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A B S T R A C T   

The objective of the present narrative review was to synthesize existing clinical and epidemiological findings 
linking manganese (Mn) exposure biomarkers to autism spectrum disorder (ASD) and attention deficit hyper-
activity disorder (ADHD), and to discuss key pathophysiological mechanisms of neurodevelopmental disorders 
that may be affected by this metal. Existing epidemiological data demonstrated both direct and inverse associ-
ation between Mn body burden and ASD, or lack of any relationship. In contrast, the majority of studies revealed 
significantly higher Mn levels in subjects with ADHD, as well as direct relationship between Mn body burden 
with hyperactivity and inattention scores in children, although several studies reported contradictory results. 
Existing laboratory studies demonstrated that impaired attention and hyperactivity in animals following Mn 
exposure was associated with dopaminergic dysfunction and neuroinflammation. Despite lack of direct evidence 
on Mn-induced neurobiological alterations in patients with ASD and ADHD, a plethora of studies demonstrated 
that neurotoxic effects of Mn overexposure may interfere with key mechanisms of pathogenesis inherent to these 
neurodevelopmental disorders. Specifically, Mn overload was shown to impair not only dopaminergic neuro-
transmission, but also affect metabolism of glutamine/glutamate, GABA, serotonin, noradrenaline, thus affecting 
neuronal signaling. In turn, neurotoxic effects of Mn may be associated with its ability to induce oxidative stress, 
apoptosis, and neuroinflammation, and/or impair neurogenesis. Nonetheless, additional detailed studies are 
required to evaluate the association between environmental Mn exposure and/or Mn body burden and neuro-
developmental disorders at a wide range of concentrations to estimate the potential dose-dependent effects, as 
well as environmental and genetic factors affecting this association.   

1. Introduction 

Manganese (Mn) is an essential metal involved in numerous bio-
logical processes due to the functioning of Mn-containing metal-
loenzymes like arginase, Mn-superoxide dismutase, and glutamine 
synthetase (Avila et al., 2013). The existing data demonstrate a signifi-
cant role of Mn in redox homeostasis, energy metabolism, regulation of 

immune response and neurodevelopment (Erikson and Aschner, 2019). 
Mn deficiency has been associated with multiple disturbances, including 
reproductive dysfunction (Boyer et al., 1984), impaired carbohydrate 
metabolism (Baly et al., 1984), as well as altered brain functioning 
(Takeda, 2003). Specifically, mutations in SLC39A8, a metal transporter 
responsible for cellular Mn uptake, associated with Mn deficiency result 
in cerebral atrophy with subsequent developmental delay, dystonia, and 

* Corresponding author at: Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia. 
E-mail address: tinkov.a.a@gmail.com (A.A. Tinkov).  

Contents lists available at ScienceDirect 

Current Research in Toxicology 

journal homepage: www.journals.elsevier.com/current-research-in-toxicology 

https://doi.org/10.1016/j.crtox.2024.100170 
Received 29 December 2023; Received in revised form 27 March 2024; Accepted 23 April 2024   

mailto:tinkov.a.a@gmail.com
www.sciencedirect.com/science/journal/2666027X
https://www.journals.elsevier.com/current-research-in-toxicology
https://doi.org/10.1016/j.crtox.2024.100170
https://doi.org/10.1016/j.crtox.2024.100170
https://doi.org/10.1016/j.crtox.2024.100170
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Current Research in Toxicology 6 (2024) 100170

2

seizures (Riley et al., 2017). Nutritional deficiency of Mn is rather rare 
due to high content of Mn in the foodstuffs (Martins et al., 2020b). 
Furthermore, laboratory in vitro and in vivo studies demonstrated that 
Mn overload also possesses significant adverse effects on brain func-
tioning due to its neurotoxic effects including induction of neuronal 
oxidative stress and apoptosis, neuroinflammation, and dysregulation of 
neurotransmitter metabolism to name a few (Tinkov et al., 2021c). 
Correspondingly, Mn overexposure was shown to contribute signifi-
cantly to neurodegeneration in Parkinson’s disease and Alzheimer’s 
disease (Martins et al., 2019), as well as Huntington’s disease and 
amyotrophic lateral sclerosis (Martins et al., 2020a). Several studies 
demonstrated that developmental Mn overexposure may affect neuro-
development resulting in behavioral deficits and reduced cognitive 
performance (Liu et al., 2020). Moreover, Mn overexposure may be 
associated with increased prevalence of neurodevelopmental disorders 
(NDD), including ASD (Blazewicz et al., 2022; Skogheim et al., 2021) 
and ADHD (Shih et al., 2018). However, other epidemiological studies 
yielded contradictory results demonstrating the lack of difference or 
even lower Mn levels in children with these NDDs (Qin et al., 2018; 
Hawari et al., 2020). Therefore, the objective of the present narrative 
review was a to synthesize the existing clinical and epidemiological 
findings linking Mn exposure biomarkers to ASD and ADHD, and to 
discuss key mechanisms of neurodevelopmental disorders pathogenesis 
that may be affected by exposure to this metal. 

2. Epidemiological findings on Mn and ASD 

Autism spectrum disorder (ASD) is a major public health concern, 
being observed in one child of 45 (Zablotsky et al., 2015). However, the 
etiology and its underlying pathophysiology remains incomplete. Fac-
tors such as genetics, environment, and epigenetic changes are 
frequently implicated, and ASD is considered a multifactorial disorder. 
In this regard, anomalies in essential elements, such as Mn, are envi-
ronmental factors presumed to play a role on the pathophysiology of 
ASD (Baj et al., 2021). Therefore, epidemiological studies have focused 
on the association between Mn levels and ASD. 

Recently, two hundred and twenty-seven children (107 with ASD 
and 120 controls) aged 3 to 14 years were recruited in Morocco and 
essential elements (copper, iron, manganese, selenium, and zinc) levels 
were evaluated in hair. The results showed a significant decrease in 
levels of essential elements in children with ASD when compared with 
control children. The authors reported that gender was a significant 
predictor of hair levels of Mn where boys had significantly lower Mn 
levels (26 %) than girls (Ouisselsat et al., 2023). Likewise, hair samples 
obtained from children diagnosed with ASD showed reduced levels of 
essential elements, including Mn, in comparison to children in the 
control group. Moreover, a significantly elevated prevalence of social 
withdrawal, sleep and eating disturbances, as well as speech and lan-
guage disorders were observed in individuals with ASD compared to the 
control group (Al-Ayadhi, 2005). Zhao et al. (2023) demonstrated a 
significant inverse correlation between whole blood Mn and total CNBS 
score as well as domains associated with language skills in children with 
ASD, suggesting that Mn induced adverse effects on cognitive ability 
(Zhao et al., 2023). 

Mn concentration was evaluated in blood plasma in children with 
ASD and in unaffected children in China. Some factors associated with 
Mn exposure and bioaccumulation such as body mass index (BMI), 
passive smoking, and seafood consumption, were investigated. The re-
sults showed lower Mn levels in children with ASD (13.5 μg/L) than the 
unaffected children (21.4 μg/L). However, no significant difference was 
found in Mn concentrations in blood of children with ASD and unaf-
fected children in relation to the assessed factors (Qin et al., 2018). 
Corroborating these findings, another Chinese Han population study 
reported no significant difference between ASD cases and controls for 
the concentration of Mn in serum (Ma et al., 2022). At the same time, our 
previous study involving 70 children with ASD and 70 healthy children 

from Moscow (Russia) revealed significantly higher serum Mn levels 
only in boys with ASD when compared to the respective control group 
(2.4 vs 2 ng/ml), whereas no significant group difference was noted in 
girls (Skalny et al., 2017). Moreover, the results of the Norwegian 
Mother, Father and Child Cohort Study demonstrated a positive asso-
ciation between the fourth quartile of maternal whole blood Mn levels 
and increased odds of ASD in children (Skogheim et al., 2021). Exami-
nation of 129 Polish adolescents with ASD and 86 neurotypical exam-
inees revealed more than a threefold higher urinary Mn levels in ASD 
(0.043 ± 0.026 µg/d) cases in comparison to controls (0.012 ± 0.002 
µg/d) (Błażewicz et al., 2022). 

