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Abstract
Phylodynamic methods reveal the spatial and temporal dynamics of viral geographic spread, and have featured 
prominently in studies of the COVID-19 pandemic. Virtually all such studies are based on phylodynamic models 
that assume—despite direct and compelling evidence to the contrary—that rates of viral geographic dispersal are 
constant through time. Here, we: (1) extend phylodynamic models to allow both the average and relative rates of 
viral dispersal to vary independently between pre-specified time intervals; (2) implement methods to infer the num
ber and timing of viral dispersal events between areas; and (3) develop statistics to assess the absolute fit of discrete- 
geographic phylodynamic models to empirical datasets. We first validate our new methods using simulations, and 
then apply them to a SARS-CoV-2 dataset from the early phase of the COVID-19 pandemic. We show that: (1) under 
simulation, failure to accommodate interval-specific variation in the study data will severely bias parameter esti
mates; (2) in practice, our interval-specific discrete-geographic phylodynamic models can significantly improve 
the relative and absolute fit to empirical data; and (3) the increased realism of our interval-specific models provides 
qualitatively different inferences regarding key aspects of the COVID-19 pandemic—revealing significant temporal 
variation in global viral dispersal rates, viral dispersal routes, and the number of viral dispersal events between 
areas—and alters interpretations regarding the efficacy of intervention measures to mitigate the pandemic.
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Introduction
Phylodynamic methods encompass a suite of models for 
inferring various aspects of pathogen biology, including: 
(1) patterns of variation in demography through time 
(Drummond et al. 2005; Minin et al. 2008; Gill et al. 
2013, 2016); (2) the history of geographic spread either 
over continuous space (Lemey et al. 2010; Pybus et al. 
2012; Gill et al. 2017) or among a set of discrete-geographic 
areas (Lemey et al. 2009; Edwards et al. 2011), and; (3) the 
interaction between demography and geographic history 
(De Maio et al. 2015; Kühnert et al. 2016; Müller et al. 
2017, 2019). Our focus here is on discrete-geographic phy
lodynamic models (Lemey et al. 2009; Edwards et al. 2011). 
These phylodynamic methods have been used extensively 
to understand the spatial and temporal spread of disease 
outbreaks and have played a central role for inferring 
key aspects of the COVID-19 pandemic, such as the geo
graphic location and time of origin of the disease, the rates 
and geographic routes by which it spread, and the efficacy 
of various mitigation measures to limit its geographic ex
pansion (Bedford et al. 2020; Candido et al. 2020; Fauver 
et al. 2020; Worobey et al. 2020; Alpert et al. 2021; 
Davies et al. 2021; Dellicour et al. 2021; Douglas et al. 
2021; du Plessis et al. 2021; Kraemer et al. 2021; Lemey 
et al. 2021; Müller et al. 2021; Nadeau et al. 2021; 

Tegally et al. 2021; Washington et al. 2021; Wilkinson 
et al. 2021).

These phylodynamic methods adopt an explicitly prob
abilistic approach that model the process of viral dispersal 
among a set of discrete-geographic areas (Baele et al. 
2017). The observations include the times and locations 
of viral sampling, and the genomic sequences of the 
sampled viruses. These data are used to estimate the para
meters of phylodynamic models, which include a dated 
phylogeny of the viral samples, the global dispersal rate 
(the average rate of dispersal among all geographic areas), 
and the relative dispersal rates (the dispersal rate between 
each pair of geographic areas).

The vast majority (651 of 666, 97.7%; supplementary fig. 
S1, Supplementary Material online) of discrete-geographic 
phylodynamic studies are based on the earliest models 
(Lemey et al. 2009; Edwards et al. 2011), which assume 
that viral dispersal dynamics—including the average and 
relative rates of viral dispersal—remain constant over 
time (see the caption of fig. S1 for the search query we 
used to identify these studies). However, real-world obser
vations indicate that the average and/or relative rates of 
viral dispersal inevitably vary during disease outbreaks. 
For example, relative rates of viral dispersal typically 
change as a disease is introduced to (and becomes 
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prevalent in) new areas, and begins dispersing from those 
areas to other areas. Dispersal dynamics are also generally 
impacted by the initiation (or alteration or cessation) of 
area-specific mitigation measures (e.g., domestic 
shelter-in-place policies) that change the rate of viral 
transmission within an area and the relative rate of disper
sal to other areas. Similarly, average rates of viral dispersal 
may change in response to the initiation (or alteration or 
cessation) of more widespread intervention efforts—e.g., 
multiple area-specific mitigation measures, international- 
travel bans—that collectively impact the overall viral dis
persal rate.

