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Abstract

Hypercholesterolaemia is considered an important cause of atherosclerotic cardiovascular

disease. In a previous investigation, we demonstrated that cultured hepatoma cells treated

with hypercholesterolaemic sera compared with cells treated with normocholesterolaemic

sera show overexpression of mRNAs related to mitochondrial 3-hydroxy-3-methylglutaryl-

coenzyme A synthase (HMGCS2). In the present work, using an NMR metabolomic analysis,

we demonstrate that the hypercholesterolaemic blood sera previously used to treat cultured

hepatoma cells are characterized by a metabolomic profile that is significantly different from

the normocholesterolaemic sera. Acetate, acetone, 2-hydroxybutyrate, cysteine, valine, and

glutamine are the metabolites distinguishing the two groups. Abnormalities in the concentra-

tions of these metabolites reflect alterations in energy-related pathways, such as pantothe-

nate and CoA biosynthesis, pyruvate, glycolysis/gluconeogenesis, the citrate cycle, and

ketone bodies. Regarding ketone bodies, the pathway is regulated by HMGCS2; therefore,

serum samples previously found to be able to increase HMGCS2 mRNA levels in cultured

cells also contain higher amounts of the metabolites of its encoded enzyme protein product.

Introduction

Excessive serum cholesterol concentration is considered an important cause of atherosclerotic

cardiovascular disease [1]. Cholesterol is deeply involved in numerous molecular mechanisms

leading to vascular damage; therefore, its concentration is widely used as a diagnostic clinical

parameter to assess atherosclerotic disease and risk [2]. Most importantly, backgrounds of

hypercholesterolemia can be mainly separated between those deriving from lifestyle, with a

significant role of the quality and quantity of nutritional intake, and, much less frequently,

those deriving from genetic factors [3].

Nevertheless, cholesterol concentration is only one element of a general metabolic condi-

tion that includes, but is not limited to, lipidic components. This metabolic change is gener-

ally known to be the causal pathogenic mechanism resulting in the high incidence of
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cardiovascular diseases, which leads to the most important cause of mortality in the devel-

oped world [4–6].

To investigate a possible correlation between this general dysmetabolic condition and spe-

cific gene regulation, we previously searched for mRNAs that are differentially expressed from

cultured hepatoma cells treated with hypercholesterolaemic sera compared with cells treated

with normocholesterolaemic sera [4]. Our data indicated that hypercholesterolaemic sera

specifically modulate several mRNAs among them, the most relevant being mitochondrial

3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGCS2). HMGCS2 is an essential

enzyme in the biochemical pathway leading to mitochondrial ketone body production and is

already reported in the literature to be involved in the development of several chronic patholo-

gies [5–8].

Extending this study, in the present work, we report an NMR metabolomic analysis of the

sera previously used to treat hepatoma cultured cells. Metabolomics is the large-scale study of

metabolites within cells, biofluids, tissues, or organisms. As such, metabolomics detects sys-

temic fluctuations of multiple metabolite concentrations in response to drugs, diet, lifestyle,

environment, stimuli, and genetic modulations. A variety of compounds (charged, neutral,

hydrophobic, hydrophilic) are simultaneously, qualitatively, and quantitatively detected in

biologic samples using NMR-based metabolomics analysis [9, 10]. As hypercholesterolaemia

reflects metabolic disease that includes but is not limited to lipidic components, the determina-

tion of the metabolomics profile is appropriate to produce many points of observation on a

complex disease characterized by multifactorial and heterogeneous aspects [6]. Our data show

concentration abnormalities of metabolites involved in energy related pathways, indicating

that the transcriptional regulation of the gene HMGCS2 affects the synthesis of metabolites

involved in mitochondrial energy processes. In particular, samples previously found to be able

to increase HMGCS2 mRNA levels in cultured cells also contain higher amounts of metabo-

lites of its encoded enzyme protein product.