Similarly, a study with Jamaican children with ASD and without ASD 
found no significant association between Mn exposure and ASD in uni-
variable General Linear Models (GLM) analysis and in a multivariable 
GLM adjusting for paternal age, parental education, place of child’s 
birth, consumption of root vegetables, cabbage, saltwater fish, and 
cakes/buns (Rahbar et al., 2014). On the other hand, in Jamaican 
children, Rahbar et al., identified a significant interaction between 
GSTP1 gene and Mn blood concentrations. Their findings suggested that 
among children with the Ile/Ile genotype for GSTP1, those with Mn 
levels ≥ 12 µg/L had approximately four times higher odds of ASD than 
those with Mn levels < 12 µg/L considered normal (p = 0.03). 
Furthermore, the study indicated an interaction between Mn and GST 
gene, suggesting that ASD status may modify the association between 
GST genes and blood Mn concentration (Rahbar et al., 2015). In this 
respect, a study on the association of ASD in Pakistani children with Mn 
and genotype frequencies of three GST genes (GSTP1, GSTM1, GSTT1) 
found no association with the essential metal concentration and three 
GST genes (Rahbar et al., 2021). GST is a family of phase II drug 
metabolizing enzymes involved in detoxification of a variety of xeno-
biotics. GST inhibition increases susceptibility to neurotoxic agents, 
contributing to a variety of neurological disorders (Dasari et al., 2018) 
including ASD (Mandic-Maravic et al., 2021). Vescovi et al. (1989) 
demonstrated that Mn exposure inhibited brain GST in a dose-dependent 
manner, indicative of the potential role of GST inhibition as a mediator 
of Mn-induced neurotoxicity (Vescovi et al., 1989). 

A study using primary teeth as biomarkers was carried out to eval-
uate and compare the concentration of Mn in ASD children and a control 
group in India. The results showed that Mn concentrations were three 
times higher in teeth of ASD children group compared to children in the 
control group, although the number of examinees per group was only six 
(Kaur et al., 2021). 

As mentioned before, environmental factors are associate with ASD 
development. In conflict zones, such as in war, children may be exposed 
to several environmental pollutions and food shortages, which can 
adversely impact their nutrition, leading to essential metal deficiencies. 
Interestingly, during the Syrian crisis, Hawari et al., (2020) examined 
whole blood Mn levels in 31 ASD children and 30 healthy children that 
were born or grown during the Syrian crisis. it was reported that the 
incidence of ASD, ADHD were associated with an increase in the whole 
blood lead and a decrease in Mn or both (Hawari et al., 2020). The as-
sociation between lead and ASD was recently reviewed (Tizabi et al., 
2023). The authors suggested that the conditions stemming from the 
Syrian crisis may also influence the nutrition of those children. Besides, 
genetic variations, such as polymorphisms in Mn transporter genes 
SLC30A10 and SLC39A8, can impact Mn homeostasis, directly influ-
encing the levels of this metal in the bloodstream (Wahlberg et al., 
2018). 

The concentration of Mn in hair samples of children with ASD was 
studied to address alterations in trace element and mineral status in 
children with NDDs. Mn levels were significantly reduced in children 
with ASD when compared with neurotypical controls (Skalny et al., 
2020b). Absence of Mn overexposure in the studied children may 
explain a connection between low Mn levels and adverse neuro-
development (Skalny et al., 2020b). Likewise, Fiori et al., observed 
decreased levels of Mn in patients with ASD, as well as an inverse 
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correlation between hair Mn levels and cognitive functions (Fiore et al., 
2020). However, contradictory results can be found in the literature 
regarding association of Mn levels and ASD. A meta-analysis conducted 
by Saghazadeh and Rezaei found that the mean difference in blood and 
hair Mn concentrations between ASD and control individuals was not 
significant (Saghazadeh and Rezaei, 2017). Other studies have also re-
ported no significant differences between Mn blood and hair levels in 
ASD and control groups (Geier et al., 2012; Skalny et al., 2017). 

The brain is exquisitely vulnerable to neurotoxic effects of xenobi-
otics during childhood (Martins et al., 2021; Oulhote et al., 2014), and 
exposures to environmental factors in the early stages of life, particu-
larly during critical windows (CWs) of development, have the potential 
to influence health throughout the entire lifespan. Indeed, several 
studies demonstrated that Mn exposure interferes with neuro-
development. Based on evaluation of dentine Mn content and magnetic 
resonance imaging at age of age 16–23 years, it was reported that Mn 
exposure affected intrinsic functional connectivity in dorsal striatum, 
occipital and frontal lobes, and middle frontal gyrus (upon prenatal 
exposure), putamen and cerebellum (upon perinatal exposure), and 
putamen, occipital, frontal, and temporal lobes (upon early postnatal 
exposure), circuitries implicated in cognition and motor functions 
(Rechtman et al., 2023). 

Growing evidence suggests that maternal exposure to air pollution in 
the perinatal period may increase the risk of ASD in children. In this 
respect, a stronger association was observed in boys compared with girls 
for pollutants (including Mn), suggesting a sex-specific interaction 
(Roberts et al., 2013). Moreover, evidence suggests that metals could 
exert gender-specific influences on social behavior by affecting dopa-
mine function (Curtis et al., 2010). Additionally, children living in 
communities near a ferro-manganese alloy plant had diminished IQ and 
neuropsychological performance in tests evaluating executive functions 
such as response inhibition, strategic visual formation, and verbal 
working memory (Carvalho et al., 2014). Hence, environmental expo-
sure to Mn in early-life may alter cognitive function in children (Luc-
chini et al., 2017). 

A Swedish study employing biomarkers derived from tooth matrices 
that assess the absorption of various elements with high temporal pre-
cision in early development, and a well-characterized set of twins as 
subjects, reported distinctions between individuals with ASD and those 
without ASD during specific prenatal and postnatal intervals. The au-
thors showed that Mn levels were consistently lower in cases both pre- 
and postnatally, and this deficiency was more significant 4 months after 
birth in ASD group, suggesting that systemic elemental dysregulation 
during specific developmental windows may play an important role in 
ASD etiology (Arora et al., 2017). 

Approximately one-third of children diagnosed with ASD belong to 
the neurodevelopmental regression (NDR) subtype. Children in this 
category exhibit typical developmental progress during infancy but 
experience a decline in social and language skills, typically occurring 
between the first and second years of life (Brister et al., 2022; Maenner 
et al., 2020). A possible explanation for NDR is related to mitochondrial 
dysfunction, mainly in children with ASD (Delhey et al., 2017; Shoffner 
et al., 2010). Elevated concentration of Mn during prenatal exposure 
was linked to diminished mitochondrial respiration and glycolysis in 
individuals with ASD with a history of NDR, suggesting that baseline Mn 
level could be a crucial factor linked to the modulating impact of Mn on 
both the severity of ASD and its physiological aspects (Frye et al., 2020). 

Although several studies have evaluated the potential impact of 
early-life exposure to Mn on cognitive functions and its association with 
ASD and NDR, the mechanism and pathways that are involved are not 
completely understood. and additional studies are necessary to elucidate 
the involvement of Mn in these neurological alterations. 

3. Epidemiological and laboratory findings on Mn and ADHD 

ADHD is a neurodevelopmental disorder characterized by behavioral 

disturbances including inattention, impulsivity, and hyperactivity. 
Despite a high prevalence of ADHD in the population, the potential 
causes of ADHD are still debatable (Nigg et al., 2020). It is proposed that, 
along with biological and genetic factors, exposure to environmental 
toxins may also significantly contribute to the development of ADHD 
(Aghaei et al., 2019). 

Several previous studies demonstrated an association between 
environmental Mn exposure and ADHD. Specifically, a nationwide study 
in Denmark demonstrated showed that exposure to high levels of Mn in 
drinking water (>100 ug/l) is was associated with 51 % and 20 % in-
crease in risk of ADHD-inattentive subtype in females and males, 
respectively, whereas no relationship between Mn exposure and ADHD 
combined subtype was revealed (Schullehner et al., 2020). Soil Mn 
levels were also found to be associated with inattention and ADHD 
scores in girls and to a lesser extent with hyperactivity scores in boys, 
while SLC30A10 rs12064812 and SLC39A8 rs13107325 significantly 
modified this association by increasing the risk of adverse behavioral 
outcome in girls exposed to Mn (Broberg et al., 2019). A previous case 
report revealed that a significant elevation of Mn concentration in 
drinking water Mn concentration was associated with high whole blood, 
urinary, and hair Mn levels, along with inattention, poor verbal and 
visual memory in a 10-year old boy (Woolf et al., 2002), demonstrating 
that impaired attention and memory may be considered a symptom of 
Mn overload. 

