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Abstract

Purpose: Virtual reality-based simulators have the potential to become an essential part of surgical education. To make full
use of this potential, they must be able to automatically recognize activities performed by users and assess those. Since
annotations of trajectories by human experts are expensive, there is a need for methods that can learn to recognize surgical
activities in a data-efficient way. Methods: We use self-supervised training of deep encoder—decoder architectures to learn
representations of surgical trajectories from video data. These representations allow for semi-automatic extraction of features
that capture information about semantically important events in the trajectories. Such features are processed as inputs of an
unsupervised surgical activity recognition pipeline. Results: Our experiments document that the performance of hidden semi-
Markov models used for recognizing activities in a simulated myomectomy scenario benefits from using features extracted
from representations learned while training a deep encoder—decoder network on the task of predicting the remaining surgery
progress. Conclusion: Our work is an important first step in the direction of making efficient use of features obtained from
deep representation learning for surgical activity recognition in settings where only a small fraction of the existing data is
annotated by human domain experts and where those annotations are potentially incomplete.

Keywords Self-supervised Learning - Representation Learning - Unsupervised Learning - Surgical Activity Recognition -
Deep Learning - Probabilistic modeling

Introduction to tap the full potential of such simulators as educational

instruments, they must be able to provide automatic perfor-

The increasing importance of computer-assisted surgery has
not only fundamentally changed the competencies surgeons
require, but also fueled the development of novel educational
methods [4]. For example, virtual reality-based simulators
enable surgeons to practice surgical procedures and skills in
safe, diverse and highly realistic environments [3]. In order
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mance assessment and feedback. An important step towards
this goal is the automatic recognition of the surgical activities
performed by users.

Most recent progress towards surgical activity recognition
relies on the use of deep learning [1,8,11]. However, these
methods have the drawback that their training requires exten-
sive amounts of annotated data. While virtual reality-based
simulators record surgical motion data automatically, the
activity annotations must be provided manually by domain
experts. As a consequence, obtaining sufficient amounts
of annotated training data for complex surgical procedures
involves a time-consuming labeling process which is often
prohibitive in practice. This explains the need for surgical
activity recognition methods that work when annotated data
are scarce.

So far, little work has been conducted in this direction.
Existing works can be divided into two distinct categories
depending on the data modality they focus on: a) video-based
[5,12,22] and b) motion-based surgical activity recognition
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[9,10]. To the best of our knowledge, studies combining
sensor-based motion and video data have not been conducted
in the context of surgical activity recognition with scarce
annotations. The present paper addresses this research gap.
We propose a method to learn representations from video data
and to use those in combination with sensor-based motion
data to improve surgical activity recognition without the need
for expensively annotated data.
We make the following contributions:

1 We present a method for semi-automatically extracting
features from surgical video data containing information
about relevant events in surgical trajectories. Specifi-
cally, we describe a deep learning architecture that learns
spatio-temporal representations from surgical videos in a
self-supervised way, and we propose a procedure for the
semi-automatic analysis of the learned representations.

2 We show that features extracted via this method can be
used to significantly improve the performance of unsu-
pervised surgical action recognition approaches requiring
structured (categorical or continuous) input. To this
end, we use such features as observables in a hidden
semi-Markov model for surgical activity recognition.
We provide empirical evidence for the potential of this
approach by testing it on a novel data set of trajectories
collected on a hysteroscopy simulator.

Methods

Our objective is to learn a model that predicts activity labels
for trajectories collected on a surgical training simulator.
Every trajectory corresponds to an individual simulator run
in which a surgeon performs a fixed surgical task. While the
specific task for which we developed our model is a myomec-
tomy task on a hysteroscopy simulator, our methodology can
also be applied to the analysis of other scenarios.

