.

Light-sheet imaging
Cleared mouse brain hemispheres were imaged using a custom-built light-sheet fluorescence microscope, of which the setup was

outlined in.37–39 Each brain hemisphere was imaged by illumination of 561 nm and 640 nm respectively, with a voxel size of 0.65 3

0.65 3 10 mm3. During image acquisition, every 1 mm in z direction, autofocus method would be applied to correct for the drift be-

tween the light-sheet plane and the detection focal plane.

Channel alignment
When the illumination beams of different wavelengths are parallel, images of different color channels can be matched through trans-

lation in x, y, and z-axes. NuMorph15 was employed for local channel alignment on each imaged tile (MATLAB). First, displacement in

z-planes was determined by maximizing phase correlation between two channels. After adjustment in z, color registration was per-

formed in x- and y-axes.

Cell detection
Both the training data and the validation data contained fluorescence images from different imaging modalities, e.g., slide scanner,

confocal fluorescence microscopy, and LSFM.30 3361 individual cells (2497 neurons and 864 astrocytes) were labeled in the training

data. 1164 individual cells (896 neurons and 268 astrocytes) were labeled in the validation data. Test data was generated from light-

sheet datasets that were analyzed in this paper. 1664 individual cells (1462 neurons and 202 astrocytes) were labeled in the test data.

A RetinaNet29 model was trained to detect cells of six classes: yellow, red, green neurons and astrocytes. The repository cloned

from the source (https://github.com/fizyr/keras-retinanet) was adapted to this work (https://github.com/yccc12/COMBINe/

keras-retinanet). Transfer learning was adopted with a pre-trained ResNet50 being used as the backbone. Data augmentation stra-

tegies such as geometrical transforms, color swap and saturation simulation were applied.30 The initial learning rate was 0.0001 and

the batch size was four. Using an Adam optimizer, the model was trained for 50 epochs. The model with the best performance on

validation data was selected as the inference model. Average precision measure44 was adopted to evaluate model performance.

The average precision measure is widely used in object detection tasks, and it is very similar to the area under the precision-recall

curve. Other measures such as precision, recall, and F-scores46 were reported based on a confidence threshold of 0.5.

Because stitching was likely to generate artifacts, cell detection was performed per image tile, during which images were cropped

into 5123 512 image patches with an overlap fraction of 0.125 for inference. Detections in overlapped areas were merged based on

intersection over union and confidence score.

Stitching
TeraStitcher40 advancedmodewas used to stitch the acquired datasets, withmisalignment across tiles being corrected. Parameters

output from TeraStitcher were adopted to stitch detected cells of each tile. Duplicate detections in overlapping regions between adja-

cent tiles were rejected. Redundant detections across different z-planes were merged based on signal intensities when the output

bounding boxes between adjacent z-planes were found overlapped, which was determined by an intersection over union above 0.5

between two bounding boxes. Stitched datasets and detected cells were visualized in Imaris 9.5 (Oxford Instruments).

Registration
ClearMap5 in Linux was utilized to register stitched datasets to Allen Brain Atlas33 and to map detected cells to annotated brain

regions.

Visualization
Cell densities and statistics were visualized in MATLAB using a custom script.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Regional cell densities between different groups were compared in MATLAB using unpaired t-tests assuming unequal variances.

p-values were adjusted by the Benjamini–Hochberg procedure47 to control the false discovery rate (< 0.05) for simultaneous multiple

testing. All statistics were reported as mean ± standard deviation (SD).
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