Epidemiological studies also addressed the association between 
systemic Mn levels in the human body and ADHD status. A study in the 
United Arab Emirates demonstrated that each 1 ppb increase in blood 
Mn levels was associated with a nearly 80 % increase in the odds of 
ADHD in school-aged children (Yousef et al., 2011). In addition, chil-
dren with higher Mn exposure as evidenced by detectable nail Mn levels 
were characterized by reduced sustained attention as compared to their 
counterparts with less Mn exposure (nail Mn < LOD) (Sears et al., 2021). 
Higher serum Mn concentrations in children with ADHD, especially 
inattentive type, were significantly decreased by treatment with meth-
ylphenidate (MPH), a drug commonly used for ADHD management, 
(Farias et al., 2010), indirectly supporting the association between 
ADHD severity and circulating Mn levels. Correspondingly, the results of 
a preliminary meta-analysis revealed a significant association between 
an increase in blood and hair Mn levels and ADHD in children, while 
after exclusion of studies on hair metal levels the association was only 
nearly significant (Shih et al., 2018). 

In addition to evidence linking ADHD diagnosis to higher Mn body 
burden, several studies demonstrated that systemic Mn levels in the 
human body is positively associated with various ADHD severity and 
behavioral disorders scores. Specifically, blood Mn levels were signifi-
cantly associated with Child Behavior Checklist (CBCL) total problem 
score, as well as specific problems including anxiety/depression, social 
problems, delinquent behavior, aggressive behavior, internalizing 
problems, and externalizing problems in children with ADHD (Hong 
et al., 2014). Polymorphisms in Mn transporters including SLC30A10 
rs1776029 (AA) and rs12064812 (TT), and SLC39A8 rs13107325 (CC), 
leading to increased blood Mn levels, were also associated with higher 
scores of ADHD-related behavior assessed by Conners’ subscales ADHD- 
index and DSM-IV total in comparison to carriers of other alleles 
(Wahlberg et al., 2018). Hair Mn content was shown to be associated 
with total CBCL scores, total externalizing behavior and inattention 
scores in girls, but not in boys from communities located near a ferro- 
manganese alloy plant (Menezes-Filho et al., 2014). Furthermore, the 
level of Mn in hair samples was associated with Revised Conners’ Rating 
Scale for parents (CPRS-R) T-scores on oppositional and hyperactivity 
subscales in children exposed to Mn through tap water (Bouchard et al., 
2007). Despite the lack of significant group difference in hair Mn levels 
between ADHD cases and controls, subjects with abnormal Mn levels 
were characterized by higher prevalence of ADHD. Moreover, hair Mn 
concentration directly correlated with total Korean ADHD Rating Scale 
(K-ARS) values (Shin et al., 2015). 
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Finally, Mn level in tooth enamel, a marker of prenatal Mn exposure, 
was associated with parent and teacher ratings of externalizing and 
attention problems in children (Ericson et al., 2007). Despite a signifi-
cant association between prenatal and postnatal dentine Mn content and 
adverse behavioral outcome including hyperactivity problems both in 
boys and girls, higher prenatal and postnatal deciduous tooth dentine 
Mn levels were also associated with better memory, cognitive and motor 
function in boys (Mora et al., 2015). 

Nonetheless, several studies not only failed to reveal the association 
between Mn overexposure and ADHD risk or severity, but also reported 
contradictory results. Specifically, no significant association between 
umbilical cord blood Mn levels and ADHD in children was observed 
(Ode et al., 2015). In our previous study, we also did not observe sig-
nificant alterations in serum Mn levels in children with ADHD aged 4–9 
years old (Skalny et al., 2020a). 

In contrast, as mentioned earlier in Syrian children born or grown 
during the Syrian crisis with ADHD, blood Mn levels were nearly 10 % 
lower than in the neurotypical controls (Hawari et al., 2020). Our pre-
vious findings also demonstrated a significant reduction in hair Mn 
levels in children with ADHD (Skalny et al., 2020b). 

The results from the Italian Public Health Impact of Metals Exposure 
Study demonstrated that prenatal and early postnatal (0–1.5 years old) 
Mn exposure evaluated by deciduous tooth Mn content was associated 
with lower teacher and parent − reported inattention scores, suggesting 
a potential protective effect of Mn against ADHD (Broberg et al., 2019). 
Generally, these findings corroborate the results of the “Norwegian 
Mother, Father and Child Cohort Study,” which revealed a slight U- 
shaped association between maternal blood Mn levels at week 17 of 
gestation and the odds of ADHD, suggesting that either deficiency or 
overload of Mn during development may lead to ADHD (Skogheim et al., 
2021). 

In vivo laboratory studies demonstrated that Mn exposure can induce 
a variety of neurobehavioral deficits, including hyperactivity, altered 
attention, and impulsivity, all characteristics of ADHD. Specifically, 
early postnatal Mn exposure (25 or 50 mg Mn/kg/day orally) was shown 
to induce persistent attentional dysfunction in adult rats, while learning 
and impulse control were not affected (Beaudin et al., 2017a). Mn- 
induced attention deficits were also evident in non-human primates 
following intravenous injection of 15–20 mg/kg/week MnSO4 mono-
hydrate (Schneider et al., 2015). In addition, maternal and early post-
natal Mn exposure (2–4 mg/mL Mn in drinking water) increased 
locomotor activity (McDaniel et al., 2022), although this effect was 
evident only in females (Phattanarudee et al., 2009). At the same time, 
hyperactivity induced by Mn-containing drinking water (1.0 mg/ml 
MnCl2⋅4H2O) was evident at 5–7 weeks of exposure, but not at longer 
periods (Nachtman et al., 1986). Interestingly, Mn-induced increased 
motor activity was also replaced by activity reduction at 8 months of 
exposure through drinking water (5.0 mg/ml) (Bonilla, 1984). 

Other laboratory studies demonstrated that behavioral alterations 
resembling those in ADHD are associated with impaired dopaminergic 
signaling and to a lesser extent other neurotransmitters. Specifically, 
preweaning Mn exposure (25–50 mg/kg/day orally) was shown to 
induce hyperactivity, as well as memory and learning alterations asso-
ciated with reduced D1 receptor and DAT protein levels in dorsal 
striatum and nucleus accumbens along with increased D2 receptor 
protein expression in prefrontal cortex (Kern et al., 2010). An increase in 
behavioral reactivity in an open field following early postnatal Mn 
exposure (25–50 mg/kg/day orally) was associated with a reduction in 
evoked norepinephrine outflow, decrease in TH, DAT, NET, and D1 re-
ceptor protein levels in prefrontal cortex, in parallel with up-regulation 
of D2R protein levels and astrocyte reactivity assessed by GFAP (Conley 
et al., 2020). Another study demonstrated that preweaning Mn exposure 
(50 mg/kg/day orally) resulted in attention deficits associated with 
down-regulation of Th, dat, and Dnmt3a (DNA methyltransferase 3a) 
gene expression in prefrontal cortex. Hypermethylation of these genes 
can result in inflammation, alteration in cell development, and neuronal 

systems via mTOR signaling changes in the prefrontal cortex (Santiago 
et al., 2023). Dietary exposure of young mice to Mn (2400 ppm Mn in 
chow) significantly increased extracellular dopamine clearance, thus 
reducing the duration of dopamine in the synapse This was associated 
with locomotor hyperactivity and significant reductions in striatal DA, 
3-MT, as well as 5-HT and 5-HIIA levels. However, these effects were 
significantly affected by YAC128 genotype (Wilcox et al., 2022). A sig-
nificant increase in hyperactivity in 100 mg/kg Mn-exposed rats (via 
gavage) treated with amphetamine, an indirect agonist of dopamine, 
norepinephrine and serotonin, or with MK-801, a glutamate N-methyl- 
D-aspartate (NMDA) receptor antagonist, indicates involvement of other 
transmitters in Mn-induced hyperactivity (Amos-Kroohs et al., 2015). 

It has also been demonstrated that increased spontaneous locomo-
tion in MnCl2 (200 mg/kg intragastrical) and methylcyclopentadienyl 
manganese tricarbonyl (1–4 mg/kg i.g.)-treated rats was associated with 
structural alterations in substantia nigra, reduction of TH-positive neu-
rons and microglia activation (Zhu et al., 2022). 

The association between chronic postnatal Mn exposure (50 mg Mn/ 
kg/day orally) and ADHD is indirectly supported by the observation that 
MPH could prevent Mn-induced decrease in striatal DA levels (Beaudin 
et al., 2015). Inhibition of Mn-induced attentional deficits by MPH was 
independent of D1, D2, or α2A dopamine receptor signaling. However, 
D2R and D1R signaling were responsible for Mn-induced sensorimotor 
deficits and protective effects of MPH, respectively (Beaudin et al., 
2023). In turn, MPH treatment did not improve Mn-induced selective 
attention alterations while improving impulse control (Beaudin et al., 
2017b). 