We model trajectories as pairs (X, Z), where X = {x,}]_,
is a sequence of video frames and Z = {z;};_, is a sequence
of sensor data describing, e.g., motions or tool usage. Our
goal is to classify each step ¢ as belonging to a subtask (or
activity) of the surgical procedure from a finite set of possible
activities
S = {activityy, ..., activity,}

defined by a hierarchical task decomposition model
(HTDM) devised by a domain expert for the specific task.
That is, we want to predict for a trajectory represented by
(X, Z) asequence A = {a;};_,, where q; € S is the activity
at time 7.

Our approach first uses the video data X to construct
sequences of spatio-temporal representations R = {r;};_,
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via self-supervised training of a deep encoder—decoder model
on a pretext task that is closely related to the activity
recognition task. In a second step, we extract from those
representations sequences of features F' which carry useful
information related to the activity recognition task. Finally,
we train a hidden semi-Markov model whose observables are
constructed from Z and F to predict the sequence of activities
A for the trajectory.

Self-supervised representation learning

Self-supervised visual representation learning has recently
evolved to an active area of machine learning research
[14,16,17,23]. The idea of such approaches is to train a deep
neural network on a pretext task, i.e., an auxiliary super-
vised learning problem for which the required labels can be
extracted automatically from unlabeled data, thus avoiding
the need for expensive manual labeling. The representations
learned in this manner are then used for the downstream task
that one ultimately tries to solve.

Remaining surgery progress pretext task

Inspired by [20] and [21], the pretext task we use is the
estimation of the remaining surgery progress (RSP)

t

w=1-1 (1)
T

i.e., the remaining surgery duration relative to the total
time t of the surgery. The choice is based on our hypothesis
that in order to estimate the overall progress of a surgical pro-
cedure a deep architecture applied to that task must implicitly
recognize important milestone events like, e.g., the end of the
initial diagnostic activities, which is valuable information for
activity recognition.

Encoder-decoder architecture To predict the RSP (1)
from video data, we apply a deep encoder—decoder archi-
tecture. Such models have been shown to be able to learn
abstract spatio-temporal representations of the input data
[21]. The architecture consists of an encoder, which is a CNN
that computes spatial representations {X;};_; based on the
visual information {X,};_,. These representations are then
processed by a decoder, which is a recurrent neural network
that computes a condensed representation of the history of the
trajectory that is being processed. Finally, the output of the
decoder is mapped by fully connected layers to the predicted
RSP values {y,}]_;.

Representation analysis

The structure of the encoder and decoder described above
enables the deep model to learn representations of the sur-
gical video data at various abstraction levels. Our goal is to
extract information from these representations that can be
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Fig.1 Summary of the
proposed unsupervised activity
recognition approach using
self-supervised representation
learning to allow for the
modeling of different data
modalities, i.e., the use of video
and sensor data
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used to recognize events relevant for activity recognition,
such as the beginning or end of surgery phases or activities.
To that end, we consider the outputs of individual layers of
the encoder and decoder, as well as the activations of the out-
put gates of the decoder, as suggested by [19]. This yields
a multivariate time series {r;};_, for each of the surgical
trajectories. We then proceed as follows:

1 We apply a change point detection algorithm to each
{r:};_, toobtainacollection of change points {¢{, . .., #,}.

2 We perform a visual analysis of the video data to detect
consistent links between the detected change points and
relevant events.

3 We analyze the representations {r;}?_ at the detected
change points to identify components that are particularly
strongly associated with the relevant events.

4 We extract features from those components that are then
later on used for the activity recognition.

Surgical activity recognition with HSMMs

The features extracted from the video and sensor data (x;, z;)
are used as input for a hidden semi-Markov model that is
used to predict the most probable sequence of activities A.
A hidden semi-Markov model (HSMM) is a statistical model
describing a system with a time-dependent “internal” state
s;. The state cannot be observed directly, but it can only be
inferred through noisy observations o, that the system emits.
Given the noisy observations, the model can be used to infer
the sequence of states (or activities) that best explain the
observations. In the Supplemental Information, we provide
a more formal definition of a HSMM.

A summary of our proposed unsupervised activity recog-
nition approach using self-supervised representation learning
is given in Figure 1. Details on how we implement the
approach in our concrete application setting are given in Sec-
tion 4-6.