Materials and methods

Participants

Human serum samples were selected from October 2009 to July 2010 to study serum composi-

tion, as previously described [11], from the Clinical Pathology Laboratory, Santa Maria Goretti

Hospital, AUSL Latina, Lt, Italy. The study protocol was approved by the institutional ethics

committee (Comitato Etico Lazio 2 Azienda Unità Sanitaria Locale Latina), and all subjects

gave written informed consent in accordance with the 1964 Helsinki declaration and its later

amendments. The normocholesterolaemic group included 16 samples with cholesterolaemia

below 170 mg/dl, while the hypercholesterolaemic group included 16 samples with cholestero-

laemia above 260 mg/dl. All subjects were healthy males aged between 40 and 50 years. Inclu-

sion criteria included patients presenting abnormal serum cholesterol levels, with no other

disease symptoms, and healthy individuals who voluntarily agreed to participate in this study.

Exclusion criteria included all subjects presenting any pathological condition or other abnor-

mal serum values, in addition to cholesterol. No access to any identifying participant informa-

tion was available besides cholesterol concentrations and the absence of other disease

symptoms.

NMR sample preparation

NMR sample preparation and NMR spectra acquisition were performed as previously reported

[9, 12]. Blood was collected into standard blood collection tubes and allowed to clot at room

temperature for 30 to 120 min before centrifugation.
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Serum was aliquoted and stored at -80˚C in Greiner cryogenic vials before NMR spectrom-

etry measurements. Before being transferred to a 5-mm heavy-walled NMR tube, samples

were thawed at room temperature and then spun at 3000 rpm using a Vivaspin1 6 centrifugal

concentrator to remove proteic and particulate matter. Serum supernatant was removed, and

to prepare NMR samples, 425 μL of each sample was added to 25 μL of 1 M potassium phos-

phate buffer (pH 7.4) and 50 μL of D2O. Trimethylsilyl propionic-2,2,3,3-d4 acid, sodium salt

(TSP-d4 0.1% in D2O) was used as an internal reference for alignment and quantification of

NMR signals; the mixture, homogenized by vortexing for 30 s, was transferred to a 5 mm

NMR tube (Bruker NMR tubes) before the analysis started [9].

NMR spectroscopy and processing

NMR experiments were carried out on a Bruker DRX600 MHz spectrometer equipped with

a 5 mm triple-resonance z-gradient CryoProbe. TOPSPIN, version 3.0, was used for spectrom-

eter control and data processing (Bruker Biospin). 1D NOESY experiments [13, 14] were

acquired using spectra with 14 ppm, 16 k data points, excitation sculpting for water suppres-

sion, 192 transients, 4 s relaxation delay, and 60 ms mixing time. The pulse sequence used

included an excitation sculpting routine for the suppression of the water signal [15]. Due to

the effect of excitation sculpting on the signal height of resonances in the region close to the

water resonance [16, 17], the metabolites that have resonances close to this region (ascorbate,

glucose, mannose, and pyroglutamate) were quantified using resonances from those metabo-

lites in other spectral regions. A weighted Fourier transform was applied to the time domain

data with a 0.5 Hz line-broadening followed by manual phase and baseline correction in prepa-

ration for targeted profiling analysis.

NMR data analysis

NMR spectra were manually phased and baseline corrected. Quantification of serum metabo-

lites was achieved using Chenomx NMR-Suite v8.0 (Chenomx Inc.). Briefly, the Chenomx

profiler is linked to the human metabolome database (HMDB) containing more than 250

metabolite NMR spectral signatures encoded at different spectrometer 1H frequencies, includ-

ing 600 MHz (http://www.hmdb.ca). A comparison of the spectral data obtained for each

serum sample with the Chenomx metabolite library results in a list of compounds together

with their respective concentrations based on the known concentration of the added internal

reference compound, TSP-d4.

We submitted our data to the MetaboLights database with ID code MTBLS1416 [18].