An earlier study by Pappas et al. (1997) demonstrated that perinatal 
exposure to 10 mg/ml Mn in drinking water induced hyperactivity in 
rats in association with cerebral cortex thickening, although no signifi-
cant alterations in TH activity, dopamine, and GFAP levels were 
observed (Pappas et al., 1997), suggesting involvement of other poten-
tial mechanisms in addition to dopamine. Specifically, administration of 
Mn with drinking water (0.4 g/l) for 6 weeks significantly increased 
locomotor activity in mice while decreasing grip strength and swimming 
or climbing time. These effects were associated with an increase in 
striatal 5-HIAA and nigral GFAP levels, whereas no significant alteration 
in nigral and striatal TH was observed, suggesting a role for nigral and 
striatal astrocytes in Mn-induced neurobehavioral deficits (Krishna 
et al., 2014). It is also notable that co-exposure to Mn (50 mg/kg/day) 
and MPTP induced hyperactive behavior, while the latter was not 
observed in astrocyte-specific knockout (KO) mice lacking I kappa B 
kinase 2, an upstream regulator of NF-κB pathway. Collectively, these 
data suggest a role for microglia and astrocytes in Mn/MPTP-induced 
hyperactivity (Hammond et al., 2020). 

In contrast, several studies demonstrated a significant decrease in 
locomotor activity following oral 15 and 59 mg/kg b.w Mn exposure via 
gavage (Vezer et al., 2007). Severe Mn overload in brain resulting from 
ZIP14 knockout was associated with reduced locomotor activity in 
comparison to WT mice (Aydemir et al., 2017). In agreement, a number 
of studies demonstrated that the effect of intraperitoneal Mn exposure 
(5, 10 and 20 mg/kg) on locomotor activity appears to be dose-specific, 
when only high doses of Mn possess inhibitory effect on activity (Cor-
dova et al., 2013). Therefore, similar to ASD, additional carefully 
designed studies are required to clarify the association between Mn 
levels and ADHD. 

4. Considerations regarding inconsistencies in epidemiological 
studies 

Taken together, existing epidemiological data demonstrated signifi-
cant contradictions on the associations between Mn body burden in 
children and neurodevelopmental disorders (Table 1). Several studies 
demonstrated that blood Mn levels in ASD cases may be most increased 
or unchanged, while a single study reported a decline in circulating Mn 
levels. In contrast, analysis of hair revealed a significant decrease in Mn 
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Table 1 
A summary of the main findings of research examining the relationship between Mn and its correlation with Autism Spectrum Disorder (ASD) and Attention Deficit 
Hyperactivity Disorder (ADHD).  

Country of 
origin 

Number of participants 
(age) 

Design Potential exposure 
source 

Exposure 
biomarkers 

Main outcomes Reference 

Morocco 107 ASD and 120 controls, 
(aged 3 to 14 years) 

Case- 
Control 
study 

Not specified Hair Boys had significantly lower Mn levels (26 %) than 
girls; ASD and gender were significant predictors 
of Mn levels 

Ouisselsat et al., 
2023 

Saudi Arabia 65 ASD 
80 control  

Case- 
Control 
study 

Not specified Hair Children diagnosed with ASD revealed reduced 
levels of essential elements, including Mn, in 
comparison to children in the control group 

Al-Ayadhi, 2005 

China 30 ASD 
30 Control  

Case- 
Control 
study 

Not specified Blood 
and urine 

Correlation between whole blood Mn levels and 
symptoms 

Zhao et. 2023 

China 34 ASD 
38 Control 

Case- 
Control 
study 

Not specified Blood No significant difference was found in Mn 
concentrations 

Qin et al., 2018 

China 
(Han 
population) 

92 ASD 
91 Control 

Case- 
Control 
study 

Not specified Serum No significant difference Ma et al., 2022 

Russia 70 ASD 
70 Control 

Case- 
Control 
study 

Not specified Serum Significantly higher serum Mn levels only in boys 
with ASD, no significant in girls. 

Skalny et al., 
2017 

Norway 397ASD 
705 ADHD 
1034 control 

Cohort 
Study 

Not specified Blood Positive association between the fourth quartile of 
maternal whole blood Mn levels and increased odds 
of ASD in children 

Skogheim et al., 
2021 

Poland 129 ASD 
86 Control 

Case- 
Control 
study 

Not specified Urine Threefold higher urinary Mn levels in ASD cases in 
comparison to controls 

Błażewicz et al 
2022 

Jamaica 109 ASD 
109 Control  

Case- 
Control 
study 

Diet Blood No significant association between Mn levels and 
ASD 

Rahbar et al., 
2014 

Jamaica 100 ASD 
100 Control 

Case- 
Control 
study 

Not specified Blood Interaction between GSTP1 gene and Mn blood 
concentration 

Rahbar et al., 
2015 

Pakistan 30 ASD 
30 Control 

Case- 
Control 
study 

Not specified Blood No association between Mn concentration and 
GSTP1 gene 

Rahbar et al., 
2021 

India 6 ASD 
6 Control 

Case- 
Control 
study 

Not specified Teeth Mn concentrations were three times higher in teeth 
of ASD children group as compared to the children 
in the control group 

Kaur et al., 2021 

Syria 31 ASD 
30 Control  

Case- 
Control 
study 

Military-related 
pollution 

Blood Blood Mn levels were lower in the group of ASD 
when compared with control group 

Hawari et al., 
2020 

Russia 52 ASD 
53 Control 

Case- 
Control 
study 

Not specified Hair Mn levels was significantly reduced in children with 
ASD when compared with controls 

Skalny et al., 
2020b 

Italy 34 male 
14 female 

Cross- 
sectional 
study 

Not specified Hair Mn decreased in patients with ASD compared with 
age-related reference values 

Fiore et al., 
2020 

USA 15 male 
3 female 

Cross- 
sectional 
study 

Not specified Hair No correlation between Mn levels and ASD Geier et al., 
2012 

Denmark 643,401 children born 
1992–2007 for clinical 
diagnoses of ADHD 

Cohort 
Study 

Drinking water Mn in 
drinking 
water 

High levels of Mn in drinking are associated with 51 
% and 20 % increase in risk of ADHD-inattentive 
subtype in females and males 

Schullehner 
et al., 2020 

Italy 645 children (aged 11–14 
years) 

Cross- 
sectional 
study 

Soil Mn in 
soil and 
blood 

Mn levels were associated with inattention and 
ADHD scores in girls 

Broberg et al., 
2019 

USA 1 child (10-year old)  Case Report Drinking water Blood, 
urine and 
hair 

Mn was associated with high whole blood, urinary, 
and hair Mn levels, along with inattention, poor 
verbal and visual memory 

Woolf et al., 
2002 

United Arab 
Emirates 

18 ADHD 
74 control 

Case- 
Control 
study 

Not specified Blood Blood Mn levels was associated with a nearly 80 % 
increase in the odds of ADHD in school-aged 
children 

Yousef et al., 
2011 

USA 255 children  Cross- 
sectional 
study 

Coal ash storage 
sites 

Nail Children with detectable nail Mn levels had reduced 
sustained attention 

Sears et al., 
2021 

Brazil 74 ADHS 
67 control 

Case- 
Control 
study 

Not specified Serum Higher serum Mn concentrations in children with 
ADHD 

Farias et al., 
2010 

Korea 890 children (aged 8–11 
years) 

Cross- 
sectional 
study 

Not specified Blood Blood Mn levels were significantly associated with 
Child Behavior Checklist (CBCL) total problem score 

Hong et al., 
2014 

Italy 686 children (ages 11–14) Cross- 
sectional 
study 

Ferromanganese 
alloy plants 

Blood Polymorphisms in Mn transporters are associated to 
increased blood Mn levels were also associated with 
higher scores of ADHD-related behavior 

Wahlberg et al., 
2018 

(continued on next page) 
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content in children with ASD. Single studies using urine and toenails as 
biological samples detected higher Mn levels in ASD patients compared 
with controls. In contrast, data on Mn levels in ADHD patients were 
more uniform. The majority of studies revealed increased hair, blood, 
and teeth Mn content in children with ADHD, with only single study 
demonstrating opposite results. While considering only the studies with 
clearly estimated source of Mn exposure (proximity to ferromanganese 
alloy plants, coal ash storage sites, agricultural areas of frequent maneb/ 
mancozeb use), Mn body burden in subjects with ADHD significantly 
exceeded the levels in controls. Taken together, these findings provide 
stronger evidence for the association of Mn exposure with ADHD rather 
than ASD. 

Conflicting findings may be due to differences in design and exis-
tence of confounding factors. For example, small size of groups, possible 
exposure to toxic metals and other xenobiotics, nutritional status, and 
different matrices employed to analyze Mn levels (e.g., hair, blood, 
serum, teeth). 