Representation }
n Elyﬂs Encoded event information

Data
The VRSHM dataset

To gather the data with which we tested our approach for
activity recognition, we conducted a study in which ten
surgeons produced three to four trials of a hysteroscopic
myomectomy task on a virtual reality-based simulator. In
total, 38 trials were conducted and trajectories were recorded
by the simulator for each of the trials. We refer to the col-
lection of these trajectories as the virtual reality simulated
hysteroscopic myomectomy (VRSHM) data set.

Each trajectory consisted of sensor and simulated video
data. A measurement of the sensor data was recorded when-
ever one of the features changed. The video sequences were
recorded at 40 frames per second, with each frame having a
resolution of 512 x 512 pixels. The average video duration
is about 248 (£110) seconds. The VRSHM data set captures
the variation in surgical procedures due to heterogeneous
patient and clinician populations well and thus allows the
validation of theoretical approaches in a setting, which realis-
tically reflects the challenges of surgical activity recognition
in complex domains.

The hierarchical task decomposition model

A hierarchical task decomposition model (HTDM) was con-
structed by a domain expert. This model defines the set of
possible activities which can be performed during a hystero-
scopic myomectomy and the possible transitions between
these activities. We used a simplified version of the model
that divides a hysteroscopic myomectomy into a diagnostic
part in which the uterus is inspected and an operative part
in which a myoma is removed. It then further subdivides the
operative part into steps as illustrated in Supplemental Fig-
ure S1. Jointly, the model defines the set of activities that
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Fig.2 Plot of the activation of the update gate 14 for which the first increase encodes the end of the diagnosis here shown for two randomly chosen

trajectories

we considered in this work and which are further described
alongside the overall procedure in Supplemental Table S1.

One of the sequences in the VRSHM dataset was anno-
tated with respective activity labels by the domain expert.
These annotations were only used for the unsupervised
activity recognition approach during the hyperparameter
initialization and model validation as further described in
Section 6. Additionally, manual annotations were obtained
for two key activities (diagnosis and handle chips) from the
domain expert for 18 trajectories in total. Those annotations
were only used for the performance assessment of the trained
models.

Self-supervised representation learning

We now describe how we selected and trained a model
to predict the remaining surgery progress (RSP) for the
myomectomy trajectories in the VRSHM dataset.

The encoder-decoder model

Motivated by computational limitations and the size of our
dataset, we chose relatively shallow architectures for the
encoder part of our RSP prediction model. Specifically, we
used Alexnet and Resnet18 instances pretrained on Imagenet
[7]. We replaced their output layer with a fully connected
layer that a) consisted of the number of neurons expected as
input for the serial decoder model or b) a single output neu-
ron for the CNN baseline models. For the encoder—decoder
architectures, we appended a three-layered MLP where the
final layer of each model consisted of single output neuron.
The first two layers consisted of the same number of neurons
as the final layer of the serial decoder (GRU or LSTM) to
which a Parametric Rectified Linear Unit (PReLU) activa-
tion was applied.

To get outputs § € [0, 1], the interval in which the true
RSP labels take values, we applied a sigmoid activation to
the output of the final layer. The architectures were trained
to minimize the mean absolute error (MAE) using the Adam
[15] and RMSProp [6] optimizers with the default parameters
of the Pytorch implementation [18] and a learning rate of
1075.
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We trained the models on whole surgical video sequences
that we downsampled to a resolution of 256 x 256 pixels at
a frequency of 2 fps. We performed ten-fold cross-validation
to identify the optimal hyperparameter configuration of the
models. The details of the procedure including a list of
the analyzed configurations are given in the Supplemental
Information. Supplemental Table S3 summarizes the model
configurations of the best performing models that we identi-
fied during the hyperparameter search.

Analysis of learned representations

The high performance of our RSP prediction model sug-
gested that it had learned spatio-temporal representations that
contained information about the progress of the surgery. We
now describe how we extracted from these representations
information useful for recognizing events in the surgical task.

