
Journal of 
Lipid and 
Atherosclerosis

26

ABSTRACT

Diabetes mellitus increases the risk for the development of heart failure even in the 
absence of coronary artery disease and hypertension, a cardiac entity termed diabetic 
cardiomyopathy (DC). Clinically, DC is increasingly recognized and typically characterized 
by concentric cardiac hypertrophy and diastolic dysfunction, ultimately resulting in heart 
failure with preserved ejection fraction (HFpEF) and potentially even heart failure with 
reduced ejection fraction (HFrEF). Numerous molecular mechanisms have been proposed 
to underlie the alterations in myocardial structure and function in DC, many of which show 
similar alterations in the failing heart. Well investigated and established mechanisms of 
DC include increased myocardial fibrosis, enhanced apoptosis, oxidative stress, impaired 
intracellular calcium handling, substrate metabolic alterations, and inflammation, among 
others. In addition, a number of novel mechanisms that receive increasing attention have 
been identified in recent years, including autophagy, dysregulation of microRNAs, epigenetic 
mechanisms, and alterations in mitochondrial protein acetylation, dynamics and quality 
control. This review aims to provide an overview and update of established underlying 
mechanisms of DC, as well as a discussion of recently identified and emerging mechanisms 
that may also contribute to the structural and functional alterations in DC.
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INTRODUCTION

Cardiovascular complications are the main cause that determines mortality in patients suffering 
from diabetes, mainly due to increased ischemic heart disease in diabetics. Of note though, 
an increased risk for the development of heart failure remains after adjusting for concomitant 
risk factors such as coronary artery disease (CAD) and hypertension.1 Thus, the term diabetic 
cardiomyopathy (DC) was introduced, defined as ventricular dysfunction in the absence of CAD 
and hypertension. Today, DC is increasingly recognized as an independent cardiac entity in 
clinical practice. Cardiac hypertrophy and diastolic dysfunction are typical clinical features of 
DC, which may progress to heart failure with preserved ejection fraction (HFpEF).2-4 Although 
not readily detectable using conventional echocardiography, subtle abnormalities in systolic 
function may be detected using strain analysis and measurements of peak systolic velocity.5 
Recently, Seferovic and Paulus3 even called DC a “two-faced disease” that may not only be 
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characterized by a restrictive phenotype leading to HFpEF but also a dilated phenotype leading 
to heart failure with reduced ejection fraction (HFrEF). While the development of a meaningful 
systolic dysfunction in DC remains subject of debate, many studies performed in diabetic 
animals and humans provided strong data of structural and cellular alterations that should 
adversely impact the response of the heart to subsequent stressors, and that partially overlap 
with derangements observed in failing hearts of other etiologies. The number of mechanisms 
proposed to cause DC steadily grows and adds to the complexity of this cardiac entity. This 
review aims to provide an overview and update of established underlying mechanisms of DC, as 
well as a discussion of recently identified and emerging mechanisms that may also contribute to 
the structural and functional alterations in DC.

ESTABLISHED MECHANISMS OF DC

1. Myocardial fatty acid (FA) metabolism and lipotoxicity in DC
The myocardial metabolic phenotype in diabetes is characterized by increased FA uptake and 
oxidation combined with a decrease in glucose oxidation. This substrate oxidative pattern 
is mainly mediated by competition between glucose and FA metabolism as defined by the 
Randle hypothesis and by increased activation of peroxisome proliferator-activated receptor 
α (PPARα) signaling, which increases the expression of proteins and enzymes involved in FA 
uptake and oxidation.6 Indeed, overexpression of PPARα results in a cardiac phenotype that 
resembles molecular alterations observed in animal models of DC, including repression of 
glucose utilization, cardiac hypertrophy and systolic dysfunction.7 Increased FA oxidation 
may induce mitochondrial uncoupling by reactive oxygen species (ROS)-mediated direct 
activation without an increase in levels of mitochondrial uncoupling proteins, which may 
result in decreased ATP regeneration and an impairment in cardiac efficiency (cardiac work/
oxygen consumption).8,9 The shift towards increased FA utilization even remains consistent 
after application of insulin in type 2 diabetes, which indicates a metabolic inflexibility of 
the diabetic heart to easily switch between FA and glucose utilization.10 As a consequence, 
the adaptation to a chronic increase in energy demand (e.g. hypertension) or myocardial 
ischemia reperfusion, which both may require an increase in glucose utilization to maintain 
cardiac structure and function, may be impaired in the diabetic heart.11,12

Since FA uptake exceeds the FA oxidative capacity of mitochondria in DC, non-oxidized 
FAs may be diverted into other pathways of lipid metabolism, including the synthesis 
of triacylglycerols (TAG), ceramides, diacylglycerols, long-chain acyl-CoAs, and acyl-
carnitines.13 One mechanism contributing to the lipotoxic component of DC may represent 
a dysbalance between FA uptake and oxidation mediated by activation of glycogen synthase 
kinase-3α (GSK-3α) during high fat diet.14 Activation of GSK-3α may lead to a specific 
phosphorylation of PPARα, thereby inducing uptake and storage of FAs but not oxidation of 
FAs and thus leading to an intensified lipid accumulation.14 Knock out of GSK-3α attenuates 
cardiomyocyte hypertrophy and the development of diastolic dysfunction.14 Increased TAG 
storage is widely considered a biomarker of excess lipid storage in DC, but may actually 
represent an inert buffer system to divert FA away from pathways that generate toxic lipid 
intermediates, although some studies also suggest that TAG accumulation may contribute 
to cardiac hypertrophy and dysfunction.13,15 Good evidence exists though that ceramide 
accumulation may be a culprit lipid intermediate mediating toxic effects in DC. Increased 
myocardial ceramide levels are associated with cardiac dysfunction in rodent models of 
diabetes, and pharmacologic inhibition of ceramide biosynthesis improved cardiac function 
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and attenuated cardiomyocyte apoptosis in lipotoxic cardiomyopathy and diabetic Zucker 
diabetic fatty rats, respectively.16,17 Interestingly, a milk fat-based high fat diet rich in myristate 
caused cardiac hypertrophy and dysfunction which was induced by ceramide synthase 
5-mediated production of C14-ceramide, and ceramide-induced cardiac hypertrophy may 
have been caused by increased autophagy in this model, suggesting that maybe not bulk but 
specific ceramide species may have deleterious lipotoxic effects in DC.18