Mn levels in blood serum/plasma and red blood cells appeared to be 
sensitive markers of Mn exposure (Zheng et al., 2011), correlating with 
ambient Mn levels (Hoet et al., 2012). However, the most recent sys-
tematic analysis demonstrate that blood Mn cannot be considered a 
useful biomarker of non-occupational Mn exposure (Shilnikova et al., 
2022). In addition, homeostatic control of circulating Mn levels may also 
limit the utility of blood as a sample for assessment of environmental Mn 
exposure (Chojnacka et al., 2010). 

Although urinary Mn may reflect Mn exposure to certain extent, one 
should consider that up to 95 % of Mn is excreted via bile with feces 
(Aschner et al., 2007), and urinary Mn level cannot be a sensitive 
biomarker (Hoet and Roels, 2014). 

The second most frequently used sample for investigation of the 
relationship between Mn exposure and neurodevelopmental disorders is 
hair. Although it has been demonstrated that hair may be used as a 
biomarker of environmental Mn exposure in children (Eastman et al., 
2013), including Mn intake with drinking water (Ntihabose et al., 2018), 

certain limitations including the impact of hair dyeing, pigmentation, 
and lack of systematic data on its correlation with other biomarkers, 
thus stating that data on hair Mn accumulation should be treated with 
caution (Shilnikova et al., 2022). Moreover, Skröder et al. (2017) 
demosntrated that hair Mn did not correlate significantly with red blood 
cell, urinary, or water metal content in children (Skroder et al., 2017). In 
contrast, the results of a systematic review and meta-analysis demon-
strate that hair is the most reliable biomarker of Mn exposure in children 
(Liu et al., 2020). 

Similarly to hair, toenails were used as a substance for assessment of 
long-term trace element exposure (Gutierrez-Gonzalez et al., 2019). It is 
proposed that toenails may be a better biomarker of Mn exposure 
(Shilnikova et al., 2022), being more sensitive than urinary or blood 
levels (Laohaudomchok et al., 2011). 

Taken together, the existing data demonstrate that all biomarkers 
have some limitations and the outcome of the studies should be critically 
evaluated. In turn, further studies assessing multiple biomarkers of Mn 
exposure in parallel with environmental Mn levels in children with 
ADHD and ASD are warranted to investigate the potential contribution 
of Mn exposure at different environmental levels to neurodevelopmental 
disorders. 

5. Mn toxicity and the particular mechanisms of 
neurodevelopmental disorders 

Given that Mn promotes developmental neurotoxicity, various 
studies have explored the molecular mechanisms of such toxicity in 
relation to ASD and ADHD. These studies have focused on impaired 
neurogenesis including neuronal damage, oxidative stress, mitochon-
drial dysfunction, neuroinflammation, and neurotransmitter alterations 
(da Silva et al., 2023; Ijomone et al., 2020), which are discussed in detail 
below. 

Table 1 (continued ) 

Country of 
origin 

Number of participants 
(age) 

Design Potential exposure 
source 

Exposure 
biomarkers 

Main outcomes Reference 

Brazil 34 boys and 36 girls (aged 
7–12 years)  

Cross- 
sectional 
study 

Ferromanganese 
alloy plants 

Hair Hair Mn content was associated with total CBCL 
scores in girls, but not in boys 

Menezes- Filho 
et al. 2014 

Canada 24 boys and 22 girls (6–15 
years) 

Cross- 
sectional 
study 

Tap water Hair Mn in hair samples was associated with Revised 
Conners’ Rating Scale for parents (CPRS-R) T-scores 

Bouchard et al., 
2007 

Korea 40 ADHD 
43 Control 

Case- 
Control 
study 

Not specified Hair Hair Mn concentration directly correlated with total 
Korean ADHD Rating Scale (K-ARS) values 

Shin et al., 2015 

USA 27 children Cross- 
sectional 
study 

Not specified Tooth Mn exposure, was associated with parent and 
teacher ratings of externalizing and attention 
problem 

Ericson et al., 
2007 

USA 248 children (aged 7, 9, 
and/or 10.5 years)  

Cohort 
study 

Area of maneb/ 
mancozeb use 

Tooth Dentine Mn content and adverse behavioral 
outcome including hyperactivity problems 

Mora et al., 
2015 

Sweden 166 ADHD 
166 Control 

Case- 
Control 
study 

Not specified Umbilical 
cord serum 

No significant association between umbilical cord 
blood Mn levels and ADHD in children 

Ode et al.,2015 

Syria 29 ADHD 
30 Control 

Case- 
Control 
study 

Not specified Blood Children born with ADHD had blood Mn levels 
nearly 10 % lower than in the neurotypical controls 

Hawari et al., 
2020 

Russia 68 ADHD 
68 Control 

Case- 
Control 
study 

Not specified Serum No significant alterations in serum Mn levels in 
children with ADHD 

Skalny et al., 
2020a 

Russia 52 ADHD 
53 Control 

Case- 
Control 
study 

Not specified Hair Significant reduction in hair Mn levels in children 
with ADHD 

Skalny et al., 
2020b 

Italy 645 children (aged 11–14 
years) 

Cross- 
sectional 
study 

Not specified Tooth Deciduous tooth Mn content was associated with 
lower teacher and parent − reported inattention 
scores 

Broberg et. al 
2019 

Norway 705 ADHD 
1034 controls 

Cohort 
Study 

Not specified Blood Association between maternal blood Mn levels at 
week 17 of gestation and the odds of ADHD 

Skogheim 
et al.,2021  
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5.1. Neurogenesis and neuronal damage 

Both ASD and ADHD have been shown to be associated with 
impaired neurogenesis following exposure to various environmental 
stressors (Kaushik and Zarbalis, 2016; Nunez-Jaramillo et al., 2021). 
Despite being essential for neuronal health at physiological levels 
(Horning et al., 2015) high doses of Mn exert significant neurotoxic 
effects resulting in a decrease in neuronal differentiation and viability. 
Specifically, Mn overexposure was shown to reduce neurogenesis 
(Adamson et al., 2018) at least partially due to down-regulation of BDNF 
signaling (Kikuchihara et al., 2015). Such exposure also resulted in 
cytoskeletal alterations and impaired neurite structure (Parsons-White 
and Spitzer, 2018). These effects may be due to Mn-induced alterations 
in astrocytes’ ability to promote neurogenesis, mediated through redox- 
dependent mechanisms (Giordano et al., 2009). Finally, undifferentiated 
neurons were shown to be more sensitive to Mn neurotoxicity (Her-
nandez et al., 2011), thus supporting the epidemiological and laboratory 
evidence of adverse neurodevelopmental effects of Mn exposure. 

In addition to altered neurogenesis, developmental exposure to Mn 
significantly increased hyperactivity and aggressive behavior due to 
induction of apoptosis in developing granule cells and altered neuronal 
migration (Wang et al., 2012). It has been demonstrated that Mn 
exposure induces neuronal apoptosis by down-regulation of Bcl-2 
expression and increasing proapoptotic p53, Bax, caspase-3 (Nkpaa 
et al., 2019) and p53 expression (Wan et al., 2014). Mn-induced 
apoptosis was also shown to be associated with mitofusin 2 down- 
regulation (Liu et al., 2017b). In addition to apoptosis, Mn exposure 
was also shown to be associated with neuronal ferroptosis (Zhang et al., 
2023a) through repression of amyloid precursor protein and H-Ferritin 
translation, resulting in increased accumulation of catalytically active 
neurotoxic iron (Venkataramani et al., 2018). 

5.2. Oxidative stress 

Mn is crucial for mitochondrial function, as it plays a key role in the 
mitochondrial-specific SOD enzyme (Zhang et al., 2023b). However, 
neurons and astrocyte mitochondria are especially susceptible to 
excessive Mn, which can result in mitochondrial dysfunction through 
processes such as neuroinflammation and impaired mitochondrial repair 
(Martins et al., 2023; Morcillo et al., 2021; Smith et al., 2017). Oxidative 
stress may serve as a crucial connection between mitochondrial 
dysfunction and ASD. Indeed, reactive oxygen species (ROS) generated 
from environmental toxicants with pro-oxidant properties may lead to 
mitochondrial dysfunction (Rossignol and Frye, 2012). In this regard, 
lymphoblastoid cell lines derived from patients with ASD were more 
susceptible to oxidative stress and had significant physiological abnor-
malities in mitochondrial function (Rose et al., 2014). In addition, a 
positive correlation between mitochondria dysfunction and ASD was 
also reported (Shoffner et al., 2010). 

