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Schizophyllum commune has 
an extensive and functional 
alternative splicing repertoire
Thies Gehrmann1, Jordi F. Pelkmans2, Luis G. Lugones2, Han A. B. Wösten2, Thomas Abeel1,3,* 
& Marcel J. T. Reinders1,*

Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively 
splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of 
alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in 
the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated 
for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were 
the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the 
events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but 
enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including 
transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were 
regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 
69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional 
domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative 
splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of 
the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality 
that is exploited dynamically.

Alternative splicing is an important regulatory mechanism, which in many eukaryotes provides additional com-
plexity to the proteome required to sustain cell functions1. In humans, the overwhelming majority of genes are 
alternatively spliced, and mutations in alternative transcripts can give rise to diseases such as cancer2. Alternative 
splicing events have also been shown to contribute to the evolution of new species3.

Splicing results in removal of introns in pre-mRNAs, and alternative splicing gives rise to different mRNA 
variants of a gene. All resulting mRNAs consist of a coding region flanked by UnTranslated Regions (UTRs). 
We distinguish primitive events, i.e. basic splice operations which only affect a single transcript, from composite 
events that relate to observed primitive events over multiple transcripts from the same gene (Fig. 1a,b). These 
events represent regions of especially high sequence heterogeneity between transcripts. Alternative splicing 
events occur not only in coding regions but also in UTRs, resulting in transcripts with alternative coding regions. 
Consequently, alternative splicing increases the complexity of the proteome which may also result in functional 
changes of the proteome when, for example, alternative splicing results in gain or loss of protein domains and 
functional elements. Alternative splicing events may be triggered by changes in environmental conditions4 or 
are part of developmental pathways5. On the other hand, alternative splicing may also be an error of the splicing 
machinery and not necessarily lead to alternative functionality. For instance, RPL30 of Saccharomyces cerevisiae 
produces a transcript that fails to undergo splicing and later decays6.

Alternative splicing has been shown to occur in fungi. The first reported example of alternative splicing was in 
the glaA gene of Aspergillus niger, resulting in two isoforms of the glucoamylase enzyme7. Since then, other alter-
native splicing events have been described. For instance, the primary transcript of ZAS1+​ of Schizosaccharomyces 
pombe contains two zinc finger domains, while its secondary transcript contains three of these domains8. 
Genome-wide comparative studies have shown that alternative splicing is common in most fungi, but that many 
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yeasts exhibit few alternative splicing events9,10. Developmentally more complex fungi appear to have more 
alternative splicing (see Fig. 1e, where we compared the phylogeny of fungal species with reported richness of 
their alternative splicing). Genome-wide studies also showed that development impacts alternative splicing in 
Fusarium graminearum11, while growth medium composition impacts splicing in Trichoderma longibrachiatum12. 
In all studies, intron retentions were the most common primitive splicing events.

Alternative splicing at a genome-wide scale can be detected from expressed sequence tags9,10. With the advent 
of Next Generation Sequencing, detecting alternative splicing in fungi is mostly done by splice junction analysis. 
By comparing splice junctions that appear as gaps in the alignment of short reads to a reference genome, primary 
splicing events can be detected12. To reconstruct the structure of alternative transcripts, probabilistic modeling 
methods are used, which are based on primary event co-occurrence in single reads13,14. Along with splice junction 
analysis, this approach has also been separately used to study alternative splicing in fungi11. However, the high 
gene density and polyscystronic transcripts in many fungal genomes15, make this approach inapplicable. Gene 
UTRs overlapping with transcripts of neighboring genes cause the transcript reconstruction methods to errone-
ously fuse transcripts from different genes together (for more details see Supplementary Note S2). This shortcom-
ing has prevented a systematic characterization of the alternative splicing repertoire for fungi with gene-dense 
genomes.

Despite the existing work to identify alternative splicing in fungi, a systematic analysis of the functional impact 
of alternative splicing is missing. In this work, we show the potential functional impact of alternative splicing in 
the mushroom forming fungus Schizophyllum commune. We designed a region-restricted probabilistic modeling 
method to detect alternative splicing for the gene-dense genome of S. commune. We detected alternative splice 
variants from RNA-seq data at different developmental stages of S. commune. We further analyzed the functional 
impact of alternative splicing and show its relationships with transcriptional regulation, subcellular localization, 
and alternative use of functional domains.