2. Glucose utilization and toxicity in DC
Hyperglycemia causes a glucose gradient across the cell membrane since serum glucose 
availability is high but the intracellular capacity to oxidize glucose is rather low due to 
impaired pyruvate dehydrogenase (PDH) activity.19 As a consequence, glucose uptake is 
increased by mass action effects, resulting in accumulation of glycolysis intermediates 
which may enter additional pathways of glucose utilization that may exert harmful effects 
on the heart in diabetes.20 Accumulation of glucose-6-phosphate results in increased 
generation of nicotinamide adenine dinucleotide phosphate (NADPH) by the activity 
of glucose-6-phosphate dehydrogenase and subsequent enzymatic steps of the pentose 
phosphate pathway, thereby providing a substrate for cytosolic ROS production by NADPH 
oxidases (NOX).21 Glucose-6-phosphate can also contribute to the formation of harmful 
advanced glycation end products (AGEs).22 AGE result from glycation of free amino 
groups of predominantly long-lived proteins and may harm cardiomyocytes through direct 
formation of cross-linked macro-molecules. AGE may impair Ca2+ handling by inducing 
dysfunction of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2a, may increase fibrosis 
by inducing cross-linking of collagen molecules, and may bind to the AGE receptor (RAGE) 
and thereby increase nuclear factor (NF)-κB signaling to increase collagen production and 
promote proinflammatory signaling in DC.23-26 Finally, fructose-6-phosphate may enter 
the hexosamine pathway, which may lead to increased O-GlcNAcylation of proteins and 
thus impaired Ca2+ handling in DC, among other effects (see also 3.4).27 The alterations 
of cardiomyocyte glucose and FA metabolism and their potential consequences in DC are 
schematically illustrated in Fig. 1.

3. Oxidative stress in DC
Oxidative stress is widely accepted to contribute to the pathogenesis of DC (Fig. 1), as 
evidenced by increased mitochondrial H2O2 emission, increased levels of peroxidation 
products, increased protein tyrosine nitration, and induction of the antioxidant defense 
system in diabetic animals or humans.8,28-30 A causative contribution of mitochondrial 
oxidative stress was emphasized by studies investigating the effects of ROS scavenging 
on DC using transgenic overexpression of catalase, manganese superoxide dismutase or 
peroxiredoxin-3 in diabetic mice, which at least partially restored mitochondrial function, 
attenuated apoptosis, improved cardiomyocyte contractility, and attenuated ROS-induced 
NF-κB-mediated cardiac inflammation.31-33 Similarly, treatment with the mitochondria-
targeted antioxidant mito-TEMPO attenuated mitochondrial oxidative stress, apoptosis, 
cardiac hypertrophy and cardiac dysfunction in diabetic mice.34 Beyond mitochondria, 
superoxide generation by NOX also contributes to oxidative stress in the diabetic heart.35 
Activity or expression of NOX2, NOX4 as well as adaptor proteins of the NADPH oxidase 
complexes are increased in diabetic hearts, and treatment of diabetic mice with the NOX 
inhibitor apocynin attenuated increased superoxide generation and improved cardiac 
dysfunction.36,37 Xanthine oxidase is another extramitochondrial ROS-generating enzyme 
whose activity is increased in diabetic hearts.38 Inhibition of xanthine oxidase by allopurinol 
treatment decreases oxidative stress, fibrosis, and cardiac dysfunction in diabetic rodents.38,39 
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Finally, a decrease in the dimer to monomer ratio of endothelial NO synthase (eNOS) may 
contribute to oxidative stress in diabetic hearts.40 Monomerization of eNOS, i.e. uncoupling 
of eNOS, results in an increased production of ROS instead of NO, and eNOS uncoupling has 
been observed in diabetic hearts.41 Importantly, inhibition of NOS uncoupling by sepiapterin 
attenuated cardiac dysfunction in diabetic mice 41. In addition, superoxide reacts with NO 
to form peroxynitrite, a very reactive oxidant. Peroxynitrite promotes apoptosis, activates 
mitogen-activated protein kinases (MAPKs) and poly(ADP-ribose)-polymerase 1 (PARP-1), 
impairs intracellular Ca2+ handling, and impairs cardiac contractility.42