As observed in ASD, ADHD is also associated with mitochondrial 
dysfunction. Specifically, a cellular model of ADHD was characterized 
by a significant reduction in mitochondrial complex V activity and 
mitochondrial respiration, along with reduction of mitochondrial 
membrane potential and oxidative stress (Verma et al., 2016) Moreover, 
in spontaneously hypertensive rats (SHR) used as an in vivo model of 
ADHD, increased ROS generation was revealed in cortex, striatum, and 
hippocampus, along with a decrease in prefrontal cortex and hippo-
campal GPX activity (Leffa et al., 2017). The results of certain clinical 
studies also demonstrated increased levels of systemic oxidative stress 
biomarkers (Verlaet et al., 2019). However, other studies have reported 
lower levels of malondialdehyde and 8-hydroxy-2′-deoxyguanosine (8- 
OHDG) in ADHD patients (Bulut et al., 2013). Despite these contradic-
tions, an earlier meta-analysis demonstrated a significant association 
between ADHD and systemic oxidative stress, but not antioxidant status 
(Joseph et al., 2015). 

Oxidative stress, depletion of cellular antioxidant defenses, and 

formation of toxic metabolites are also potential underlying mechanisms 
in early-life Mn exposure (Martinez-Finley et al., 2013). Peres et al. re-
ported that low-level exposure to Mn during a critical neuro-
developmental period leads to decreased levels of non-protein thiols and 
alterations in antioxidant defense system that affects motor coordination 
and cognitive function in rats (Peres et al., 2015). Although the role of 
Mn overload in development of oxidative stress was discussed in a 
number of excellent reviews (Farina et al., 2013), it is noteworthy that 
Mn promotes mitochondrial H2O2 production in SH-SY5Y cells both in 
physiologic and toxicologic range (Fernandes et al., 2017). Mn was 
shown to increase H2O2 production by complex II and Kreb’s cycle with 
its subsequent emission by mitochondrial permeability transition 
(Bonke et al., 2016). In addition, Mn interaction with SIRT1 may also 
lead to alterations in redox homeostasis and mitochondrial dysfunction 
(Tinkov et al., 2021b). Therefore, Mn effects on mitochondrial redox 
signaling and oxidative stress (Smith et al., 2017) may, at least in part, 
be responsible for its role in pathobiology of ASD and ADHD. 

5.3. Neuroinflammation 

Several studies have proposed that neuroinflammation may be a 
pivotal factor in the pathological progression of both ASD (Al-Bishri, 
2023; Frankovich et al., 2023) and ADHD (Dunn et al., 2019). In a ge-
netic mouse model of ASD, elevated levels of interferon gamma (IFN-γ) 
and monocyte chemoattractant protein 1 (MCP-1) indicative of neuro-
inflammation were noted in the hippocampus. Furthermore, increased 
microglial activity, also reflective of neuroinflammation, was observed 
in the hippocampus and prefrontal cortex of such mice (Duarte-Campos 
et al., 2023). The results of a systematic review demonstrated that ADHD 
is associated with increased systemic levels of proinflammatory cyto-
kines, as well as cytokine gene polymorphisms (Anand et al., 2017). 
Iba1-immunopositive microglia and TNF-α protein levels are detected in 
animal models of this disorder (Fang et al., 2023). Given that Mn pro-
motes inflammatory effects in the brain, it is possible to speculate that 
high levels of Mn contribute to neuroinflammation associated with ASD 
and ADHD. 

Mn also induced neuroinflammation in different brain regions (Sar-
kar, 2021), including thalamus (Deng et al., 2023) and striatum (Paja-
rillo et al., 2022). This is due to increases in NLRP3, CASP1, IL-1β, IL-18 
(Fang et al., 2021), COX-2 expression and p38 MAPK signaling (Li et al., 
2018). Interestingly, treatment with Mn chelator, sodium p-amino-
salicylic acid, ameliorated these effects. In addition to direct NLRP3 
inflammasome activation, Mn exposure increases exosome-mediated 
transfer of inflammasome adaptor protein ASC which further pro-
moted NLRP3 activation (Sarkar et al., 2019). 

Proinflammatory effect of Mn in brain was shown to be mediated by 
NF-κB signaling. Specifically, Mn was shown to facilitate ROS produc-
tion and increase IκB kinase (IKK-β) phosphorylation resulting in nuclear 
NF-κB p65 translocation and subsequent proinflammatory signaling 
(Rizor et al., 2021), including inflammasome activation (Zhao et al., 
2019). Correspondingly, treatment with sodium p-aminosalicylic acid 
significantly down-regulated NF-κB mRNA expression leading to 
reduced TNF-α and IL-1β production by microglia (Li et al., 2021). 
Microglial activation following Mn exposure was shown to be at least 
partially mediated by down-regulation of SIRT1 expression resulting NF- 
κB phosphorylation and STAT3 acetylation (Cong et al., 2021). In 
addition, the role of SIRT1 down-regulation in Mn-induced neuro-
inflammation was shown to be associated with inhibition of FOXO3/ 
LC3B-mediated autophagy in microglia cells (Yan et al., 2023). 

Mn-induced up-regulation of LRRK2 expression in microglia was 
shown to be responsible for microglia activation and subsequent neu-
roinflammation (Chen et al., 2018). Specifically, LRRK2 expression was 
shown to be essential for up-regulation of TNF-α and IL-1β expression, 
and NLRP3 inflammasome activation in BV-2 microglia cells (Pajarillo 
et al., 2023). The role of LRRK2 in Mn-induced neuroinflammation and 
apoptosis in microglia and macrophages was shown to be at least 
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partially mediated by p38 MAPK activation (Kim et al., 2019). 
Generally, glial activation serves as a robust marker of neuro-

inflammation and is a prominent pathological feature observed in in-
dividuals exposed to Mn (Martinez-Hernandez et al., 2023). The 
activation of glial cells is also significant in enhancing Mn neurotoxicity 
by triggering the release of ROS and inflammatory mediators, such as 
proinflammatory cytokines (Harischandra et al., 2019). Mn triggered 
proinflammatory events in astrocytes by impairing mitochondrial bio-
energetics, which led not only to the release of proinflammatory cyto-
kines, but also intensified the inflammatory response caused by 
aggregated α-synuclein (Sarkar et al., 2018). While all these studies 
strongly support the neuroinflammatory effects of Mn, further studies 
are required to delineate the contribution of Mn to neuroinflammation 
in the context of ASD and ADHD. 

5.4. Neurotransmitter metabolism 

Recently, a study using a metabolomic approach demonstrated that 
children with ASD had alteration in metabolic pathways linked to neu-
rotransmitters (Brister et al., 2022). In fact, ASD has been associated 
with a perturbation of the dopaminergic system (Paval, 2017), such as 
decreased release of dopamine in the prefrontal cortex and reduced 
neural response in the nucleus accumbens (Ernst et al., 1997; Scott-Van 
Zeeland et al., 2010). Interestingly, Mn has frequently been linked to 
dopaminergic dysfunction, leading to structural, functional, and 
neurochemical changes in the dopaminergic system. Thus, it is consid-
ered an environmental risk factor for ASD (Ijomone et al., 2020). A 
number of other neurotransmitters, including GABA, glutamate, sero-
tonin (Marotta et al., 2020), and norepinephrine (Beversdorf, 2020) 
were shown to be involved in ASD pathogenesis. Dysregulation of 
neurotransmitter metabolism, namely alteration of dopamine and 
norepinephrine signaling, was also shown to be involved in pathogenesis 
of ADHD (Mehta et al., 2019). However, a number of studies demon-
strated that altered glutamatergic (Elia et al., 2020), serotoninergic (van 
Rooij et al., 2015), and GABAergic (Edden et al., 2012) neurotrans-
mission may also be involved in ADHD development. Despite limited 
epidemiological and laboratory evidence on the role of Mn in etiology of 
ASD or ADHD, established effects of Mn on neurotransmitters implicated 
in these neurological disorders provide a potential mechanism for its 
involvement in their etiology (Soares et al., 2020). 

Dopamine. Given the role of DA signaling in ADHD and ASD devel-
opment, the latter may be at least partially mediated by Mn-induced 
perturbations in dopaminergic homeostasis. Specifically, in a model of 
SLC30A10-KO-induced neuronal Mn overload a significant reduction in 
dopamine release was revealed (Taylor et al., 2023). Similar findings 
were obtained for Slc39a14 (Rodichkin et al., 2021). It has also been 
demonstrated that Mn significantly reduced neuronal DA uptake 
through DAT internalization in HEK cells (Roth et al., 2013). Similar 
findings were obtained in vivo, where exposure to Mn in early postnatal 
period resulted in reduced DAT expression and dopamine uptake in 
striatum and nucleus accumbens, and decreased striatal DA efflux 
(McDougall et al., 2008). A study in Cynomolgus macaques also 
demonstrated that Mn exposure significantly affected DA release 
through presynaptic mechanisms (Guilarte et al., 2008). Mn-induced 
dopaminergic toxicity was shown to be at least partially mediated by 
striatal axon attractant netrin-1 expression involved in regulation of DA 
transmission (Wen et al., 2022). 