Figure 1.  Alternative splicing during development of S. commune. (a) Primitive alternative splicing events 
that affect a single transcript. Two alternative transcripts are shown above each other. Thick dark gray bars 
represent exons, and skinny light gray bars indicate introns. The frequencies of each event in S. commune are 
provided beneath the figure. An intron retention (IR) occurs when an intron is not spliced out, while an exon 
skipping (ES) event splices out an exon. An alternative 5′​ splicing site (A5SS) or a 3′​ splicing site (A3SS) is 
characterized by an alternative splicing site on the 5′​ end or the 3′​ end of an exon, respectively. (b) Composite 
splicing events emerge from splicing events across multiple alternative transcripts. A mutually exclusive 
exon is when two (or more) transcripts skip different exons such that the two exons never occur together in 
a single transcript. Multiple alternative 5- and 3′​ splicing sites (MA5SS and MA3SS, respectively) are when 
alternative transcripts have more than two alternative 5′​ or 3′​ splicing sites. (c) Alternative splicing was analysed 
using RNA-seq data from five developmental stages of the mushroom-forming Schizophyllum commune 
fungus. (d) An example of alternative splicing in gene G2502024. An intron retention (indicated by an arrow) 
introduces a premature stop codon. Due to this, the alternative transcript CUFF.10781.2 loses two protein 
domain annotations. (e) S. commune exhibits more alternative splicing than any previously studied fungus. 
Basidiomycetes are indicated in red, while different groups ascomycetes are indicated in blue and green. More 
phenotypically complex fungi have more alternative splicing (See Supplemental Note S1).
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Results
Alternative splicing is a common mechanism in S. commune.  Sexual development of S. commune 
proceeds via different stages. Dikaryotic colonies resulting from mating of two compatible partners grow symmet-
rical in the dark and at high CO2 conditions. Asymmetrical growth and the formation of aggregates is induced 
when the colony is exposed to light and ambient CO2. The aggregates further develop into primordia and mature 
mushrooms. mRNA of five different stages of development of S. commune (Fig. 1c) was sequenced to study the 
incidence and functional impact of alternative splicing. In addition, RNA was used from deletion strains that are 
affected at different stages of mushroom formation16–18 (see Materials and Methods).

Based on RNA sequencing of all samples, transcripts were predicted using our region-restricted probabilis-
tic modeling method (RRPM, see Materials and Methods). Figure 2 gives an overview of features of the found 
transcripts. 3,331 genes that were not expressed or whose exon boundaries were not supported by the RNA-seq 
data were excluded from the 16,319 genes in the S. commune v3.0 reference genome. 15,522 transcripts were pre-
dicted for the remaining 12,988 genes. 10,703 genes (82%) had only one transcript, 85% of them being identical 
to the original annotation (Fig. 2a). A total number of 4,819 transcripts were found for the other 2,285 genes  
(see Fig. 2b). Most of these genes (90%) had two splice variants (Fig. 2b and Supplementary Note S3) and 72% 
of the alternative transcripts had only one alternative splicing event (Supplementary Note S4). The alternatively 
spliced genes are located over the entire genome (Supplementary Note S5). Together, 6,130 primitive splicing 
events resulted in the 4,819 transcripts of the 2,285 genes of which 65% (3,075) occur in the coding region of the 
gene, and 35% (2,155 genes) in the UTR (Fig. 2c).

Intron retention (33%) and alternative 5′​ splicing site (25%) were the most common primitive events 
(Fig. 2f(i)). Alternative 3′​ splicing sites and exon skipping events occurred at similar levels (21%). Mutually exclu-
sive exons accounted for 93% of the 1,491 composite events, while multiple alternative 5′​ and 3′​ splicing sites were 
relatively rare at 4% and 3%, respectively (Fig. 2g(i)). These mutually exclusive exon events occurred in 171 genes 
representing 8% of the alternative spliced genes. Most alternative splicing events are not reading frame neutral 
(Supplementary Note S6).

UTRs of genes might stretch so far that they overlap with a neighboring gene. As a consequence, paired-end 
reads may lie within the boundary of another gene. To investigate whether such reads have a strong effect on 
event counts, we selected only those genes that are flanked on both sides by intergenic regions with zero coverage  
(i.e. no overlap). A total of 306 alternatively spliced genes were found in the selected set of 2,516 genes. We 
observed the same distribution of event counts in this set as compared to all genes (Supplementary Note S7). 
From this, we conclude that our analysis is not confounded by reads from neighboring genes.