We performed the semi-automatic study described in Sec-
tion 2.2. Concretely, we used the PELT algorithm [13] to
detect change points formally described in the Supplemental
Information. For the measure of fit, we chose the kernelized
mean change [2]. We set the penalty parameter such that on
average 10 robust change points were detected to limit the
complexity of the manual analyses of those.

Two events that were consistently identified were a) the
end of the initial diagnostic activity and b) the end of the first
cut. The former is typically marked by the first extension of
the hysteroscope and thus its first appearance in the camera
picture. The latter is well visible by the loop no longer having
contact with the tissue after cutting through it for the first
time.

Our analysis also showed that update gate 14 of the first
GRU layer of the serial decoder showed a significant increase
in its activation as soon as the video suggested the diagnosis
had ended. Based on this information, we constructed an
observable indicating if the diagnosis has ended, see Figure
2.
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Activity recognition

The analysis in Section 5 suggests that our deep encoder—
decoder architecture learned representations that could be
used to recognize the end points of the diagnosis and the
initial cutting activities. In particular, the former is not well
captured by the sensor data. Thus, we hypothesized that the
use of features encoding such information in addition to the
sensor data could improve the unsupervised activity recogni-
tion approach using HSMMs. To verify this empirically, we
compared the performance of HSMMs whose observables
were defined using only sensor data with HSMMSs whose
observables also included such features learned in the self-
supervised setting on the task of activity recognition on the
VRSHM data set.

In Section 6.1, we will describe the components that all
HSMMs we tested had in common and then provide a detailed
description of the best-performing HSMMs in Section 6.2.

HSMM components

States, transition and duration models. The state space
for all HSMMs was the set of activities describing a hys-
teroscopic myomectomy as defined by the HTDM shown in
Supplemental Figure S1. These activities were the diagnosis,
position hysteroscope, cutting, coagulation, clear view and
handle chips. Accordingly, we defined the transition model
and the initial state distribution by categorical distributions.
For the duration model, we used negative binomial distri-
butions to account for the large intersample variance of the
VRSHM data set with respect to the duration of the different
activities.

Observables and emission models. We constructed
observables from the sensor data, e.g., describing the state
of certain pedals, valves or position data. A complete list is
given in Supplemental Table S3. We found that models that
used only categorical input features, some of which were
derived from continuous variables such as the position of
the hysteroscope, performed better than models that used
only continuous or both continuous and categorical input
features. Thus, we limited the scope of our consecutive anal-
ysis to HSMMs with discrete and finite observation spaces.
We defined the emission models based on the used set of
observables by a collection of activity-dependent categorical
distributions. In our experiments, we only varied the set of
used observables and hence, the emission model, and we kept
the remaining model components constant. In this way, we
could ensure that the differences of the results of the exper-
iments could be fully explained by the different choices of
observables and were not confounded by other design choices
(such as those related to the duration or transition models).

Initialization of model components. We initialized the
transition models, the duration models and the initial state

Table 1 The mean IoU (mloU) scores (higher scores are better) evalu-
ated on the 18 trajectories for which ground truth annotations for two
key activities were obtained from the domain expert

Model mloU:diagnosis mloU: handle chips
SENSORHSMM 0.7409 (0.2809) 0.1183 (0.2270)
UPDATEGATEHSMM 0.8466 (0.1846) 0.7369 (0.2109)

distributions manually with the assistance of the domain
expert. For the emission distributions, we used an auto-
mated initialization approach: We derived the maximum-
a-posteriori estimates for the components of the emission
model using the single fully annotated sequence and a con-
jugate Dirichlet prior that served as a regularizer.

Comparison of best-performing HSMMs

To compare the performance of the different HSMMs,
we used these models to infer the most probable activity
sequences for the 18 surgical trajectories of medium length.
We limited the study to those sequences a) to ensure that
the duration distributions could be approximated sufficiently
well by unimodal distributions and b) because only for those
trajectories manual annotations by the domain expert were
available. We then compared the results qualitatively, by
inspecting how plausible the resulting segmentations were
in view of the video data. We also provide a partial quantita-
tive evaluation by computing mean intersection-over-union
(IoU) scores for two key activities for which we had ground
truth labels, namely the initial diagnosis and the final handle
chips activities, see Table 1.