Effects of Mn on dopaminergic transmission were primarily due to its 
interaction with TH, the rate limiting enzyme in DA synthesis. Early life 
exposure to Mn was shown to increase TH protein levels and phos-
phorylation at Ser 40, 31, and 19 at PND14, while at later periods 
(PND70) a significant decrease in TH protein level along with increased 
TH phosphorylation at Ser40 and Ser19 was observed (Peres et al., 
2016). It has been demonstrated that a significant decrease in dopamine 
levels and TH and D1 dopamine receptor expression in SNpc following 
Mn exposure in rats occurred through inhibition of autophagy (Zhang 

et al., 2013). Inhibition of TH activity following Mn exposure may be at 
least partially mediated by down-regulation of c-RET transcription and 
protein ubiquitination (Kumasaka et al., 2017). Chronic Mn exposure 
was also shown to inhibit TH through up-regulation of PKCδ and PP2A 
activity (Zhang et al., 2011). Mn-induced damage in dopaminergic SH- 
SY5Y was shown to be mediated by BNIP3-dependent mitophagy 
(Huang et al., 2021). In addition to neuronal death, Mn exposure was 
shown to induce cytoskeletal dysfunction in dopaminergic neurons 
(Stanwood et al., 2009). 

Finally, the role of Mn in dopaminergic dysfunction may be mediated 
by its ability to induce apoptosis in dopaminergic neurons (Ding et al., 
2020; Pajarillo et al., 2020). Dopaminergic neuron damage following 
Mn exposure was shown to be mediated by microglia activation with 
subsequent up-regulation of iNOS, TNF-α, and IL-1β gene and protein 
expression. The key role of microglia was confirmed by the finding that 
inhibition of its activation ameliorated neuronal damage (Zhao et al., 
2009). Thus, a variety of molecular mechanisms may mediate Mn- 
induced toxicity in dopaminergic neurons. 

Glutamate/glutamine. In addition to dysregulation of dopamine 
signaling in brain, both ASD and ADHD were shown to be at least 
partially mediated by glutamatergic/GABAergic dysfunction (Pur-
kayastha et al., 2015), where both are also affected by Mn. Specifically, 
alteration in neurotransmitter release from glutamatergic neurons was 
shown to precede toxic effects of Mn (Moberly et al., 2012). Corre-
spondingly, Mn exposure was associated with increased extracellular 
glutamate levels in AF5 rat neural-derived cell line (Crooks et al., 2007). 
It has been demonstrated that Mn exposure inhibits glutamate uptake 
through down-regulation of GLT-1 and GLAST transporters (Mutkus 
et al., 2005). Mn also affects astrocytic GLAST mRNA expression. Thus, 
it was reported that Mn led to differential regulation of GLAST, taurine 
transporter (MT), and metallothionein in cultured rat astrocytes. Spe-
cifically, exposure to 500 μM MnCl2 decreased mRNA levels of GLAST 
and MT, but the same concentration of Mn increased tau-T mRNA levels. 
Furthermore, aspartate uptake was significantly attenuated in Mn 
exposed astrocytes, whereas, taurine uptake remained unchanged 
(Erikson and Aschner, 2002). 

Mn was also shown to inhibit Gln transporters including SNAT3, 
SNAT2, LAT2, and ASCT2 in primary rat astrocytes (Sidoryk-Wegrzy-
nowicz et al., 2009). Such inhibition was shown to involve Mn-induced 
PKCδ signaling (Sidoryk-Wegrzynowicz et al., 2011) with subsequent 
SNAT3 ubiquitination and protein degradation (Sidoryk-Wegrzynowicz 
et al., 2010). In addition, Mn-induced inhibition of excitatory amino 
acid transporter (EAAT) 1 expression was shown to be mediated by 
increased binding of YY1 to the EAAT1 promoter (Karki et al., 2015). 

Mn also inhibited glutamine synthetase activity both in vitro (Deng 
et al., 2012) and in vivo (Burton et al., 2009). Prevention of Mn-induced 
alterations in GS, phosphate-activated glutaminase, GLAST, and GLT1 
by PAS-Na treatment also supports the role of Mn in dysregulation of 
glutamatergic neurotransmission (Li et al., 2020). 

Mn exposure down-regulated striatal NMDA receptor subunits NR1, 
NR2B (Xu et al., 2010), and NR2A (Xu et al., 2009). In addition, Mn 
impaired striatal interaction between DR1 and NMDAR leading to 
memory and learning deficits (Song et al., 2016). Thus, Mn can interact 
with glutamatergic transmission at several molecular sites and levels. 

GABA. Mn exposure was shown to increase striatal and to a lesser 
extent cortical GABA level (Gwiazda et al., 2002). An increase in GABA 
levels in thalamus and adjacent basal ganglia was also observed in Mn- 
exposed smelters (Dydak et al., 2011). Indeed, it has been suggested that 
Mn-induced locomotor dysfunction might be associated with partial 
activation of substantia nigra GABAergic neurons rather than alterations 
in dopaminergic system (Yang et al., 2011). An increase in extracellular 
GABA levels in striatum following Mn treatment was mediated by GAT 
inhibition (Fordahl et al., 2010), although this effect was region-specific 
(Anderson et al., 2008). Mn exposure also reduced GAD expression in 
basal ganglia (Stanwood et al., 2009). Finally, Mn toxicity was also 
shown to disrupt GABAAR mRNA and protein expression (Ou et al., 
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2012). Thus, it may be concluded that Mn affects various molecular 
stages of GABA in region-specific manner. 

Serotonin (5-HT). Rats intraperitoneally exposed to Mn had reduced 
striatal 5-HT content (Wu et al., 2018), in agreement with the results of 
the earlier study by Kimura et al. (1978) (Kimura et al., 1978). Inhala-
tion of Mn increased hippocampal but not striatal 5-HT content, while 
this increase was abolished by curcumin treatment (Schmitz et al., 
2014). Chronic manganism was associated with reduction in 5-HT 
content in frontal cortex and hippocampus (Huang et al., 2015). In 
addition to a decrease in brain 5-HT levels, Mn exposure was shown to 
reduce 5-HIAA/5-HT ratio in prefrontal cortex and striatum while 
increasing this ratio in hippocampus (Blecharz-Klin et al., 2012). A 
significant decrease in 5-HT, but not 5-HIAA, was also observed in 
frontal cortex of Mn-exposed rats (Bouabid et al., 2014). A decrease in 
neuronal 5-HT levels is more reflective of exposure to Mn(III) rather 
than Mn(II) (Reaney and Smith, 2005). Serotonin transporter expression 
was also found to be down-regulated by Mn exposure in blue mussel -
Mytilus edulis (Fraser et al., 2018). 

In contrast, several studies demonstrated a significant increase in 
brain 5-HT levels following Mn exposure (Vorhees et al., 2014). In this 
regard, Mn effect appeared to be related to its chemical formula, where 
MnO2 increased striatal 5-HT levels, whereas MnCl2 led to a decrease in 
5-HT levels in this area (Nielsen et al., 2017). 

Norepinephrine (NE). An earlier study demonstrated Mn-induced in-
crease in NE turnover in rat brain stem and hypothalamus (Autissier 
et al., 1982). Mn exposure promotes catecholamine oxidation with the 
formation of adrenochrome that significantly reduces cell viability 
through repression of gene expression (Ueda et al., 2020). Mn exposure 
was shown to reduce extracellular NE levels in caudate putamen, while 
decreasing NE uptake in the locus coeruleus. In addition, Mn treatment 
down-regulated NE transporter and α2 adrenergic receptor mRNA and 
protein expression (Anderson et al., 2009). Correspondingly, reduction 
of locomotor activity in adult SD rats following Mn exposure was asso-
ciated with reduced NE content in frontal cortex (Bouabid et al., 2014). 
It is noteworthy that noradrenergic system has been implicated in both 
ASD and ADHD. Thus, cognitive processes, such as arousal, working 
memory, and response inhibition, all of which are typically affected in 
ADHD are regulated at least to some extent by NE. Moreover, the 
norepinephrine transporter (NET) is an important target for frequently 
prescribed medication in ADHD (Vanicek et al., 2014; Ulke et al. 2019). 
In regard to ASD, which is frequently associated with anxiety and hy-
perarousal, a recent review updates the role of NE in this disorder and 
suggests potential targeting of this neurotransmitter. This is due to the 
fact that a number of functional indices of the sympathetic/para-
sympathetic balance are altered in individuals with ASD, and that 
neuropsychopharmacological effects of α2 agonists and β-adrenergic 
antagonists make agents targeting these receptors of particular interest 
(Beversdorf, 2020). 