Figure 2.  Statistics of alternative splicing. (a) The extend of alternative splicing revealed by analysing 
the RNA-seq data over different developmental stages of Schizophyllum commune. (b) The distribution of 
transcripts per gene. (c) The number of alternative splicing events within and outside of coding regions. (d) The 
number of genes that are functionally impacted by the alternative splicing on domains, subcellular localization 
and development. (e) The amount of alternative spliced genes for a number of functional groups. (f) The 
proportion of primitive events (i) genome wide, (ii) within coding regions, and (iii) in UTRs (Supplemental 
Note S10). (g) The proportion of composite events (i) genome wide, (ii) within coding regions, and (iii) in UTRs 
(Supplemental Note S10).
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Alternative splicing is not limited to coding regions.  Alternative splicing occurs not only in the trans-
lated regions of transcripts, but also in the UTRs of transcripts. RRPM is able to detect alternative splicing events 
that lie within the original gene boundaries of known genes. RRPM can detect alternative splicing events after 
premature stop codons introduced by alternative splicing events that still lie within the original gene boundaries 
(Supplementary Note S8). RRPM cannot investigate alternative splicing events in the UTRs extending outside 
of these original gene boundaries, and which are generally unknown. In the unknown UTR regions, we can use 
splice junction analysis (Supplementary Note S9).

A total of 3,975 (65%) alternative splicing events were found within coding transcript regions (Fig. 2c). Of 
these, 44% are intron retentions, and only 1% were exon skipping events (Fig. 2f(ii)). Due to splicing, some 
regions at the 5′​ and 3′​ ends of the original coding regions may become non-coding UTRs, and this is where the 
remaining 2,155 (35%) events are located. Of these, 1,225 (57%) were classified as exon skipping events and 293 
(14%) as intron retentions (Fig. 2f(iii) and Supplementary Note S10). Mutually exclusive exons occur primarily in 
the untranslated regions of transcripts (Fig. 2g(ii,iii)). They account for 99% of all composite events in the UTR 
regions, but for only 15% of those in the coding regions. Multiple alternative 5′​ and 3′​ splicing sites, which are 
rare, occur mostly in coding regions.

Splice junction analysis enables a semi-quantitative analysis of alternative splicing in coding and non-coding 
regions (see Methods). We observed 186,221 splice junctions across all our RNA-seq samples. 29% of these occur 
only once, and are likely errors of the splicing machinery or sequencing. In the remaining 71%, we find 15,054 
primary alternative splicing events. 62% lie within the coding regions of defined genes, and 38% are in the UTRs 
of these genes. We found 7,851 alternative (5′​ or 3′​) splicing sites and 1,527 exon skipping events inside coding 
regions, while we discovered 4,574 alternative splicing sites and 1,102 exon skipping events in UTRs. Alternative 
splicing is therefore clearly not limited to translated regions.

Expression over developmental stages implicates alternative splicing in development.  Time 
Course Switching (TCS) genes differentially express splice variants during development5. The primary transcript 
(defined as the transcript that has the highest average expression over development), is replaced in expression by 
one of its alternative transcripts at some point in time. S. commune was found to have 425 of such genes, repre-
senting 865 transcripts. The aggregate stage contained more expressed alternative transcripts than any other stage 
(Fig. 3a). At this stage, the alternative transcripts of 142 genes were more abundant than their primary transcript. 
For example, the alternative transcript (ID CUFF.11357.2) of the carbohydrate active enzyme (cazyme) gene 
G2634198 (Fig. 4a) entirely replaces the primary transcript (ID 2634198) during the aggregate stage, after which 
its abundance decreased to zero at the primordia stage, and in turn, replaced by the primary transcript. Gene 
G2629174 (Fig. 4b) which encodes a secreted protein also exhibits this behavior. The polypeptide encoded by the 
alternative transcript lacks a large part of its N-terminus due to intron retention.