In this paper, we: (1) extend discrete-geographic phylo
dynamic models to allow both the average and relative dis
persal rates to vary independently across pre-specified 
time intervals; (2) enable stochastic mapping under these 
models to estimate the number and timing of viral disper
sal events between areas, and; (3) develop statistics to as
sess the absolute fit of discrete-geographic phylodynamic 
models to empirical datasets. We first validate the theory 
and implementation of our new phylodynamic methods 
using analyses of simulated data, and then provide an em
pirical demonstration of these methods with analyses of a 
SARS-CoV-2 dataset from the early phase of the COVID-19 
pandemic.

Extending Phylodynamic Models
Anatomy of Interval-specific Phylodynamic Models
Phylodynamic models of dispersal include two main com
ponents (fig. 1): a phylogenetic model that allows us to es
timate a dated phylogeny for the sampled viruses, Ψ, and a 
biogeographic model that describes the history of viral dis
persal over the tree as a continuous-time Markov chain. 
For a geographic history with k discrete areas, this stochas
tic process is fully specified by a k × k instantaneous-rate 
matrix, Q, where an element of the matrix, qij, is the in
stantaneous rate of change between state i and state j 
(i.e., the instantaneous rate of dispersal from area i to 
area j). We rescale the Q matrix such that the average 
rate of dispersal between all areas is μ; this represents 
the average rate of viral dispersal among all areas (Yang 
2014).

We could specify alternative biogeographic models 
based on the assumed constancy of the dispersal process. 
For example, the simplest possible model assumes that 
the average dispersal rate, μ, and the relative dispersal 
rates, Q , remain constant over the entire history of the 
viral outbreak. Typically, viral outbreaks are punctuated 
by events that are likely to impact the average rate of viral 
dispersal (e.g., the onset of an international-travel ban) 
and/or the relative rates of viral dispersal between pairs 
of areas (e.g., the initiation of localized mitigation mea
sures). We can incorporate information on such events 
into our phylodynamic inference by specifying interval- 
specific models. That is, the investigator specifies the 
number of intervals, the boundaries between each 

interval, and the parameters that are specific to each 
interval according to the presumed changes in the history 
of viral dispersal. For example, we might specify an 
interval-specific model (Membrebe et al. 2019) that as
sumes that the average rate of viral dispersal varies 
among two or more intervals (while assuming that the 
relative rates of viral dispersal remain constant across in
tervals). Conversely, an interval-specific model (Bielejec 
et al. 2014) might allow the relative rates of viral dispersal 
to vary among two or more time intervals (while assum
ing that the average rate of viral dispersal remains con
stant across intervals). Alternatively, a more complex 
interval-specific model might allow both the average 
rate of viral dispersal and the relative rates of viral disper
sal to vary among two or more intervals. We extend 
interval-specific phylodynamic models to allow both 
the relative and average dispersal rates to vary independ
ently across two or more pre-defined intervals. Here, we 
describe how to compute transition probabilities, per
form inference, simulate histories, and assess the absolute 
fit of the interval-specific models.

Computing Transition Probabilities
The transition-probability matrix, P, describes the prob
ability of transitioning from state i to state j (i.e., dispersing 
from area i to area j) along a branch with a finite duration; 
importantly, a branch may span two or more intervals with 
different relative and/or absolute dispersal rates.

Allowing average dispersal rates to vary across intervals
Under a constant-rate model, the transition-probability 
matrix for a branch is P = exp (Qv), where v = μt repre
sents the expected number of dispersal events on a branch 
of duration t with an average dispersal rate μ. However, un
der a phylodynamic model with interval-specific average 
dispersal rates (Membrebe et al. 2019)—which allows 
the average dispersal rate to vary among intervals, but as
sumes that relative dispersal rates are constant across all 
intervals—a given branch in a phylogeny may span two 
or more intervals with different average dispersal rates 
(“average-rate intervals”). The transition-probability ma
trix for the branch is then computed as the matrix expo
nential:

P = exp Q
􏽘n

l=1

vl

􏼠 􏼡

, (1) 

where Q is the instantaneous-rate matrix, n is the number 
of average-rate intervals spanned by the branch, and vl is 
the expected number of dispersal events on the branch 
in average-rate interval l. Recall that vl = μltl, where μl is 
the average dispersal rate during interval l and tl is the 
time spent in interval l.