4. Fibrosis in DC
Interstitial and perivascular deposition of collagen is typically observed in DC both in animal 
models and human subjects and may contribute to diastolic and systolic dysfunction.43,44 
Interstitial fibrosis increases stiffness of the left ventricle and thereby contributes to 
impaired relaxation and diastolic dysfunction. Fibrosis may also impair the transduction of 
cardiomyocyte contraction into myocardial force development, leading to uncoordinated 
contraction.45 Collagen and other extracellular matrix proteins are produced by fibroblasts, 
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Fig. 1. Consequences of diabetes-induced alterations in substrate metabolism and sources of increased ROS in DC. 
Increased FA uptake results in accumulation of TAG, lipid intermediates and increased FA oxidation, all of which 
may harm the cardiomyocyte. Increased glucose entry into the cardiomyocyte may promote alternative pathways 
of glucose utilization, thus provoking an increase in ROS, AGE, and O-GlcNAcylation. Increased amounts of 
intramitochondrial ROS may be generated by the electron transport chain, by increased MAO activity or by increased 
calpain-1 levels, whereas NOX2, NOX4, and XO may contribute to increased cytosolic ROS generation. 
ROS, reactive oxygen species; DC, diabetic cardiomyopathy; FA, fatty acid; TAG, triacylglycerols; AGE, advanced 
glycation end product; NOX, NADPH oxidases; XO, xanthine oxidase; GLUT, glucose transport protein; CD, cluster 
of differentiation; FATP, fatty acid transport protein; ACS, acetyl-CoA synthetase; PPARα, peroxisome proliferator-
activated receptor α; FAO, fatty acid oxidation; PPP, pentose phosphate pathway; NADPH, nicotinamide adenine 
dinucleotide phosphate; HBP, hexosamine biosynthetic pathway; O-GlcNAc, O-linked β-N-acetylglucosamine; 
SERCA, sarco(endo) plasmic reticulum Ca2+-ATPase; DAG, diacylglycerols; TAG, triacylglycerols; CPT, carnitine 
palmitoyltransferase; TCA, trichloroacetic acid; MAO, monoamine oxidases; PDH, pyruvate dehydrogenase; ADP, 
adenosine diphosphate; ATP, adenosine triphosphate; UCP, uncoupling protein.
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whereas fibrogenic mediators and signaling molecules are secreted by inflammatory cells 
(e.g. macrophages) and cardiomyocytes.46 In DC, increased collagen production may be 
driven by increased expression of signaling receptors that regulate collagen expression 
such as transforming growth factor β (TGFβ), or transcription factors such as connective 
tissue growth factor (CTGF), or may be related to increased activation of the DNA repair 
enzyme PARP-1.47-49 Opposite to increased collagen deposition, dysregulation of extracellular 
matrix degradation due to remodeling of matrix metalloproteinases, in particular reduced 
expression of matrix metalloproteinase 2, may also contribute to accumulation of increased 
connective tissue content in diabetic hearts.50

5. Forkhead box transcription factors (FoxO) in DC
FoxO are a family of transcriptions factors that contain a specific amino acid sequence called 
forkhead box which they use to bind to target DNA sequences. In general, FoxO signaling 
regulates the expression of many genes, including genes encoding for proteins involved in 
cellular metabolism, oxidative stress, apoptosis and cell cycle differentiation. FoxO1, FoxO3 
and FoxO4 are expressed in the heart. While deletion of FoxO3 or FoxO4 does not affect 
cardiac development, deletion of FoxO1 results in embryonic lethality by day E10.5–E11 and 
severe defects in vascular and cardiac growth, implying a predominant role of the FoxO1 
isoform for cardiac physiology.51 Myocardial expression of FoxO1 is increased in models of 
type 2 diabetes, and various stimuli like hyperglycemia, lipid overload, ROS, cytokines and 
other growth factors have been shown to regulate FoxO1 activity in DC.51,52 Importantly, 
mice lacking FoxO1 are protected from high-fat diet-induced impairment in glucose uptake, 
cardiomyocyte insulin resistance, cardiomyocyte hypertrophy, lipid accumulation and cardiac 
dysfunction, strongly implicating increased activity of FoxO1 in the pathogenesis of DC.52

6. Inflammation in DC
Diabetes is a proinflammatory state and chronic low-grade inflammation in the heart 
may contribute to the pathogenesis of DC.53,54 A number of studies reported increased 
activation of the proinflammatory transcription factor NF-κB, increased expression of 
inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-18, tumor necrosis factor [TNF] α, 
TGFβ-1), increased expression of cell adhesion molecules (ICAM-1, VCAM-1), and increased 
infiltration of macrophages and leukocytes in DC.50,55,56 Proinflammatory signaling may 
contribute to cardiac dysfunction by increasing oxidative stress and peroxynitrite levels, 
which may cause direct cellular damage, may increase apoptotic cell death and may impair 
intracellular Ca2+ handling, for example by impairing expression and activity of SERCA2a.57 
Myocardial inflammation may also increase fibrosis, thereby contributing to diastolic 
and systolic dysfunction.58 Accordingly, a number of studies demonstrated attenuation 
of contractile dysfunction in DC by decreasing oxidative stress, fibrosis and apoptosis by 
various different interventions that reduced cardiac inflammation, including AT-1 receptor 
antagonism, activation of the kallikrein-kinin system, inhibition of p38 MAPK signaling, 
gene deletion of kinin receptor b1, inhibition of interleukin converting enzyme, anti-
TNFα treatment, inactivation of GSK-3β, and cannabidiol treatment.38,50,55,56 Furthermore, 
myocardial expression levels of the pattern recognition receptor toll-like receptor 4 (TLR4), 
a key proximal signaling receptor responsible for initiating the innate immune response, 
is increased in DC, and TLR4 silencing prevents cardiac lipid accumulation, myocardial 
apoptosis, ventricular remodeling and dysfunction, and suppresses ROS production in 
diabetic hearts.59-61 Yet another inflammatory mechanism contributing to DC may be 
increased myocardial NLR family pyrin domain containing 3 (NLRP3) inflammasome 
activation, a multi protein complex which may induce apoptosis via activation of caspase-1, 
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and which may induce an inflammatory form of programmed cell death termed pyroptosis 
(characterized by cytoplasmic swelling, plasma membrane rupture and nuclear DNA 
damage).62 Expression of NLRP3, swelling of mitochondria and fibrils, and caspase-1 
dependent pyroptosis are increased in diabetic hearts.33,63