Genes with alternative transcripts exhibit alternative functionality through protein domains.  
Alternative splicing may result in the gain or loss of functional domains. Out of the 2,285 genes with alternative 
transcripts, 1,257 (55%) have predicted functional domains. A functional domain is lost/gained in an alterna-
tive transcript in 897 (70%) genes (Fig. 3b,c and Supplementary Note S11). For 274 (12%) genes a domain is 
exchanged for another (Fig. 4c). For example, gene G2502024, encoding a predicted secreted cazyme, has two 
splice variants (Fig. 4c) both annotated with a glycosyl hydrolase domain (IPR domain IPR023296) involved in 
the hydrolysis of polysaccharide carbohydrates. The primary transcript (ID 2502024) is annotated with a glyco-
side hydrolase family 43 domain (IPR domain IPR006710), while the alternative transcript (ID CUFF.10781.2) 
has a different glycosyl hydrolase domain (IPR013148). The presence of alternative domain families in the two 
transcripts indicates alternative carbohydrate degradation abilities. 102 (24%) of the time course switching genes 
are predicted to have alternative functionality through alternative domain usage, implicating a change of function 
of those genes throughput development.

Alternative splicing can affect the subcellular localization of encoded proteins.  Alternative splic-
ing may result in the gain or loss of a localization signal leading to a function in another compartment of the cell. 
For 936 alternatively spliced genes (41%) we were unable to predict a subcellular location for any transcripts  
(see Supplementary Note S12), and for 1278 genes (56%) we were unable to predict a subcellular location for all 
transcripts, but in 71 genes (3%), transcripts have different predicted localization signals (Fig. 3d).

Gene G2607155 is an example of a predicted metabolic gene with two transcripts encoding proteins with alter-
native subcellular localizations (see Fig. 4d). The primary and alternative transcript, 2607155 and CUFF.4351.1, 
respectively, are both expressed. The protein encoded by the primary transcript is predicted to be transported to 
the mitochondrion, while the polypeptide encoded by the alternative transcript has an intron retention near the 5′​ 
end of the transcript. As a result, it loses its first exon, destroying a valine catabolism-related3-hydroxyisobutyrate 
dehydrogenase site (IPR002204) specific to mitochondria, and the signaling peptides. The alternative transcript 
still retains the four deoxyhydrogenase (IPR029154, IPR008927, IPR013328, IPR006115) and the NADP binding 
domain (IPR016040) of the protein encoded by the primary transcript. Based on its remaining protein sequence, 
it is predicted that this secondary transcript is located in the cytoplasm, which indicates that alternative splicing 
may regulate the location of proteins in S. commune.

Alternative splicing is present in key functional groups.  Of particular interest are five gene functional 
groups: i) transcription factors, ii) cazymes, iii) secreted proteins, iv) cytochrome P450s, and v) metabolic genes. 
Alternative splicing occurs in all these groups (see Fig. 2e and Supplementary Note S13), and the set of cytochrome 
P450s are enriched in the set of alternatively spliced genes. The peak of alternative transcript expression in the 
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aggregate stage persists across all these functional groups regardless of expression threshold, demonstrating that 
alternative splicing is actively regulated in these functional groups (see Supplementary Note S14).

Alternative splicing in a transcription factor gene may impact a DNA binding domain or a protein interaction 
domain. As an example, the alternative transcript of gene G2679567 has an alternative 5′​ splicing site in its sec-
ond exon (see Fig. 4e) resulting in a shortened DNA binding domain (IPR021715) due to the loss of most of the 
third exon. This alternative transcript is differentially expressed across developmental stages, suggesting that the 
regulation program also changes with alternative splicing. Genes encoding secreted proteins that are alternatively 
spliced may impact the signal sequence for secretion located in the N-terminal of the protein. The alternative 
transcript of the TCS gene G2629174 is the result of an intron retention (see Fig. 4b). As a result, the N-terminal 
signal sequence is affected, which is predicted to prevent the protein from being be secreted. If this is the case 
then, based on the expression of these transcripts, this protein is secreted at different rates throughout develop-
ment. Many secreted proteins may take on alternative locations in the cell (Fig. 3d). In 22 cases, secreted proteins 
(in the extracellular compartment) are predicted to end up in other subcellular locations (8 in the mitochondrion, 
8 in the nucleus, 4 in the plasma membrane and 2 in the cytoplasm), and in 62 cases, we were unable to predict 
the subcellular location (Supplementary Note S12).