Allowing relative dispersal rates to vary across intervals
Under a phylodynamic model with interval-specific rela
tive dispersal rates (Bielejec et al. 2014)—which allows 
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the instantaneous-rate of dispersal between each pair of 
areas to vary among intervals, but assumes that the aver
age dispersal rate is constant across all intervals—a given 
branch may span two or more intervals with different Q 
matrices (“relative-rate intervals”). In this case, the 
transition-probability matrix for each relative-rate inter
val l, Pl, is computed as:

Pl = exp (Q lvl), (2) 

where Q l is the instantaneous-rate matrix in relative-rate 
interval l, and vl = μtl is the average dispersal rate multi
plied by the time spent in interval l. The transition- 
probability matrix for the entire branch is then computed 
as the matrix product of interval-specific transition- 
probability matrices:

P =
􏽙m

l=1

Pl, (3) 

where m is the number of relative-rate intervals spanned 
by the branch.

Allowing average and relative dispersal rates to vary across 
intervals
We combine the two approaches described above to com
pute transition-probability matrices under an interval- 
specific model that allows both the average dispersal 
rate and the relative dispersal rates to vary independently 
among intervals. Let a given branch span m relative-rate in
tervals. The expected number of dispersal events in each 
such interval l, vl, is computed as:

vl =
􏽘n

p=1

μptp, (4) 

where n is the number of average-rate intervals spanned by 
interval l, μp is the dispersal rate in average-rate interval p, 
and tp is the time spent in average-rate interval p. We then 
substitute equation (4) into equation (2), and apply equa
tion (3) as normal to compute the transition-probability 
matrix for the entire branch. An example computation is 
illustrated in figure 2 for a scenario in which a branch spans 
two different relative-rate intervals and three different 
average-rate intervals.
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FIG. 1. Interval-specific phylodynamic models accommodate variation in the process of viral dispersal. Phylodynamic models include two main 
components: a phylogenetic model that specifies the relationships and divergence times of the sampled viruses, Ψ (top panel), and a biogeograph
ic model that describes the history of viral dispersal among a set of discrete-geographic areas—here, areas 1 (orange), 2 (blue), and 3 (green)— 
from the root to the tips of the dated viral tree. Parameters of the biogeographic model include an instantaneous-rate matrix, Q, that specifies 
relative rates of viral dispersal between each pair of areas (here, each element of the matrix, qij , is represented as an arrow that indicates the 
direction and relative dispersal rate from area i to area j; middle panel), and a parameter that specifies the average rate of viral dispersal between 
all areas, μ (lower panel). Although most phylodynamic studies assume that the process of viral dispersal is constant through time, disease out
breaks are typically punctuated by events that impact the average and/or relative rates of viral dispersal among areas. Here, for example, the 
history involves two events (e.g., mitigation measures) that define three intervals, where both Q and μ are impacted by each of these events, 
such that the interval-specific parameters are (Q1, Q2, Q3) and (μ1, μ2, μ3). Our framework allows investigators to specify discrete-geographic 
phylodynamic models with two or more intervals, where each interval has independent relative and/or average dispersal rates, which are then 
estimated from the data.
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We modified BEAST source code to implement the 
above equation for computing P under our interval- 
specific phylodynamic models that allow both μ and Q 
to vary independently among two or more pre-specified 
intervals.

Inference under Interval-specific Phylodynamic 
Models
We estimate parameters of the interval-specific models 
within a Bayesian statistical framework. Specifically, we 
use numerical algorithms—Markov chain Monte Carlo 
(MCMC) simulation—to approximate the joint posterior 
probability distribution of the phylodynamic model para
meters—the dated phylogeny, Ψ, the set of relative disper
sal rates, Q, and the average dispersal rates, μ—from the 
study data (i.e., the location and times of viral sampling, 
and the genomic sequences of the sampled viruses).

Simulating Dispersal Histories under Interval-specific 
Phylodynamic Models
We have also implemented numerical algorithms— 
stochastic mapping—to simulate histories of viral dispersal 
under the interval-specific models; these methods allow us 
to estimate the number of dispersal events between a spe
cific pair of areas, the number of dispersal events from one 
area to a set of two or more areas, and the total number 
dispersal events among all areas. Stochastic mapping—ini
tially proposed by Nielsen (2002; see also Huelsenbeck 
et al. 2003; Bollback 2006; Minin and Suchard 2008; 
Hobolth and Stone 2009)—is commonly used to sample 
dispersal histories over branches of a phylogeny. Here, 
we extend this approach to sample dispersal histories un
der our interval-specific models.