In particular, we compared the SENSORHSMM, the best-
performing model using only observables constructed from
sensor data, with the UPDATEGATEHSMM, a model that used
features derived from self-supervised representation learn-
ing.

SENSORHSMM.

The segmentation of the sequences produced by the fit-
ted SENSORHSMM provided a reasonable explanation of
the observation sequence with respect to the recognized
activities. The cutting and coagulation activities were well
identified by the model. However, it was not able to dis-
tinguish well between the handle chips and position hys-
teroscope activities. Additionally, for some trajectories the
model misclassified the starting activity, which in all cases
was a diagnosis as annotated by the domain expert. Figure 3
shows the segmentations produced by the SENSORHSMM.

UPDATEGATEHSMM. The use of an indicator if the
diagnosis activity has ended derived from the learned spatio-
temporal representations (see the description in Section 5)
led to a superior segmentation of the individual activities.
We refer to the corresponding HSMM as the UPDATE-
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GATEHSMM. Figure 3 shows the segmentation of the
trajectories produced by the fitted UPDATEGATEHSMM.
Compared to the SENSORHSMM, it was more sensitive to the
differences between the handle chips and position hystero-
scope activities. Moreover, the model correctly recognized
that all of the trajectories started with an initial diagnosis
activity.

The superiority of the UPDATEGATEHSMM also becomes
apparent when assessing the mean IoU of the segmentation
with respect to the two labeled activities as shown in Table
1. Both the handle chips and diagnosis activities were bet-
ter recognized by the UPDATEGATEHSMM compared to the
SENSORHSMM.

Comparing the segmentation by the UPDATEGATEHSMM
to the manual annotations of the domain expert for the sin-
gle completely annotated sequence further emphasizes the
value of incorporating the information derived from our
self-supervised learning approach. Figure 4 shows that the
segmentation of the UPDATEGATEHSMM better matches the
manual annotations than the one by the SENSORHSMM.

The improved sensitivity of the UPDATEGATEHSMM
with respect to the diagnosis activity compared to the
SENSORHSMM can be explained by the fact that the spatio-
temporal representations capture a key indicator for the end
of the diagnosis: the first extraction of the hysteroscope and
thus its first appearance in the video. This indicator is also
used by the domain expert during the manual segmentation
and improves the separability of the diagnosis and position
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hysteroscope activities, for which the tool usage and hence,
the sensor measurements are often very similar (as is the case
for the clear view, coagulation and handle chips activities).
The latter also explains, e.g., why both HSMM models fail
to identify the final coagulation activity.

Discussion

We introduced an approach for using spatio-temporal repre-
sentations learned by training a deep encoder—decoder model
on a pretext task as observables in a HSMM used for unsuper-
vised surgical activity recognition. The experiments with our
VRSHM data set show that the self-supervised representation
learning could substantially improve the results of activity
recognition. The high intersample variance, the small sample
size and the lack of sufficient activity annotations of the used
data set do not allow for more general statements. Despite
these limitations, we believe that the results are an indication
for the potential of self-supervised representation learning
to enhance unsupervised activity recognition approaches in
complex domains like medicine and healthcare in general.
To provide further evidence of the potential of such
approaches, we believe that future work should focus on the
use of larger data sets with more annotated sequences. This
would enable a quantitative assessment of the benefit of self-
supervised representation learning for unsupervised activity
recognition. As mentioned before, obtaining such surgical
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data is often expensive. Thus, it is important that future work
puts a stronger focus on unsupervised activity recognition
approaches and rely on annotated data mainly for model val-
idation purposes in complex domains. Our work provides
the first study combining different data modalities in such a
context and indicates the large potential of such multi-modal
approaches. We hope that the research community will join
us studying methods that reduce the dependency on manually
labeled data in the context of the important task of surgical
activity recognition.
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