Figure 3.  (a) Alternative splice variants of time course switch genes being more the abundant when compared 
to the annotated variant at different stages of activity of time course switch genes through development. We 
count the number of alternative transcripts which are active at each developmental stage, exceeding a particular 
expression threshold, and find that there are more active at the aggregates stage of development than at any 
other, regardless of expression threshold. (b) Implications of alternative splicing on domain predictions. The 
number of unique annotations are given on the x-axis, and the number of annotations in common between 
all transcripts is given on the y-axis. If the numbers are not equal, that means that not all transcripts in a gene 
are annotated with the same domains. In the corresponding cells are given the number of genes with this 
combination of annotations. Most genes do not exhibit alternative functionality (see diagonal), but quite a 
number do (see below the diagonal). (c) The smallest number of annotations of a transcript in a gene is given on 
the x-axis (e.g. a gene with two transcripts having 2 and 3 annotations would have a value of 2) and the number 
of annotations in common between all transcripts is given on the y-axis. On the diagonal are genes in which the 
number of annotations in common is limited by a transcript for which annotations are lost due to alternative 
splicing. Off the diagonal are genes that have enhanced their functional abilities through alternative splicing 
(see Supplemental Note S11). (d) Alternative splicing changes subcellular location of genes. Nodes represent 
a subcellular location. Edges represent genes that have two alternative splice variants, each encoding for a 
different subcellular location (connected nodes). Counts associated with an edge indicate the amount of genes 
having alternative transcripts that encode for the associated subcellular locations. For example, there are 8 genes 
for which the protein encoded by one transcript is secreted (extracellular) and the protein encoded by the other 
transcript is transported to the mitochondrion. See Supplemental Note S12 for genes whose subcellular location 
do not change.
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Figure 4.  Structures of predicted alternative transcripts for selected genes. Genes are oriented from 5′​ to 3′​
. Gray boxes are exons, white boxes are UTRs, thin light gray boxes are introns and dark gray boxes are protein 
domains. The primary (on average most expressed) transcript is always above the alternative transcript. The 
expression of the corresponding transcripts are shown on the left hand side of the figure, throughout the five 
developmental stages: Vegetative (V), Vegetative Induced (VI), Aggregates (A), Primordia (P) and, Mushroom 
(M). Refer to Supplemental File 1 for all transcript structures, and Supplemental Table 1 for expression and 
functional information for each transcript (a) Gene G2634198, encoding a carbohydrate active protein, 
with primary transcript 2634198 and secondary transcript CUFF.11357.2. An intron retention occurs in 
CUFF.11357.2 fusing the first two exons. (scaffold_9:981266–981925). (b) Gene G2629174, encoding a secreted 
protein. The second intron is retained. (scaffold_7:1,406,122–1,408,401). (c) Gene G2502024, encoding a 
carbohydrate active protein. The 5th intron is retained. (scaffold_6:428624–430098). (d) Gene G2607155, a 
metabolic gene. The first intron is retained. (scaffold_1:2733233–2735448). (e) Gene G2679567, a transcription 
factor. The secondary transcript has an A5SS on its second exon. (scaffold_8:1832047–1833917). (f) Gene hom1, 
(G2632356), a transcription factor involved in mushroom formation in S. commune. The primary transcript has 
a secondary transcript in which the second intron is retained. (scaffold_8:1757475–1758654).
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Implications on previously studied genes of S. commune.  Only 84 S. commune genes have been 
assigned names, 13 of them have alternative splicing variants (see Supplementary Note S15). Among these genes 
are the mating type genes aay4, abu6, and bbp2–1, transcription factor genes crea and HOM1 that encode the 
carbon catabolite repression regulator, and the fruiting transcription factor Hom1. The alternative transcripts in 
the mating type genes have no effect on function. In contrast, alternative splicing impacts hom1. Its primary tran-
script retains the second intron (see Fig. 4f). This produces a frame shift that prematurely ends the coding region. 
Due to this, it loses its homeobox domain and thus will not function as a transcription factor. Notably, this hom1 
transcript is the most abundant throughout development.

Discussion
Previous studies characterizing alternative splicing in fungi unequivocally found intron retentions to be the most 
common events10–12. This study confirmed this finding with intron retentions accounting for 33% of the events. 
Notably, they are enriched in coding regions, where they account for 43% of the events, while exon skipping 
occurred primarily in UTRs. With 1% of the events, exon skipping was rare in coding regions, but they repre-
sented 57% of the events in UTRs. The prevalence of intron retention contrasts the dominance of exon skipping 
in mammals19,20. Our results strongly suggest that fungi use alternative splicing events differently when compared 
to mammalian genomes. Based on event prevalence they are more similar to plants, where intron retentions are 
also the most common event21.