7. Apoptosis in DC
Apoptosis is a highly controlled mechanism of programmed cell death and seems to be the 
dominant form of cell death in DC, compared to lower rates caused by necrosis.53,64,65 Due 
to the poor ability of the heart to regenerate cardiomyocytes increased apoptotic cell death 
is considered to contribute to contractile dysfunction in DC.66 Increased apoptosis was 
observed in right atrial appendage of diabetic patients, which was partially inhibited either 
by inhibition of PARP-1 or by inhibition of caspase-3, the common downstream effector of 
extrinsic and intrinsic activation of apoptotic signaling.65 In type 1 diabetic animals, both 
increased death receptor signaling and mitochondria-dependent pro-apoptotic signaling 
(increased caspase-9 activity, increased Bak/Bax expression, mitochondrial cytochrome 
c release) contribute to increased apoptosis in DC, and antioxidant treatment attenuated 
apoptosis and both of these signaling pathways, suggesting a significant role of increased 
ROS in apoptosis induction in DC.64,67 A recent study also suggests that dissociation of Bcl-2 
from beclin-1 by restoration of impaired AMP-dependent protein kinase (AMPK) activity may 
attenuate apoptosis in DC by restoring autophagy, supporting the proposal that an interplay 
between autophagy and apoptosis may be important in DC.68 Furthermore, endoplasmic 
reticulum stress may promote apoptosis in DC by activating JNK signaling and apoptosis 
via the intrinsic and extrinsic pathway, or by increasing PERK/CHOP signaling, which may 
trigger apoptosis by switching expression towards pro-apoptotic Bcl-2 proteins.69

8. Impaired Ca2+ handling in DC
During each contraction cycle, cardiomyocyte action potentials trigger Ca2+ entry via L-type 
Ca2+ channels (LTCC), which triggers sarcoplasmic reticulum (SR) Ca2+ release via ryanodine 
receptors (RyR), resulting in increased cytosolic Ca2+ concentration, binding to troponin 
C and triggering of actin myosin interaction, i.e. cardiac contraction. Relaxation occurs 
mainly by Ca2+ reimport into the SR by SERCA2a and by Ca2+ export via Na+/Ca2+ exchanger 
(NCX). In diabetes, Ca2+ entry, intracellular Ca2+ cycling, and Ca2+ efflux are altered both in 
animal models and humans, contributing to impaired cardiac contraction and relaxation 
(Fig. 2). Reduced Ca2+ entry is the consequence of both reduced expression and altered 
voltage dependence of LTCC.70 Impaired intracellular Ca2+ cycling includes decreases of 
the amplitude of Ca2+ and of the systolic rate of Ca2+ rise and decay.24,25 Prolonged rates of 
Ca2+ decay may result from impaired SERCA2a activity during diastole, which may lead to a 
reduction in SR Ca2+ storage of up to 50% and thus contributes to impaired relaxation and 
diastolic dysfunction.71 Impaired Ca2+ efflux may be mainly related to reduced expression 
and activity of NCX.24 In addition, mitochondrial Ca2+ uptake and release which follows the 
cytosolic changes in Ca2+ content are impaired in DC, which may compromise the activity 
of Ca2+-sensitive TCA cycle enzymes and of the F0F1-ATPase and thus of oxidative ATP 
regeneration.72,73 In models of type 2 diabetes, contractile dysfunction may be driven by a 
significant reduction of the Ca2+ transient due to decreased Ca2+ influx as a consequence 
of decreased LTCC expression, by decreased SR Ca2+ content due to reduced SERCA2a 
expression and increased phospholamban expression, and by decreased content and activity 
of RyR.74,75 In addition, hyperglycemia may cause O-GlcNAcylation of Ca2+/calmodulin-
dependent protein kinase II (CaMKII), which may increase diastolic SR Ca2+ leak via RyRs 
leading to SR Ca2+ depletion.76
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9. Renin-angiotensin-aldosterone system (RAAS)
Diabetes and hyperinsulinemia induce both systemic activation and local myocardial 
activation of the RAAS, thereby promoting fibrosis, apoptosis, and oxidative stress.77-79 
Antagonizing myocardial aldosterone action or inhibition of angiotensin converting enzyme 
reduces oxidative stress, apoptosis and fibrosis, thereby attenuating cardiac hypertrophy and 
improving myocardial function in DC, suggesting a strong contribution of RAAS activation 
in the pathogenesis of DC.50,67,79-82 Mechanisms underlying these beneficial effects of RAAS 
antagonism in DC include a decrease in MMP-2 activity, a decrease in TGFβ expression, 
inhibition of MAPK signaling such as p38 MAPK, and inhibition of NADPH oxidases, among 
others.50,61,77

EMERGING MECHANISMS OF DC

1. Autophagy in DC
Autophagy is a highly regulated mechanism of programmed cell death that is indispensable 
for prenatal and postnatal development, maturation and function of the heart.83,84 
Damaged cellular components (proteins, lipids, mitochondria, etc.) are engulfed in double 
membrane structures called autophagosomes, which fuse with lysosomes to break down 
the sequestered material by hydrolysis. The entire process of autophagy-mediated removal 
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Fig. 2. Potential mechanisms and effects of impaired Ca2+ handling in DC. Impairment in cardiomyocyte Ca2+ influx 
and efflux, impaired release and reuptake of Ca2+ by the SR, and impaired Ca2+ uptake by the mitochondria which 
may subsequently impair ATP regeneration and thereby contribute to systolic and diastolic dysfunction in DC. 
DC, diabetic cardiomyopathy; SR, sarcoplasmic reticulum; ATP, adenosine triphosphate; NCX, Na+/Ca2+ 
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sarco(endo)plasmic reticulum Ca2+-ATPase; AGE, advanced glycation end product.