5.5. Epigenetics 

Epigenetic mechanisms were shown to be involved in the develop-
ment of neurodevelopmental disorders, including ADHD (Cecil and 
Nigg, 2022) and ASD (Loke et al., 2015). Indeed, laboratory studies 
demonstrated have corroborated the ability of Mn to induce epigenetic 
changes in the brain. Specifically, promotor hypermethylation and 
down-regulation of Mid1, Atp1a3, Nr2f1, and Pvalb transcription were 
all shown to be involved in Mn-induced alterations in neurogenesis 
(Wang et al., 2013). Prenatal Mn exposure also led to altered DNA 
methylation in the placenta, affecting neurodevelopment (Maccani 
et al., 2015). 

Mn had a significant impact on histone modifications modulating 
neuronal gene expression. Specifically, Mn reduced H3K27 acetylation 
at Mn-SOD promoter resulting in inhibition of its expression and 
neuronal oxidative stress (Yang et al., 2022). Moreover, Mn exposure 
significant increased H3K9, H3K14, H3K18, H3K56 and H3K79 

acetylation, while down-regulating H3K27, H3K36, H4K91, H4K79, 
H4K31, H2BK16 and H2BK20 in rat striatum, at least partially 
contributing to antioxidant enzyme dysregulation and oxidative stress 
(Ao et al., 2024). In addition, modulation of H3K18 acetylation was 
shown to mediate inhibition of glutathione transferase omega 1 
(GSTO1) gene expression, contributing to hippocampal oxidative stress 
(Chen et al., 2024b). Mn-induced alterations in histone acetylation were 
shown to be dependent on up-regulation of HDAC3 and HDAC4 
expression, as well as down-regulation of HAT in PC12 cells and SHSY5Y 
cells (Guo et al., 2018). 

Finally, several neurotoxic effects of Mn were shown to be mediated 
by modulation of micro RNA expression. Specifically, down-regulation 
of miR-125b-2-3p, miR-138-5p, and miR-155 was shown to mediate 
Mn-induced ferroptosis (Chen et al., 2024a), autophagic dysregulation 
(Ma et al., 2019), and neuroinflammation (Grogg et al., 2016) in 
neuronal cells. These studies establish the propensity of Mn to interfere 
with a host of epigenetic mechanisms known to be involved in patho-
genesis of neurodevelopmental disorders. 

5.6. Other potential mechanisms 

In addition to oxidative stress, impaired neurogenesis, neuronal 
damage, neurotransmitter dysregulation, and neuroinflammation, 
pathogenesis of neurodevelopmental disorders may be significantly 
impacted by dysregulation of thyroid hormone signaling, which may at 
least partially mediate the effect of endocrine-disrupting chemicals in 
altered neurodevelopment (Salazar et al., 2021) (Fig. 1). Mn ions can 
disrupt the binding, transport, and activity of thyroid hormones at the 
tissue level both directly and indirectly. One potential mechanism by 
which Mn directly impairs thyroid hormones involves the dysfunction of 
deiodinase enzymes responsible for the activation and deactivation of 
thyroid hormones, crucial in metabolic, signaling, and regulatory pro-
cesses related to the formation and conversion of thyroid hormones (Ou 
et al., 2019). Another mechanism involves the binding of Mn ions to 
dopaminergic receptors. Dopamine suppresses TSH secretion, influ-
encing the thyroid hormone levels, and damage to dopaminergic re-
ceptors may lead to non-developmental deficits (Soldin and Aschner, 
2007). Moreover, thyroid hormone significantly contributes to neural 
development, and early-life hypothyroidism may result in impairments 
of cognition, learning, attention, and intellectual capabilities (Bernal, 
2000; Obsekov et al., 2023). A study using Slc30a10 single knockout 
mice which have Mn accumulation found that they develop hypo-
thyroidism due to Mn-induced inhibition of thyroxine production (Liu 
et al., 2017a). In agreement, a case-control study involving adolescents, 
the presence of thyroid dysfunction and exposure to Mn were linked to 
an elevated risk of ASD and an augmentation in the severity of ASD 
symptoms in comparison to non-ASD controls (Blazewicz et al., 2022). 
Despite the lack of direct evidence supporting the role of Mn in thyroid 
hormone dysregulation in ADHD patients, the results of a recent study 
demonstrate that maternal hypothyroidism is associated with increased 
hazard of ADHD in the offspring (Rotem et al., 2022). 

Gut microbiota (GM) may have a significant impact on brain func-
tioning through the gut-brain axis, and thus play a key role in devel-
opment of neuropsychiatric diseases (Ghaisas et al., 2016); Tizabi et al. 
2023). Indeed, children with ASD were characterized by altered GM 
(Iglesias-Vazquez et al., 2020) as well as microbial metabolites (Kang 
et al., 2018), supporting the role of gut microbiota in ASD pathogenesis 
(Li et al., 2017) Tizabi et al. 2023). 

Similarly, significant alterations of GM composition were revealed in 
ADHD (Wang et al., 2022). These GM alterations may contribute to the 
ADHD pathology through modulation of dopaminergic neurotransmis-
sion, neuroinflammation, and altered short-chain fatty acid levels 
(Shirvani-Rad et al., 2022). Although direct evidence on the impact of 
Mn on GM in ASD and ADHD is still lacking, previous findings demon-
strate that modulation of GM may mediate adverse effects of Mn on 
neurotransmitter metabolism and neuroinflammation (Tinkov et al., 

M. Aschner et al.                                                                                                                                                                                                                                



Current Research in Toxicology 6 (2024) 100170

10

2021a). Studies demonstrated that Mn-induced changes of gut micro-
biota composition may correlate significantly with behavioral alter-
ations in mice (Zhu et al., 2020). In turn, healthy fecal microbiota 
transplantation was shown to improve neurotoxic effects of Mn over-
exposure (Liu et al., 2022; Wang et al., 2020). Taken together, these 
findings provide indirect evidence for the potential interplay between 
Mn toxicity and gut microbiota in pathogenesis of neurodevelopmental 
disorders. Nonetheless, further detailed studies are necessary. 

6. Conclusions 

Taken together, existing epidemiological data on the association 
between Mn exposure biomarkers and ASD and ADHD are rather con-
tradictory. Despite findings on increased Mn body burden in patients 
with ASD, a growing body of evidence purports an inverse association 
between systemic Mn levels and ASD. In contrast, most findings attest to 
higher systemic Mn levels in ADHD patients, as well as a significant 
association between Mn biomarkers and severity of behavioral deficits 
in ADHD. However, in several studies, a significant decrease in Mn body 
burden in ADHD was observed. The results of clinical and epidemio-
logical studies corroborate laboratory data, consistent with behavioral 
patterns characteristic of ADHD (hyperactivity, attention deficits, 
impulsivity) in Mn-exposed animals. These studies also highlight po-
tential mechanisms linking Mn exposure to ADHD-specific behavioral 
deficits, including alterations in dopaminergic neurotransmission and to 
a lesser extent dysregulation of other neurotransmitters, as well as glial 
activation and neuroinflammation. Despite the lack of direct evidence, 
existing data demonstrate that Mn overexposure can perturb mecha-
nisms inherent to neurodevelopmental disorders, including altered 
neurogenesis and neuronal damage, mitochondrial dysfunction and 
oxidative stress, neuroinflammation, alterations in dopaminergic, glu-
tamatergic, serotoninergic, GABAergic, and adrenergic 

neurotransmission, as well as thyroid hormone and gut-brain axis. In 
contrast to laboratory data demonstrating the potential influence of Mn 
toxicity on pathways associated with ASD and ADHD, contradictions in 
the epidemiological studies’ outcomes likely reflect differences in 
environmental levels of Mn in various cohorts, as well as genetic het-
erogeneity of the examined subjects, as clearly demonstrated for poly-
morphisms of genes involved in detoxification. Moreover, several 
studies revealed a slight but significant U-shaped association between 
Mn exposure and ADHD risk, that may be indicative of the potential role 
of both Mn deficiency and excess in neurodevelopmental disorders. 
Therefore, further detailed studies are required to evaluate the associ-
ation between environmental Mn exposure and/or Mn body burden and 
neurodevelopmental disorders in a wide range of concentrations to es-
timate the potential dose-dependent effects, as well as environmental 
and genetic factors affecting this association. Taken together, one should 
consider the potential risks of adverse neurodevelopment upon over-
exposure to Mn, especially in view of the convincing laboratory data on 
Mn neurotoxicity. 
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