Most alternative splicing events (64%) were not reading frame neutral, indicating that there is no strong selec-
tive pressure for reading frame neutral alternative splicing events. This is also in contrast with alternative splicing 
in mammals, where there appears to be a selection for reading-frame neutral events19,20.

The incidence of alternative splicing was much higher compared to previous studies. Previous studies examined 
primarily ascomycetes and few basidiomycetes, only two of which form mushrooms9,10. This may imply that more 
developmentally complex fungal species have more alternative splicing (see Fig. 1e and Supplementary Note S1)  
with basidiomycetes having the most alternative splicing, followed by pathogenic ascomycetes, then plant patho-
genic ascomycetes and finally, saprobic ascomycetes and yeasts.

The genome of S. commune encodes 16,319 genes. The median intergenic distance is 539 bp, making the gene 
density very high when compared to plants and humans22,23. This hampers studying alternative splicing in S. com-
mune, and therefore, we focused only on annotated genes. This prevents the discovery of splicing events at novel 
loci but allowed us to identify alternatively spliced transcripts of the annotated genes and to study the functional 
impact of these splicing events. Recent studies from the ENCODE project23 have shown that significant portions 
of non-coding regions of the human genome are expressed as mRNAs, and are spliced. By analyzing splice junc-
tions, we observed 5,676 alternative splicing events in non-coding regions, demonstrating that S. commune also 
makes use of alternative splicing in non-coding regions. Due to the density of the genome, events that lie in UTRs 
cannot be associated with a gene using short read data. Use of long read technologies will alleviate technological 
problems in assembling the splice variants as those reads will cover entire transcripts.

In predicting the protein sequences of our transcripts, we assumed that the longest Open Reading Frame 
(ORF) is the one that is most likely to be translated. This is a common assumption in gene prediction software, 
yet, as a consequence, different transcripts within a gene may have different start codons. The Kozak consen-
sus sequence is a good indicator of translation initiation24. The coding sequences predicted in our alternative 
transcripts indeed are supported by Kozak consensus sequences (see Supplement Note S17). But, translation 
initiation is still poorly understood and predicting exactly where translation should initiate (i.e. which ORF is 
actually translated) is still difficult25. It has been shown that there are alternative AUG start codons which produce 
different proteins from the same transcript26,27. Even beyond that, there are ORFs in the upstream UTRs that are 
also translated28. Future studies of alternative splicing should extend their perspective from the current “one gene, 
many transcripts”, to the “one transcript many proteins” viewpoint.

Finally, we should note that we have been conservative in our prediction of alternative transcripts and alterna-
tive splicing events. Additionally, although we sampled across the whole development of S. commune, all samples 
were grown under the same environmental conditions (see Methods) in an isogenic strain (see Supplementary 
Note S16). Hence, alternative splicing may be much more abundant and provide much more functionality than 
we observe in this study.

Conclusions
Alternative splicing was found to increase proteome complexity in S. commune by the gain or loss of functional 
domains or localization signals. Alternative splicing was found in 18% of expressed genes, resulting in 20% more 
transcripts. Yet, the real incidence of alternative splicing is probably higher. More than two thirds of the alterna-
tively spliced genes exhibited alternative functionality by coding for different domains or by acquiring alternative 
subcellular localizations. Selected functional groups were shown to contain alternatively spliced genes, with the 
cytochrome P450 genes showing the highest proportion. Time Course Switching genes that differentially express 
gene variants throughout development represented 19% of the alternatively spliced genes. Of these genes, 24% 
were predicted to have alternative functionality. We thus show that alternative splicing dynamically varies the 
complexity of the proteome encoded in the dense genome of S. commune.

It has long been believed that alternative splicing does not contribute functionality to the cell in plants, or 
fungi, despite the presence of alternative splicing events29. Alternative splicing events were generally thought 
to result in non-functional proteins or to be similar to other transcripts of the same gene, resulting in retained 
functionality. Similarly, in the early stages of the ENCODE project it was also commonly believed that the vast 
majority of alternative mammalian transcripts do not have functional roles30. Now, the role of alternative splicing 
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is commonly accepted in humans31 and its tremendous potential influence on function is being accepted in 
plants32–34. With this work, we extend this notion to fungi.