Journal of 
Lipid and 
Atherosclerosis

of cellular components includes more than 30 autophagy-related genes (Atg) and can be 
evaluated by measuring markers of autophagic activity such as LC3-II, p62, or Beclin-1. 
A low level of constitutive autophagy seems to be protective for a healthy heart.83 In DC, 
the role of myocardial autophagy may differ between type 1 and type 2 diabetes. In type 1 
diabetic OVE26 mice, decreased protein levels of LC3-II, Beclin-1, and a decreased number of 
autophagosomes was associated with impaired AMPK activity and cardiac dysfunction, and 
activation of AMPK by metformin treatment restored autophagy and cardiac dysfunction.85 
Similarly, reduced expression of LC3-II and Beclin-1 was associated with impaired AMPK 
activity and cardiac dysfunction in streptozotocin (STZ)-diabetic mice, and overexpression 
of heme oxygenase-1 restored AMPK activity, autophagy and cardiac function.86 Thus, 
it has been proposed that a suppression of autophagy in models of type 1 diabetes may 
result from impaired AMPK activity and may contribute to cardiac dysfunction. Of interest 
though, cardiac dysfunction and damage in STZ-diabetic and OVE26 mice was attenuated 
by heterozygous deletion of Beclin-1 but was exacerbated by overexpression of Beclin-1, thus 
suggesting that diminished autophagy could also be an adaptive mechanism that limits 
cardiac dysfunction in DC of type 1 diabetes.87 It also remains to be determined whether the 
beneficial effects of restoration of AMPK activity result from restoration of autophagy or from 
improvement of impaired myocardial energetics by activation of oxidative ATP regeneration. 
More studies are needed to clarify the role of autophagy in DC of type 1 diabetes.

In models of insulin resistance and type 2 diabetes, autophagy was mostly reported to be 
suppressed in response to high fat feeding, although activation of autophagy was reported 
in studies using a milk-fat based diet or high fructose feeding.88 Supporting a maladaptive 
role of autophagy suppression in type 2 diabetes models, deletion of Akt2 enhanced cardiac 
autophagic flux and reduced cardiac hypertrophy and cardiac dysfunction in mice undergoing 
high fat feeding, and treatment with the mTOR inhibitor rapamycin improved cardiac 
remodeling and dysfunction in high fat fed adiponectin knockout mice.89,90 In contrast, 
induction of autophagy was required for cardiac hypertrophy and dysfunction in response to 
milk-fat feeding, suggesting that increased autophagy may contribute to cardiac pathology in 
DC of type 2 diabetes.18 Some of the controversial results both in type 1 and type 2 diabetes 
may be related to differences in the systemic diabetic milieu among the animal models. 
Indeed, high glucose incubation is capable of inhibiting autophagy whereas palmitate is 
able to induce autophagy in cardiac cells, and serum levels of both metabolites are increased 
in animal models of diabetes.91,92 Furthermore, both cardiomyocyte insulin resistance and 
insulin deficiency, which occur to varying degrees in the distinct models of diabetes, will 
impair cardiomyocyte insulin action, and impaired cardiomyocyte insulin signaling due to 
loss of IRS-1 and IRS-2 has been shown to result in unrestrained autophagy, leading to early 
postnatal development of heart failure.84 While emerging evidence is highly suggestive of a 
significant role of altered autophagy in DC, elucidating the adaptive or maladaptive nature of 
suppressed and/or increased autophagy in DC will be one of the challenges of future studies.

2. Mitochondrial dynamics and quality control in DC
Mitochondrial dynamics determine mitochondrial size and morphology and are important 
for proper maintenance of mitochondrial membrane potential, electron transport capacity, 
and ROS production in the heart. Both deletion of mitochondrial fusion proteins (Opa1, 
Mfn1/Mfn2) or fission proteins (Drp1) may result in mitochondrial dysfunction and 
cardiomyopathy, indicating a fundamental role of mitochondrial dynamics in cardiac 
physiology.93 Alterations in mitochondrial size and morphology have also been observed 
in diabetic animals and patients.94,95 Incubation with high glucose induces mitochondrial 
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fragmentation in cardiomyocytes by modulating phosphorylation and O-GlcNAcylation of 
Drp1 and Opa1.96,97 Similarly, mitochondrial fragmentation and O-GlcNAcylation of Drp1 
have been observed in diabetic hearts.96,98 Increased mitochondrial fission may however also 
be mediated by lipotoxic effects in DC. Lipid-induced mitochondrial ROS have been shown 
to induce mitochondrial fission via post-translational modification of AKAP121, DRP1, and 
OPA1 in a mouse model of lipotoxicity.99

Dysfunctional mitochondria may be removed within cardiomyocytes by selective autophagy 
termed mitophagy. If mitophagy functions normally, injured mitochondria that are 
dysfunctional and may harm the cell (e.g. by increasing ROS) are removed, thereby protecting 
the heart. In contrast, defective mitophagy may result in accumulation of dysfunctional 
mitochondria and cause cardiac injury. Mitophagy requires to recruit the same core machinery 
as in general autophagy, but additionally recruits PINK, Parkin and a number of adaptors 
and receptors which specifically mediate mitophagy. In diabetic hearts, reduced protein 
levels of PINK and Parkin have been reported, and in high fat fed mice, impaired mitophagy 
via depletion of Atg7 or deletion of Parkin caused increased lipid accumulation, aggravated 
diastolic dysfunction and impaired systolic function, thus linking impaired mitophagy to 
the development of DC.87,100,101 Interestingly, ablating Drp1 interrupts mitochondrial fission 
and also upregulates Parkin, thereby causing mitochondrial depletion by mitophagy which 
contributes to the development of cardiomyopathy, implying that an interdependence 
between mitophagy and mitochondrial fission exists in the heart, and that mitophagy 
and mitochondrial fragmentation may be required for successful mitochondrial quality 
control in the heart.102 Finally, mitochondrial content, structure and function are regulated 
by mitochondrial biogenesis signaling, with peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha (PGC-1α) being the major transcriptional regulator. Increases in 
mitochondrial area, DNA, and PGC-1α signaling may support an increase in mitochondrial 
biogenesis in DC, although it remains unclear whether these mitochondria are actually fully 
functional.8,33 The interactions between mitochondrial dynamics, biogenesis and mitophagy 
in the heart and in DC remain to be defined more clearly but may be essential for the ability of 
the heart to deal with mitochondrial defects in cardiac disease induced by diabetes.