Statistical analysis

Multivariate statistical analysis, principal component analysis (PCA) and partial least-squares

discriminant analysis (PLS-DA) were conducted with normalized metabolomics data using

MetaboAnalyst 4.0 (http://www.metaboanalyst.ca/) [19]. The performance of the PCA and

PLS-DA model was evaluated using the coefficient Q2 (using the 7-fold internal cross-valida-

tion method) and the coefficient R2, defining the variance predicted and explained by the

model, respectively. The loading plot was used to identify significant metabolites responsible

for maximum separation in the PLS-DA score plot, and these metabolites were ranked accord-

ing to their variable influence on projection (VIP) scores. VIP scores are weighted sums of

squares of the PLS-DA weights, which indicate the importance of the variable.
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Results

Multivariate data analysis

Matrices, including metabolites and their concentrations as derived from 1H NMR data

collected in 1D NOESY [13, 14], were analysed according to multivariate statistical analysis

using MetaboAnalyst 4.0 [19]. Original matrices, including 16 normocholesterolaemic sera

and 16 hypercholesterolaemic sera, were normalised according to the concentration ranges

of the human metabolome database; as a result, the data of 2 hypercholesterolaemic sera

were identified as outliers and excluded [20]. The data matrix, after normalization by sum

and Pareto scaling, was analysed by PCA (S1 and S2 Figs). To minimize false discoveries

and to obtain robust statistical models, T-test and fold change tests were applied according

to good standardized practice (S1 and S2 Tables, S3 and S4 Figs) [19]. For each sample, 41

metabolites were identified and quantified. In Fig 1, PCA shows that the datasets relative

to hypercholesterolaemic sera are well separated from those of normocholesterolaemic

sera. The first component explains 22.9% of the variance, while the second explains 12.3%

(S3 Table).

To improve the separation observed with the PCA model, supervised PLS-DA was applied:

the fitting (R2Y) value was 95.5%, and the predictive (Q2Y) value was 68.7% (S4 Table, S5 Fig).

Inspection of the PLS-DA score scatter plot (Fig 2A) and loading scatter plot (Fig 2B) point to

2-hydroxybutyrate, citrate, and acetate as metabolites that significantly discriminate hypercho-

lesterolaemic sera from normocholesterolaemic sera; significant differences in concentration

can also be observed for acetone, cysteine, and proline. This evidence is confirmed by applying

VIP score analysis (Fig 3, S5 Table). Accordingly, the metabolites characterized by a VIP score

higher than 1 are considered good classifiers between the hypercholesterolaemic and normo-

cholesterolaemic groups. In particular, the graph reported in Fig 3 shows that hypercholestero-

laemic sera contain higher concentrations of acetate, cysteine, acetone, and 2-hydroxybutyrate

and lower concentrations of citrate, glutamine, valine, proline, leucine, and tryptophan than

normocholesterolaemic sera. To gain meaningful insight from these data, we applied meta-

bolic pathway analysis using MetaboAnalyst 4.0.

Fig 1. PCA score scatter plot (A) and PCA loading scatter plot (B) for the 1H NMR data collected in 1D NOESY spectra acquired

at 600 MHz. Data are relative to 14 hypercholesterolaemic (green circles) and 16 normocholesterolaemic (red circles) human sera.

https://doi.org/10.1371/journal.pone.0231506.g001
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The graph reported in Fig 4 indicates all matched pathways according to p-values from path-

way enrichment analysis (Fig 5) and according to pathway impact values from pathway topology

analysis (S6a–S6e Fig). The pathways were classified according to the total number of com-

pounds found in the KEGG database [21]. Specifically, the metabolic pathways are represented

as circles according to their scores from enrichment (p-values in the vertical axis) and topology

analyses (pathway impact, horizontal axis). Darker circle colours indicate the most significant

changes in metabolites in the corresponding pathway. The size of the circle corresponds to the

pathway impact score and is correlated with the number of metabolites involved (number of

hits). By combining pathways characterized by hits>1 and p-values<1e-6 (S6 Table), we

observed the following top 5 pathways as the most perturbed in our analysis: 1) pantothenate

and CoA biosynthesis, 2) pyruvate metabolism, 3) glycolysis/gluconeogenesis, 4) citrate cycle

(TCA cycle), and 5) synthesis and degradation of ketone bodies (S6 Fig). The deepening of these

results using Reactome analysis [22] indicates that pathways related to mitochondrial dysmeta-

bolism and, in particular, pathways related to the synthesis and metabolism of ketone bodies (p-

value 0.001) are those most related to the reported metabolic abnormalities. Interestingly, both

metabolic pathway analysis and Reactome analysis support the evidence of a relationship

between HMGCS2 mRNA overexpression in the hypercholesterolaemic sera and the metabolo-

mic profile characterized by increased levels of acetate and 2-hydroxybutyrate, which are indeed

ketone body metabolites.