Methods
S. commune genome and annotations.  The genome sequence of S. commune v3.0 was retrieved from the 
Joint Genome Initiative database35, together with gene definitions (GFF), Interpro and GO annotations.

mRNA isolation.  mRNA was isolated from S. commune strain H4–836 grown at 25 °C on minimal medium 
containing 1% glucose and 1.5% agar37. RNA was sampled during (i) vegetative growth, (ii) induced vegeta-
tive growth, (iii) aggregate formation,(iv) primordia formation, and (v) when mushroom had developed. In the 
induced vegetative growth stage, the colony has been exposed to light for some time but has not yet started form-
ing aggregates. RNA was also isolated from 9 dikaryotic deletion strains at two time points16–18: Δ​wc-1Δ​wc-1; 
Δ​wc-2Δ​wc-2; Δ​hom1Δ​hom1; Δ​hom2Δ​hom2; Δ​fst3Δ​fst3; Δ​fst4Δ​fst4; Δ​bri1Δ​bri1; Δ​gat1Δ​gat1; and Δ​c2h2Δ​
c2h2. The sample at the first time point was taken at the time where a simultaneously growing wildtype sample 
reached the aggregates stage of development. The sample at the second time point was taken when the wildtype 
had formed mature mushrooms (see Supplementary Note S18).

RNA sequencing.  Samples were sequenced with 100 bp paired-end sequencing on the HiSeq 2000 Illumina 
platform with an average of 1.7 Gb of reads per sample (average 43x genome coverage). Exceptions are the wild-
type stages i) vegetative growth, ii) induced vegetative growth and v) primordia, which were sequenced at a 
later date with 125 bp paired end sequences on the HiSeq 2500 platform with an average of 5.0 Gb of reads per 
sample. All samples were produced in duplo for use in transcript abundance estimation. Raw RNA-seq reads are 
filtered for quality using trimmomatic38. These RNA-seq samples have been made available under BioProject 
PRJNA323434.

Region-restricted probabilistic modeling (RRPM) for alternative transcript discovery.  Due to 
the high gene-density of S. commune, very few neighboring genes have intergenic regions without expression. In 
order to reduce the interference of neighboring UTRs, we restricted the discovery of alternative transcripts to 
gene coding regions only. To this end, the genome was split at gene boundaries into as many fragments as there 
are genes, each fragment representing a different annotated gene region on the S. commune genome.

Reads from all samples were aligned to the collection of gene-based fragments using STAR39, producing a 
splice junction database used to optimize STAR alignments in a second alignment round (we use all samples to 
have a comprehensive database). The second round of STAR produced BAM files sorted by coordinate. Reads 
not aligning entirely within a gene-based fragment were discarded. Using these BAM files, Cufflinks14 was run 
in Reference Annotation Based Transcript Assembly (RABT) mode, to produce a set of predicted transcripts. 
Although the transcripts were predicted on the basis of all samples, it does not mean that these transcripts are also 
active in every sample. These transcripts were then projected back onto the original genome to restore their con-
text. See Supplementary Note S19 for a schematic of RRPM, and Supplementary Note S20 for parameter settings 
used for the tools mentioned above.

Transcript filtering.  The output from Cufflinks was filtered to remove transcripts resulting from noise: 1) 
predicted transcripts which do not lie on the same strand as the original gene description were removed (they 
cannot be accurately called without strand-specific reads); 2) transcripts which had no expression or did not have 
reads supporting its splice junctions were removed; 3) transcripts which did not contain Open Reading Frames 
(ORFs) of at least length 40 nt were removed. See Supplementary Note S21 for an overview of how many genes 
and transcripts were filtered at each step. The final output is a list of genes with their corresponding transcripts 
in GFF format.

Calling alternative splicing events.  To identify alternative splicing events, we must compare the found 
transcripts against a reference. Comparing transcripts to the original reference annotation may result in pecu-
liarities due to a lagging quality of annotation. For example, the original annotation may describe a large exon, 
whereas all predicted transcripts indicate only two smaller exons. To find a suitable reference, we established a 
consensus annotation based on all expressed transcripts for that gene. The consensus annotation contains all 
distinctly observed exons in a gene, without intron retentions (see Supplementary Note S22). Consequently, the 
consensus annotation is not necessarily one of the transcripts of the gene. In fact, it might not even contain a valid 
ORF. It just serves as a reference to describe observed splice variations.