3. Novel mechanisms of mitochondrial dysfunction in DC
Mitochondrial dysfunction is a well known trait of DC both in human and animal diabetes 
and includes impaired mitochondrial respiratory capacity, increased mitochondrial oxidative 
stress, increased sensitivity for calcium-induced opening of the mitochondrial permeability 
transition pore, abnormal mitochondrial ultrastructure, transcriptional and translational 
downregulation of OXPHOS subunits, and impaired activity of Ca2+-sensitive dehydrogenases 
and the F0F1-ATPase.103 A novel mechanism potentially contributing to mitochondrial 
dysfunction but also to other alterations in DC may be posttranslational modifications, in 
particular increased mitochondrial protein lysine acetylation.104 Activity of sirtuin 3 (SIRT3), 
a NAD+-dependent mitochondrial deacetylase and major regulator of intramitochondrial 
protein acetylation, may be decreased in the diabetic heart, resulting in ROS accumulation 
due to increased acetylation and thus inhibition of Manganese superoxide dismutase.105 
Furthermore, SIRT3 deficiency seems to aggravate suppression of autophagy and mitophagy 
in the diabetic heart, whereas SIRT3 overexpression activated autophagy and mitophagy, 
attenuated mitochondrial defects and decreased cardiomyocyte apoptosis.106 Decreased 
SIRT3 activity in DC may result from NAD+ depletion due to increased PARP-1 activity, thus 
depleting the necessary cosubstrate for SIRT3, or as a consequence of preexistent SIRT3-
independent mitochondrial dysfunction, which may also lead to an increased NADH/
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NAD+ ratio and subsequent inhibition of SIRT3, thereby further aggravating mitochondrial 
defects.107 Since lack of SIRT3 in the heart leads to mitochondrial dysfunction, slowing 
of mitochondrial oxidative pathways, cardiac hypertrophy and increased fibrosis, the 
contribution of decreased SIRT3 activity to DC may be quite of significance.108

Other emerging mechanisms contributing to mitochondrial dysfunction in DC include 
increased ROS generation by monoamine oxidases (MAO) and mitochondrial calpains 
(e.g. Capn1).109 MAO-A and MAO-B are mitochondrial flavoenzymes that generate 
H2O2 during deamination of catecholamines, serotonin and biogenic amines, and their 
expression is increased in diabetic hearts.110 Inhibition of MAO activity using clorgyline or 
selegiline decreased ROS production in diabetic hearts by 50% and may represent a novel 
and promising approach to attenuate oxidative stress in DC.110 Furthermore, initiation of 
mitochondria-associated endoplasmatic reticulum membranes (MAMs) through FUN14 
domain containing 1 (Fundc1) has been shown to result in increased mitochondrial Ca2+ 
content and mitochondrial fragmentation.111,112 Fundc1 is an outer membrane protein which 
shows elevated levels in heart tissue of diabetic patients and induces MAM formation.111 
High levels of glucose inhibit AMPK activity while overexpression of AMPK attenuates the 
mitochondrial dysfunction by ablating MAM formation implicating that Fundc1 suppression 
through AMPK might be a way to attenuate mitochondrial dysfunction in DC.111 Finally, 
mitochondrial oxidative stress in DC may result from mitochondrial accumulation of 
the Ca2+-dependent thiol protease calpain 1, which may decrease ATP synthase content 
and activity by cleavage of ATP synthase subunits, thereby impairing ATP regeneration 
and increasing mitochondrial superoxide generation.109 Mechanisms of mitochondrial 
dysfunction, as well as the potential interrelation between mitochondrial dysfunction, 
alterations in mitochondrial dynamics and mitophagy are schematically illustrated in Fig. 3.
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Fig. 3. Novel mitochondrial mechanisms potentially contributing to DC. Decreased SIRT3 activity in DC may 
contribute to impaired oxidative ATP regeneration, increased ROS production and suppression of mitophagy. 
MAO and calpain 1 may contribute to increased mitochondrial ROS. O-GlcNAcylation and acyl-CoA driven 
posttranslational modification of Drp1 and Opa1 may contribute to mitochondrial fragmentation. Decreased levels 
of PINK and Parkin may suppress mitophagy in DC. Mitochondrial fragmentation and suppression of mitophagy 
may further amplify mitochondrial dysfunction in DC. 
DC, diabetic cardiomyopathy; SIRT3, sirtuin 3; ATP, adenosine triphosphate; ROS, reactive oxygen species; MAO, 
monoamine oxidases; O-GlcNAc, O-linked β-N-acetylglucosamine; TCA, trichloroacetic acid.
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4. O-GlcNAcylation in DC
Another glucose-induced modification in diabetes besides AGE formation that currently 
attracts increasing attention is glycosylation of proteins via addition of an O-linked β-N-
acetylglucosamine (O-GlcNAc), termed O-GlcNAcylation.113 Increased flux through the 
hexosamine pathway in diabetes increases the generation of UDP-GlcNAc, which is used 
by O-GlcNAc transferase to catalyze the addition of O-GlcNAc to proteins. Delivery of 
O-GlcNAcase to diabetic hearts reduced overall O-GlcNAcylation, restored Ca2+-handling 
and sensitivity of myofilaments to Ca2+, and improved cardiac contractility, indicating 
that excessive O-GlcNAcylation is detrimental for the heart.114 An effect on Ca2+ handling 
is also mediated by O-GlcNAcylation of CaMKII, which increases spontaneous SR Ca2+ 
release, thereby contributing to contractile dysfunction and cardiac arrhythmias.76 Increased 
O-GlcNAcylation of the mitochondrial fusion protein OPA1 or the mitochondrial fission 
protein Drp1 may lead to mitochondrial fragmentation, may impair mitochondrial 
membrane potential and impair complex IV activity.96,97 Recently, it was reported that 
an interaction between O-GlcNAc transferase and complex IV, as occurs in healthy 
mitochondria, is impaired in mitochondria from diabetic hearts. Interestingly, the 
same authors also provided evidence for the existence of a UDP-GlcNAc transporter for 
mitochondrial UDP-GlcNAc uptake, which may suggest a significant regulatory role of this 
posttranslational modification in mitochondrial dysfunction in DC.115 O-GlcNAcylation may 
also increase fibrosis in DC by increasing levels of TGF-ß1 and downstream SMAD proteins.116