Discussion

Analysis of serum components is a traditional source of reference parameters that allows for

obtaining relevant diagnostic and prognostic information on numerous diseases. Additionally,

the importance of serum composition comes from the fact that it is determined both from

endogenous metabolism and from the nutritional intake. Serum components also actively

participate in most physiological and pathological mechanisms.

Considering the possibility that serum molecules, including diet-derived nutrients, directly

affect pathogenic mechanisms, we previously searched for genes selectively regulated in

Fig 2. PLS-DA score scatter plot (A) and PLS-DA loading scatter plot (B) for the 1H NMR data collected in 1D NOESY spectra

acquired at 600 MHz. Data represent 14 hypercholesterolaemic (green circles) and 16 normocholesterolaemic (red circles) human sera.

https://doi.org/10.1371/journal.pone.0231506.g002
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human hepatoma cells by treatment with dyslipidaemic sera [4]. In these experiments, we

found that in response to high cholesterol concentrations, the expression of the HMGCS2

gene was significantly increased [4]. We also observed overexpression of HMGCS2 mRNA [6]

in the liver of rats receiving a diet containing only saturated fats [23]. Extending previous

works using an NMR-based metabolomics approach, we investigated the hypothesis of a possi-

ble correlation between the previously described transcriptomic signature of hepatoma cell

lines treated with hypercholesterolaemic sera and the metabolomic signatures of the same sera

[4]. In particular, we investigated the hypothesis that the increase in HMGCS2 mRNA levels

[6] could affect the activity of its protein product. As a result, our metabolomics data revealed

that the hypercholesterolaemic blood sera show a metabolomic profile that is significantly dif-

ferent from that of the normocholesterolaemic sera, where acetate, acetone, 2-hydroxybuty-

rate, cysteine, valine, and glutamine are the metabolites discriminating the two groups.

The concentrations of 2-hydroxybutyrate are higher in patients with hypercholesterolaemia

than in normocholesterolaemic patients.

Fig 3. Metabolites discriminating hypercholesterolaemic from normocholesterolaemic samples, according to VIP score values.

https://doi.org/10.1371/journal.pone.0231506.g003
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Dysmetabolism of 2-hydroxybutyrate reflects dysmetabolism of the propanoate pathway.

This pathway is one of the most significant pathways identified by the enrichment analysis

(Figs 4 and 5), together with the citrate cycle pathway. The propanoate and citrate cycle path-

ways are both energy-related pathways, and in particular, propanoate is involved in the regula-

tion of the citrate cycle pathway [24].

The concentrations of acetone and acetate are higher in the sera of patients with hypercho-

lesterolaemia. These metabolites are part of the ketone body pathways. Analysis conducted by

Reactome confirms the relevance of this pathway in the dysmetabolic framework of subjects

Fig 4. Graph of pathway impact and relative p-value. Pathway analysis showing all matched pathways according to p-values from

pathway enrichment analysis (y-axis) and pathway impact values from pathway topology analysis (x-axis). The colour and size of each

circle are based on p-values and pathway impact values, respectively. Small p-values and large pathway impact circles indicate that the

pathway is greatly perturbed. The top 5 pathways in order of p-values from the pathway analysis are numbered as follows: 1)

pantothenate and CoA biosynthesis, 2) pyruvate metabolism, 3) glycolysis/ gluconeogenesis, 4) citrate cycle (TCA cycle) and 5) synthesis

and degradation of ketone bodies.

https://doi.org/10.1371/journal.pone.0231506.g004
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Fig 5. Pathway enrichment analysis: The pathways related to a p-value that excludes randomness and correlates with

hypercholesterolaemia.

https://doi.org/10.1371/journal.pone.0231506.g005
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with hypercholesterolaemia. Interestingly, this pathway is regulated by HMGCS2, the enzyme

whose mRNA we found to be overexpressed in the same hypercholesterolaemia blood sera.