Let a given branch start at time T0 with state i and end 
at time Tm with state k. Further, let the dispersal process 
change (either by changing the average or relative disper
sal rates) m − 1 times on the branch at times 
{T1, . . . , Tm−1}, resulting in m intervals. For interval l, 
denote the average dispersal rate as μl, the instantaneous- 
rate matrix as Q l, and the duration as tl. We simulate a 
dispersal history along this branch using a two-step pro
cedure: (1) we first sample the state at each of the 
m − 1 time points, and; (2) we then simulate the history 

between each time point, conditional on the states 
sampled in the first step.

To simulate the states at each time point, we first com
pute a transition-probability matrix for each interval:

Pl = exp (Q lμltl).

We then calculate the probability of state j at the first time 
point, T1, given that the branch begins in state i and ends 
in state k, as:

P(j ∣ i, k) ∝ Pij,1 ×
􏽙m

l=2

Pl

􏼢 􏼣

jk

, 

where the first term is the probability of transitioning from 
state i (the state at the beginning of the branch) to state j 
at the first time point, and the second term is the probabil
ity of transitioning from state j to state k (the state at the 
end of the branch) over the remaining time intervals. We 
compute this for each state j, and sample the state in pro
portion to these probabilities. We then repeat this process 
for each remaining time point, recursively conditioning on 
the state sampled at the previous time point and the state 
at the end of the branch.

Second, we simulate histories within each interval. For a 
given time interval, we simulate histories conditional on 
the start and end states generated in the first step using 
the uniformization algorithm described by Hobolth and 
Stone (2009).

Assessing the Absolute Fit of Interval-specific 
Phylodynamic Models
For a given phylodynamic study, we might wish to consider 
several candidate interval-specific models (where each 
candidate model specifies a unique number of intervals, 
set of interval boundaries, and/or interval-specific para
meters). Comparing the fit of these competing phylody
namic models to the data offers two benefits: (1) 
confirming that our inference model adequately describes 
the process that gave rise to data will improve the accuracy 
of the corresponding inferences (i.e., estimates of relative 
and/or average dispersal-rate parameters and viral disper
sal histories), and; (2) comparing alternative models pro
vides a means to objectively test hypotheses regarding 
the impact of events on the history of viral dispersal (i.e., 
by assessing the relative fit of data to competing models 
that include/exclude the impact of a putative event on 
the average and/or relative viral dispersal rates). We can as
sess the relative fit of two or more candidate phylodynamic 
models to a given dataset using Bayes factors; this requires 
that we first estimate the marginal likelihood for each 
model (which represents the average fit of a model to a da
taset), and then compute the Bayes factor as twice the dif
ference in the log marginal likelihoods of the competing 
models (Kass and Raftery 1995).

However, even the best candidate model may fail to 
provide an adequate description of the process that gave 

FIG. 2. Computing the transition-probability matrix for a branch 
spanning intervals where both the average and relative dispersal 
rates vary. An example illustrating the transition-probability matrix 
computation for a branch spanning two relative-rate intervals (Q1 
and Q2) and three average-rate intervals (μ1, μ2, μ3).
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rise to our study data. We can leverage our ability to simu
late histories under the interval-specific models to develop 
new methods to assess the absolute fit of a candidate mod
el using posterior-predictive assessment (Gelman et al. 
1996). This Bayesian approach for assessing model ad
equacy is based on the following premise: if our inference 
model provides an adequate description of the process 
that gave rise to our observed data, then we should be 
able to use that model to simulate datasets that resemble 
our original data. The resemblance between the observed 
and simulated datasets is quantified using a summary stat
istic. Accordingly, posterior-predictive simulation requires: 
(1) the ability to simulate geographic datasets under 
interval-specific models for a given set of parameter values, 
and; (2) summary statistics that allow us to compare the 
resulting simulated datasets to the observed dataset. We 
describe each of these components below.