5. Micro-RNAs (miRNAs) in DC
miRNAs are noncoding single-strand RNAs of short length that bind to specific nucleotide 
sequences in the 3′ untranslated region of a target gene and suppress target protein 
expression by promoting degradation or repressing translation of target messenger RNA 
(mRNA). The significance of miRNAs for cardiac physiology has been emphasized by studies 
in mice with cardiomyocyte selective deletion of dicer, which impairs miRNA biogenesis 
and leads to dilated cardiomyopathy.117 In DC, a dysregulation of 316 out of 1,008 total 
miRNAs was observed, and pathway analysis implicated a number of miRNAs in apoptosis, 
oxidative stress, autophagy and cardiac hypertrophy.118 A number of studies investigated 
the actual contribution of specific miRNAs to DC. Proviral integration site for Moloney 
murine leukemia virus-1 (Pim-1) is a serine/threonine kinase which regulates mitochondrial 
integrity, apoptosis and cellular Ca2+ handling by changing the expression and/or activity 
of Bcl-2 family proteins and SERCA2a. Pim-1 is a direct target of miR-1, and increased miR-1 
levels may impair Pim-1 expression in DC. Adenovirus-mediated rescue of myocardial Pim-1 
expression in vivo improved diastolic and systolic function, attenuated ventricular dilation, 
attenuated fibrosis and apoptosis, and restored SERCA2a content in DC.119 Expression of miR-
133 is increased in DC, and miR-133 exerts direct inhibitory effects on collagen production 
by impairing connective tissue growth factor expression, suggesting that increased miR-133 
levels may promote fibrosis in DC.120,121 Therapeutic silencing of increased miR-195 levels 
has been shown to reduce myocardial hypertrophy and to improve coronary blood flow and 
myocardial function in diabetes, maybe by reducing oxidative stress, inhibiting apoptosis 
and promoting angiogenesis, possibly by increasing reduced expression of Bcl-2 and SIRT1.122 
Myocardial expression of miR-451 is markedly increased in mice fed a high-fat diet, and 
cardiomyocyte-specific deletion of miR-451 attenuates cardiac fibrosis, cardiac hypertrophy, 
and ceramide accumulation in this model. Attenuation of hypertrophy may result from 
restoration of decreased AMPK activity, which in turn may normalize increased mTOR 
phosphorylation and thus prevent high-fat diet induced cardiomyocyte growth.123 Expression 
of miR-30c is decreased in DC, and restoration of miR-30c levels attenuates cardiomyocyte 
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hypertrophy, likely by normalizing increased levels of the pro-hypertrophic proteins cell 
division control protein 42 homolog (Cdc42) and P21 protein (Cdc42/Rac)-activated kinase 1 
(Pak1).124 Finally, upregulation of miR-30d in DC was proposed to decrease FoxO3a signaling, 
resulting in caspase 1 activation, increased inflammatory signaling and thus pyroptosis.125 
Based on the various traits and mechanisms of DC that may be regulated by miRNAs, a 
significant contribution to the development of DC has been proposed.126

6. Epigenetic mechanisms in DC
The term epigenetics describes heritable mechanisms that regulate gene expression 
independent of changes in DNA sequence. Epigenetic mechanisms generally include 
histone modification, DNA methylation and accelerated degradation of telomeres. Histone 
acetylation is achieved by the activity of histone acetyltransferases (HATs), whereas histone 
deacetylation is mediated by histone deacetylases (HDACs). Inhibition of HDACs has been 
shown to blunt pressure overload-induced cardiac hypertrophy and to attenuate myocardial 
ischemia reperfusion injury, thus indicating the significance of this epigenetic mechanism 
in cardiac disease.127,128 Recently, it was reported that inhibition of HDAC activity with 
sodium butyrate resulted in attenuation of cardiac dysfunction, cardiac hypertrophy, fibrosis 
and apoptosis in DC of type 1 diabetic mice, indicating that epigenetic regulation also 
significantly contributes to DC.129 Furthermore, incubation of H9c2 cardiomyocytes in high 
glucose medium leads to decreased expression of insulin-like growth factor 1 receptor, which 
is prevented by inhibition of HDAC activity.130 HDAC inhibition also normalizes decreased 
AMPK phosphorylation, and increased expression of PGC-1α, cluster of differentiation 36, 
diacylglycerol O-acyltransferase 1 and 2, TNFα, and IL-6, accompanied by reversal of mild 
cardiac dysfunction and dilation.131 Finally, histone 3 lysine-9 tri-methylation seems to be 
responsible for a prolonged increase in cardiomyocyte IL-6 expression even after removal of 
high glucose from the medium, whereas apoptosis and mitochondrial dysfunction rapidly 
normalized.132 This observation suggests that epigenetic regulation may even contribute to 
detrimental effects of hyperglycemia that continue after normalization of glucose levels, a 
challenge in diabetes treatment termed metabolic memory.