We called primary splice events by′ aligning the exons of an observed transcript to the consensus annotation. 
From this alignment we determine the absence of an exon (ES), the fusion of exons (IR), or the extension or con-
traction of exon boundaries (A5SS, A3SS) (see Supplementary Note S23). Composite events “multiple alternative 
5′ and “multiple alternative 3′ splicing sites are classified by grouping exons of transcripts within one gene and 
counting the number of alternative exon boundaries for each exon. Mutually exclusive exons were detected by 
counting how often pairs of exons occur across all transcripts. If a pair was never observed across all transcripts in 
a gene but individually the exons are observed, then we called that pair a mutually exclusive exon event.

We counted the number of alternative splicing events at three levels. At the event level, we counted each alter-
native splicing event. If, for example, three transcripts exist in a gene, and in two of these transcripts the third 
exon is skipped, we count this as two events. At the transcript level, we counted each transcript with a particular 
event. Thus, when a transcript skips two exons, we count it only once. At the gene level, we count the number of 
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genes with a specific alternative splicing event. For example, when a gene has two transcripts that each skip differ-
ent exons we would counted that as one event.

Detection of untranslated splicing events.  We quantify splicing events outside of the translated regions 
similar to Xie et al.12 through the study of clusters of splice junctions12. The slight differences are described in 
Supplementary Note S9.

Estimating transcript expression profile of development.  Abundance estimates for each transcript 
were computed by the Cufflinks suite. For each sample separately, we aligned both replicates to the entire genome 
with STAR in the same two-round procedure as used for transcript prediction. We provided the resulting BAM 
files of both replicates to Cufflinks, which estimates the abundances of the transcripts in both replicated samples 
together. Doing this for each developmental stage results in an expression profile for each predicted transcript.

Time Course Switches.  Based on the expression profiles of each transcript, we detected time course switch-
ing genes for each gene using the method described by Lees et al.5. Briefly, we compare the expression of the pri-
mary transcript (which has the highest average expression across time) as well as the expression of an alternative 
transcript. Intuitively speaking, this comparison scores the relative expression of both transcripts in such a way 
that the score is larger when the expression profiles of the two transcripts are more dissimilar in shape. As in Lees 
et al.5, genes which have a score greater than 0.5 are considered to be time course switches. This results in a list of 
genes which have alternative transcripts that swap expression with another.

Functional annotations and group definitions.  Functional domain annotations.  InterPro domain 
annotations were predicted for the translated protein sequence of the longest ORF in each predicted transcript 
using InterProScan40. We re-index these annotations based on location. If a gene has the same annotation twice, 
but in two different locations, we assign each of them new identifiers. This allows us to more specifically identify 
alternative functionality by domain annotations.

Transcription factor definitions.  Transcription factors were predicted based on 83 InterProDNA-binding or 
regulatory domains (see Supplementary Note S24) suggested by the Fungal Transcription Factor Database41,42. 
Transcription factors are predicted for the original gene definitions. If one of these InterPro domains was present 
in the protein sequence of a gene, then the gene was called as a transcription factor.

Carbohydrate-active enzymes prediction.  Using the Cazymes Analysis Toolkit (CAT)43, we predicted 
carbohydrate-active enzymes based on the original gene definitions. If a gene’s protein sequence was predicted 
to be a cazyme by either the sequence-based annotation method or the Pfam-based annotation method then we 
considered it a cazyme.

Secreted Proteins prediction.  We used the same procedure as44 to predict secreted proteins. Briefly, genes with 
SignalP45 signal peptides, or a TargetP46 Loc =​ S were kept. The remaining genes were further filtered with 
TMHMM47, keeping only genes with zero or one transmembrane domains. Finally, genes were filtered using Wolf 
PSort48 to select genes with a Wolf PSort extracellular score greater than 17.

Metabolic and Cytochrome P450 gene groups.  Genes with the GO annotation “metabolic process” (annotation 
ID: GO:0008152) were called as metabolism genes. Genes with the IPR annotation IPR001128 were used as 
Cytochrome P450 genes.

Subcellular location prediction.  We used Wolf PSort48 to predict the subcellular localization of alternatively 
spliced transcripts. Protein sequences for each transcript were constructed, and provided to Wolf PSort. All anno-
tations with a score below 17 were removed44.
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