Simulating under interval-specific phylodynamic models
We draw m random samples from the joint posterior dis
tribution of the model; each sample i consists of a fully spe
cified phylodynamic model, θi = {Ψi, Q i, μi}. For each 
sample, we simulate a new geographic dataset on the 
sampled tree, Ψi, given the sampled parameters of the geo
graphic model, {Q i, μi}; we label the newly simulated data
set Gsim

i . Under a constant-rate phylodynamic model, we 

simulate full dispersal histories forward in time over a tree 
using the sim.history() function in the R package 
phytools (Revell 2012). We implemented an extension 
of the sim.history() function to simulate dispersal 
histories under interval-specific phylodynamic models. 
These functions allow us to perform posterior-predictive 
simulation to assess the adequacy of both the 
constant-rate and the interval-specific models.

Summary statistics
We define a summary statistic, which we generically de
note T(G ∣ θi), where G is either the simulated or observed 
dataset. For each simulated dataset, we compute a discrep
ancy statistic,

Di = T(Gsim
i ∣ θi) − T(Gobs ∣ θi), 

where Gobs is the observed geographic dataset and Gsim 

is a simulated dataset. We developed two summary statis
tics to assess the adequacy of interval-specific phylody
namic models: (1) the parsimony statistic, and; (2) the 
tipwise-multinomial statistic. The parsimony statistic is cal
culated as the difference in the parsimony score for the ob
served areas and the simulated areas across the tips of the 
tree (where the parsimony score is the minimum number 
of dispersal events required to explain the distribution of 
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FIG. 3. Simulation demonstrates that reliable inference of viral dispersal history requires a correctly specified phylodynamic model. We simulated 
200 geographic datasets under each of two models: one that assumed a constant μ and Q (1μ1Q), and one that allowed μ and Q to vary over two 
intervals (2μ2Q). For each simulated dataset, we separately inferred the total number of dispersal events under each model, resulting in four true: 
inference model combinations (1μ1Q:1μ1Q, 2μ2Q:2μ2Q, 1μ1Q:2μ2Q, and 2μ2Q:1μ1Q). (Left) For each combination of true and inference mod
el, we computed the coverage probability (the frequency with which the true number of dispersal events was contained in the corresponding X% 
credible interval; y-axis) as a function of the size of the credible interval (x-axis). When the model is true, we expect the coverage probability to be 
equal to the size of the credible interval (Cook et al. 2006). As expected, coverage probabilities fall along the one-to-one line when the model is 
correctly specified (green and blue). Moreover, coverage probabilities are also appropriate when the inference model is overspecified (i.e., the 
inference model includes interval-specific parameters not included in the true model; purple). However, coverage probabilities are extremely 
unreliable when the inference model is underspecified (i.e., the inference model excludes interval-specific parameters of the true model; orange). 
(Right) For each true:inference model combination, we summarized the absolute error (estimated minus true number of dispersal events) as 
boxplots (median [horizontal bar], 50% probability interval [boxes], and 95% probability interval [whiskers]). Again, when the model is under
specified (orange) inferences are strongly biased compared to those under the correctly specified (green and blue) and overspecified (purple) 
models.
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areas across the tips of a tree). We compute parsimony 
scores using the parsimony() function in the R pack
age, phangorn (Schliep 2010). The tipwise-multinomial 
statistic is inspired by the multinomial statistic that was 
proposed by Goldman (1993) and later used by Bollback 
(2002) to assess the adequacy (absolute fit) of substitution 
models to sequence alignments. Our tipwise statistic treats 
the set of states (areas) across the tips of the tree as an out
come of a multinomial trial. Specifically, we calculate the 
tipwise-multinomial statistic as the difference in the multi
nomial probabilities for the observed set of areas versus 
the simulated set of areas across the tips of the tree. We 
calculate each multinomial probability as:

T(G ∣ θi) =
􏽘k

i=1

ni ln (ni/n), 

where n is the number of tips in the tree, and ni is the num
ber of tips that occur area i.

Time-slice summary statistics
To assess the ability of phylodynamic models to describe the 
temporal distribution of dispersal events, we extend the par
simony and tipwise-multinomial summary statistics to assess 
time slices of the geographic history. (Note that the time slices 
that we define for summary statistics are distinct from the in
tervals specified in an interval-specific model. The time slices 
are motivated to better assess the adequacy of a phylody
namic model, whereas the intervals are motivated to accom
modate variation in dispersal dynamics in the empirical data. 