7. Alternative splicing in DC
Alternative splicing is a physiological process that increases the diversity of proteins by 
variable inclusion or exclusion of exons during mRNA transcription. Known regulators of 
alternative splicing include the RNA binding proteins CUGBP Elav-like family member 1 
(CELF1) and RNA binding fox-1 homolog 2 (RBFox2). Overexpression of CELF1 or deletion 
of RBFox2 causes splicing defects and cardiomyopathy, emphasizing the significance of 
alternative splicing for myocardial integrity and function.133,134 In DC, alternative splicing 
reverts to an embryonic pattern, mediated by activation of protein kinase C α/β and 
subsequent phosphorylation of CELF1 and RBFox2.135 In addition, expression of a dominant-
negative isoform of RBFox2 protein in early DC, which suppresses activity of the native 
endogenous RBFox2 protein, alters alternative splicing in the heart, resulting in impairment 
in Ca2+ handling and excitation-contraction coupling.134,136

THERAPEUTIC POSSIBILITIES IN DC

The established as well as the emerging molecular mechanisms of diabetic cardiomyopathy 
are potential candidates for a therapeutic intervention. Antioxidant treatment to prevent 
ROS-associated damage is one of the therapeutic strategies that could be beneficial in DC. 
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Several mitochondria-targeting antioxidative compounds such as MitoQ, MitoVitE, or 
MitoTempol are available. In particular, treatment with MitoQ showed beneficial effects in 
different pathological conditions such as hypoxia, acute endotoxemia, ischemia-reperfusion 
or pressure overload in rodent models.137-140 Although none of these compounds have 
been tested for treatment of DC yet, treatment with MitoQ decreased mitochondrial ROS 
production, polymorphonuclear neutrophils (PMN) rolling, PMN adhesion, NF-κB and TNFα 
while increasing levels of glutathione peroxidase 1 and PMN rolling velocity in leukocytes 
of type 2 diabetes patients, indicating anti-inflammatory and antioxidative effects and 
suggesting a potential benefit in DC.141

Another potential therapeutic strategy may be activation of sirtuins to maintain 
mitochondrial function in DC by increasing the NAD+/NADH ratio. Nicotinamide 
mononucleotide (NMN) and nicotinamide riboside (NR) are NAD+ precursors which increase 
the cellular levels of NAD+ in animal models, including the heart.142-144 Recently, it has been 
shown that oral supplementation with NR could increase NAD+ levels and is well tolerated in 
healthy humans.145 In a model of heart failure due to pressure overload, treatment with NMN 
maintained cardiac function.146 Another pharmacological strategy to maintain the NAD+/
NADH ratio may be to inhibit PARP-1 using INO1001, which has been shown to ameliorate 
oxidative stress, inflammation and fibrosis in hearts of type 2 diabetic mice.147 PARP-1 
inhibitors are primarily used as drugs against multiple cancers and were first approved 2014 
by the Food and Drug Administration.148

Restoring metabolic flexibility in the diabetic heart represents another therapeutic 
intervention to improve cardiac function in DC. There are various agents to alter cellular 
uptake and/or oxidation of energy substrates with the goal to restore the balance between 
fatty acid utilization and glucose metabolism. Trimetazidine and ranolazine both inhibit fatty 
acid oxidation. Trimetazidine improved cardiac function in diabetic patients with idiopathic 
cardiomyopathy, while ranolazine improved interventional hemodynamic measurements but 
not relaxation parameters in HFpEF patients.149,150 Perhexiline, Amiodarone and Etomoxir 
inhibit carnitine palmitoyltransferase 1 and thereby reduce fatty acid oxidation.151 Perhexiline 
improved maximal oxygen uptake, left ventricular ejection fraction, myocardial function, 
and skeletal muscle energetics in chronic heart failure patients and also cardiac energetics 
in patients with dilated cardiomyopathy.152,153 More studies in animal models and humans 
are required to further evaluate the effects of restoring metabolic flexibility as a therapeutic 
option in DC.

Antidiabetic drugs, by their various mechanisms of action, may certainly also treat different 
underlying mechanisms of DC, in particular including sodium-glucose cotransporter-2 
inhibitors. This topic has been comprehensively addressed in recent reviews and will thus not 
be discussed in this manuscript.154,155

CONCLUSIONS

Diabetes is a steadily growing epidemic, and cardiovascular death is the main cause of 
morbidity and mortality in these subjects. DC is increasingly recognized by physicians as 
a cause of cardiac deterioration despite non-significant CAD and hypertension, and as a 
significant contributor to the development of both HFpEF and HFrEF. As reviewed above, 
several mechanisms have been established in the past that may significantly contribute to 
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DC, with increasing new insights into underlying mechanisms in recent years. In addition, 
novel and emerging mechanisms have been identified, including removal of damaged 
cellular components (autophagy, mitophagy), or transcriptional (FoxO1, alternative 
splicing, miRNAs, epigenetics) and posttranslational regulation (O-GlcNAcylation, 
protein deacetylation) of proteins. Further understanding of DC and the aforementioned 
mechanisms is certainly imperative for potential development of promising drugs for DC 
in the future. Having said this, it is equally important to already initiate studies translating 
promising targets and successful therapeutic interventions observed in small animal models 
into larger animal models or even into humans.
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