Therefore, our present data support the hypothesis that serum samples previously found

to be able to increase HMGCS2 mRNA levels in cultured cells also contain higher amounts

of metabolites of its encoded enzyme protein product. The intrinsic enzymatic activity of

HMGCS2, which is important within the metabolic pathway to produce ketone bodies, could

then be part of the pathogenic mechanisms. These data confirm numerous pieces of evidence

from the literature, indicating an important role of HMGCS2 in pathogenic mechanisms. Inhi-

bition of HMGCS2 expression was reported to reduce endothelial damage in a diabetes melli-

tus model [5]. HMGCS2 deficiencies due to inborn errors of metabolism were associated with

dyslipidaemia [7], while HMGCS2 activity was considered to potentially be involved in high

cardiovascular risk [8]. Other evidence indicates that the HMGCS2 protein product is a

PPARα target [25, 26] since it interacts with PPARα and up-regulates transcription of its gene

[27]. HMGCS2 may be a PPARα co-activator [28], while modulating its expression in the cul-

tured HepG2 cell line has complex metabolic effects [29]. Taken together, these data strongly

indicate that HMGCS2 expression might have a relevant role within the pathological metabolic

condition, which is consequent to inappropriate nutrition and configures an increased cardio-

vascular risk. The excessive activity of this enzyme could be a consequence of the effect of

nutrients and endogenous metabolites acting at the gene regulation level.

Metabolomic analysis indicated increased concentrations of some amino acids, such as

cysteine, serine, histidine, and phenylalanine. Previous scientific studies have shown a funda-

mental role of histidine in the induction of hypercholesterolaemia [24, 30]. Similarly, elevated

cysteine levels appear to be related to cardiovascular diseases [31]. Conversely, tryptophan,

and leucine have lower concentrations in subjects with hypercholesterolaemia. Tryptophan

inhibits gluconeogenesis [32], therefore influencing pyruvate concentrations. The pyruvate

pathway is one of the most affected by dyslipidaemic conditions (Fig 4). Many adipose tissues

synthesize ketone bodies from leucine, which would explain the reduction in leucine concen-

tration and the increase in fatty acids [33].

According to enrichment pathway analysis, metabolites discriminating the two groups of

sera reflect an alteration in the metabolic pathways of pantothenate and CoA biosynthesis,

pyruvate, glycolysis/gluconeogenesis, and citrate cycle. While it is not possible to specifically

relate these metabolic changes to the pathogenetic mechanisms of clinical conditions associ-

ated with hypercholesterolaemia and dyslipidaemia, it is still possible to make some hypothe-

ses. Hypercholesterolaemic and dyslipidaemic conditions leading to cardiovascular conditions

are most commonly consequent to a nutritional status with excessive energy and lipid intake.

Pantothenate/CoA biosynthesis, pyruvate metabolism, glycolysis/gluconeogenesis, and the

citrate cycle are all energy-related pathways. Correspondingly, ketone body pathways are

typically increased when excessive energy is derived from lipids. This is consistent with the

observed reduction in citrate in hypercholesterolaemic samples, also indicating a decrease in

the Krebs cycle, which is the typical metabolic change leading to an increase in ketone body

production to process excessive acetyl CoA, which cannot be catabolized [34]. Additionally,

observed variations in hypoxanthine and taurine/hypotaurine metabolism are likely part of

these disease mechanisms. In particular, hypoxanthine levels are related to the condition of

hypercholesterolaemia [35].

Conclusions

Administration of human hepatoma cells with hypercholestaerolaemic blood sera previously

induced an increase in the mRNA expression of HMGCS2, an enzyme involved in the ketone
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body pathway. In the present work, the sera previously used to treat hepatoma cells have been

the object of NMR metabolomics analysis. The data thus obtained show concentration abnor-

malities of metabolites involved in energy related pathways. Serum samples previously found

to be able to increase HMGCS2 mRNA levels in cultured cells also contain higher amounts of

acetate and acetoacetate, metabolites of its encoded enzyme protein product.

The data presently reported, integrated by those previously published, define a multi-omics

analytical approach to prove that the transcriptional regulation of the gene HMGCS2 has an

effect on the synthesis of numerous metabolites related to mitochondrial energy processes.
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