Accordingly, we might use time-slice summary statistics to as
sess the adequacy of both constant-rate and interval-specific 
phylodynamic models.) We calculate these summary statistics 
for k pre-specified time slices, resulting in k parsimony 
statistics and k tipwise-multinomial statistics for each 
simulated dataset. We compute the time-slice variant of the 
parsimony summary statistic as follows: (1) we first infer the 
most-parsimonious dispersal history (i.e., the minimum num
ber of dispersal events) for a given simulated dataset and the 
observed dataset using the ancestral.pars() function 
in the R package, phangorn (Schliep 2010); (2) we then as
sign each inferred dispersal event to one of the k time slices 
based on the time span of the branch along which the disper
sal event was inferred (when a dispersal event is inferred to 
occur along a branch that spans two or more time slices, 
we locate the event uniformly along the branch, and then as
sign it to the corresponding slice), and finally; (3) we compute 
the difference in the number of dispersal events between the 
simulated and observed dataset for each time slice. We com
pute the time-slice variant of the tipwise-multinomial sum
mary statistic in a similar manner; i.e., we first find the set 
of tips in each time slice, and then compute the tipwise- 
multinomial statistic for that time slice (as described above) 
for the corresponding set of tips. Further details regarding 
the computation of these summary statistics are available in 
an R script provided in our GitHub and Dryad repositories.

Simulation Study
We performed a simulation study to explore the statistical 
behavior of the interval-specific phylodynamic models. 
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FIG. 4. Simulation demonstrates our ability to accurately identify a correctly specified phylodynamic model. We assessed the relative and ab
solute fit of alternative models to the simulated datasets described in figure 3. (Left) For each simulated dataset, we compared the relative 
fit of the true and alternative models using Bayes factors. The boxplots summarize Bayes factors for datasets simulated under the constant-rate 
(1μ1Q, left) and interval-specific (2μ2Q, right) models, which demonstrate that we are able to decisively identify the true phylodynamic model. 
(Right) For each combination of true:inference model, we assessed absolute model fit using posterior-predictive simulation with a set of 20 sum
mary statistics. Each dot represents the fraction of those 20 summary statistics for which the corresponding inference model provides an inad
equate fit to a single simulated dataset. The violin plots summarize the distribution of these values for all datasets under each true:inference 
model combination. As expected, the true model is overwhelmingly inferred to be adequate (green and blue). Encouragingly, model overspe
cification appears to have a negligible impact on model adequacy (purple). By contrast, an underspecified model severely impacts model ad
equacy (orange).
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Specifically, the goals of this simulation study are to assess: 
(1) our ability to perform reliable inference under interval- 
specific models; (2) the impact of model misspecification, 
and; (3) our ability to identify the correct model. To this 
end, we simulated 200 geographic datasets under each 
of two models: the first assumes a constant μ and Q 
(1μ1Q), and the second allows μ and Q to vary over two 
intervals (2μ2Q). The parameter values used in the simu
lation are from empirical analyses of a SARS-CoV-2 dataset 
(with 1271 viral sequences sampled from three coarsely ag
gregated geographic areas) under each corresponding 
model. For each simulated dataset, we separately inferred 
the history of viral dispersal under each model, resulting in 
four true:inference model combinations: 1μ1Q:1μ1Q, 
2μ2Q:2μ2Q, 1μ1Q:2μ2Q, and 2μ2Q:1μ1Q. We provide de
tailed descriptions of the simulation analyses and results in 
supplementary section S2, Supplementary Material online.

Ability to Reliably Estimate Parameters of Interval-specific 
Phylodynamic Models
Interval-specific phylodynamic models are inherently more 
complex than their constant-rate counterparts, and there
fore contain many more parameters that must be inferred 
from geographic datasets that contain minimal informa
tion; these datasets only include a single observation (i.e., 
the area in which each virus was sampled). These considera
tions raise concerns about our ability to reliably estimate 
parameters of interval-specific phylodynamic models. 
Encouragingly, when the inference model is correctly speci
fied (i.e., where both the true and inference models include 
[or exclude] interval-specific parameters, 2μ2Q:2μ2Q and 
1μ1Q:1μ1Q), our simulation study demonstrates that esti
mates under interval-specific models are as reliable as those 
under constant-rate models (fig. 3, green, blue; see the on
line version for color). Moreover, when the inference model 
is overspecified (i.e., it includes interval-specific parameters 
not included in the true model) inferences are comparable 
to those under correctly specified models (fig. 3, purple). 
However, when the inference model is underspecified 
(i.e., it excludes interval-specific parameters of the true 
model) inferences are severely biased estimates (fig. 3, 
orange).

Ability to Accurately Identify an Appropriately Specified 
Phylodynamic Model
Our simulation study demonstrates the importance of 
identifying scenarios where an inference model is underspe
cified; failure to accommodate interval-specific variation in 
the study data can severely bias parameter estimates. 
Fortunately, our simulation study demonstrates that we 
can reliably identify when a given model is correctly speci
fied, overspecified, or underspecified using a combination 
of Bayes factors (to assess the relative fit of competing mod
els to the data; fig. 4, left) and posterior-predictive simula
tion (to assess the absolute fit of each candidate model to 
the data; fig. 4, right). Using a combination of Bayes factors 
and posterior-predictive simulation allows us to not only 
identify the best of the candidate models, but also to ensure 

that the best model provides an adequate description of 
the true process that gave rise to our study data.

Empirical Application
We demonstrate our new phylodynamic methods with 
analyses of all publicly available SARS-CoV-2 genomes 
sampled during the early phase of the COVID-19 pandemic 
(with 2598 viral genomes collected from 23 geographic 
areas between December 24, 2019 and March 8, 2020 
[downloaded from GISAID, Shu and McCauley 2017]). 
We used our study dataset to estimate the parameters of 
—and assess the relative and absolute fit to—nine candi
date phylodynamic models. These models assign interval- 
specific parameters—for the average rate of viral dispersal, 
μ, and/or relative rates of viral dispersal, Q—to one, two, 
four, or five pre-specified time intervals; i.e., 1μ1Q, 2μ1Q, 
1μ2Q, 2μ2Q, 4μ1Q, 1μ4Q, 4μ4Q, 5μ5Q, and 5μ5Q∗. We 
specified interval boundaries based on external informa
tion regarding events within the study period that might 
plausibly impact viral dispersal dynamics, including: (A) 
start of the Spring Festival travel season in China (the high
est annual period of domestic travel, January 12); (B) onset 
of mitigation measures in Hubei province, China (January 
26); (C) onset of international air-travel restrictions against 
China (February 2), and; (D) relaxation of domestic travel 
restrictions in China (February 16). Phylodynamic models 
with two intervals include event C, models with four inter
vals include events A, C, and D, and the 5μ5Q model in
cludes all four events. The final candidate model, 5μ5Q∗, 
includes five arbitrary and uniform (14-day) intervals. We 
provide detailed descriptions of our empirical data collec
tion, analyses, and results in supplementary section S3, 
Supplementary Material online.

An Interval-specific Model Best Describes Viral Dispersal in 
the Early Phase of the Pandemic
Our phylodynamic analyses of the SARS-CoV-2 dataset re
veal that the early phase of the COVID-19 pandemic exhi
bits significant variation in both the average and relative 
rates of viral dispersal over four time intervals. Bayes factor 
comparisons (fig. 5, left) demonstrate that the 4μ4Q 
interval-specific model is decisively preferred both over 
all less complex candidate models—including models 
that allow either the average dispersal rate or relative dis
persal rates to vary over the same four intervals (4μ1Q 
and 1μ4Q, respectively)—and also over more complex can
didate models (5μ5Q, and 5μ5Q∗). Posterior-predictive 
analyses (fig. 5, right) demonstrate that the preferred 
model, 4μ4Q, also provides an adequate description of 
the process that gave rise to our SARS-CoV-2 dataset. 
Below, we will use the preferred (4μ4Q) interval-specific 
phylodynamic model to explore various aspects of 
viral dispersal during the early phase of the COVID-19 
pandemic and—for the purposes of comparison— 
we also present corresponding results inferred using the 
(underspecified) constant-rate (1μ1Q) phylodynamic 
model.
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Variation in Global Viral Dispersal Rates
Between late 2019 and early March, 2020, COVID-19 
emerged (in Wuhan, China) and established a global distri
bution—with reported cases in 83% of the study areas by 
this date (WHO 2020)—despite the implementation of nu
merous intervention efforts to slow the spread of the causa
tive SARS-CoV-2 virus (Hsiang et al. 2020). This crucial early 
phase of the pandemic provides a unique opportunity to 
explore the dispersal dynamics that led to the worldwide 
establishment of the virus and to assess the efficacy of 
key public-health measures to mitigate the spread of 
COVID-19. The constant-rate (1μ1Q) model infers a static 
rate of global viral dispersal throughout the study period 
(fig. 6, orange). By contrast, inferences under the preferred 
(4μ4Q) model reveal significant variation in global viral dis
persal rates over four intervals, exhibiting both increases 
and decreases over the early phase of the pandemic (fig. 
6, dark blue). The significant decrease in the global viral dis
persal rate between the second and third interval (with a 
boundary at February 2) coincides with the initiation of 
international air-travel bans with China (imposed by 34 
countries and nation states by this date). To further explore 
the possible impact of the air-travel ban on the global 
spread of COVID-19, we inferred daily rates of global viral 
dispersal under a more granular interval-specific model 
(71μ4Q; fig. 6, light blue). Our estimates of daily rates of glo
bal viral dispersal are significantly correlated with inde
pendent information on daily global air-travel volume 
(fig. 6, dashed) over the interval from Jan. 31 (when the 
virus first achieved a cosmopolitan distribution; WHO 
2020) to the end of our study period (see supplementary 

section S3.3, Supplementary Material online for detailed 
descriptions of the correlation test and results).

Variation in Viral Dispersal Routes
In addition to revealing differences in the global viral dis
persal rate, our interval-specific phylodynamic models al
low us to explore how relative dispersal rates vary 
through time. Specifically, our analyses allow us to identify 
the dispersal routes by which the SARS-CoV-2 virus 
achieved a global distribution during the early phase of 
the COVID-19 pandemic. We focus on dispersal routes in
volving China both because it was the point of origin, and 
because it was the area against which travel bans were im
posed. Inferences under the constant-rate (1μ1Q) and pre
ferred (4μ4Q) phylodynamic models imply strongly 
contrasting viral dispersal dynamics (fig. 7). In contrast 
to the invariant set of dispersal routes identified by the 
constant-rate model, the preferred interval-specific model 
reveals that the number and intensity of dispersal routes 
varied significantly over the four intervals, with a sharp de
crease in the number of dispersal routes following the onset 
of air-travel bans on February 2. Moreover, the constant-rate 
model infers one spurious dispersal route, while failing to 
identify six significant dispersal routes; the preferred model 
implies a more significant role for Hubei as a source of viral 
spread in the first and second intervals and reveals additional 
viral dispersal routes originating from China in the third and 
fourth intervals. The patterns of variation in dispersal routes 
among all 23 study areas are similar to—but more pro
nounced than—those involving China; e.g., where the 
constant-rate model infers a total of nine spurious dispersal 
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FIG. 5. An interval-specific model provides the best relative and absolute fit to our SARS-CoV-2 dataset. We assessed the relative and absolute fit 
of nine candidate phylodynamic models to our study dataset (comprised of all publicly available SARS-CoV-2 genomes from the early phase of 
the COVID-19 pandemic). (Left) We compared the relative fit of each candidate model to the constant-rate (1μ1Q) phylodynamic model using 
Bayes factors, which indicate that the 4μ4Q interval-specific model outcompetes both less complex and more complex models. (Right) We 
performed posterior-predictive simulation for each candidate model using 20 summary statistics, plotting the fraction of those summary sta
tistics indicating that a given candidate model was inadequate. Our results indicate that three candidate models (4μ4Q, 5μ5Q, and 5μ5Q∗) 
provide an adequate fit to our SARS-CoV-2 dataset. The simplest of these adequate models (4μ4Q) also provides the best relative fit. 
Collectively, these results identify the 4μ4Q model as the clear choice for phylodynamic analyses of our study dataset.
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routes, and the interval-specific model reveals a total of 
ten significant dispersal routes that were not detected by 
the constant-rate model (supplementary figs. S16–S17, 
Supplementary Material online).

Variation in the Number of Viral Dispersal Events
Our phylodynamic analyses also allow us to infer the num
ber of SARS-CoV-2 dispersal events between areas during 
the early phase of the COVID-19 pandemic. Here, we focus 
on the number of viral dispersal events originating from 
China because it was the point of origin and primary 
source of SARS-CoV-2 spread early in the pandemic. The 
constant-rate (1μ1Q) and preferred (4μ4Q) phylodynamic 
models infer distinct trends in—and support different 
conclusions regarding the impact of mitigation measures 
on—the number of viral dispersal events out of China. 
The constant-rate model infers a gradual decrease in the 
number of dispersal events from late Jan. through 
mid-February (fig. 8, orange). By contrast, the preferred 
interval-specific model reveals a sharp decrease in the 
number of dispersal events on February 2, which coincides 
with the onset of air-travel bans imposed against China 
(fig. 8, blue). Moreover, the preferred phylodynamic model 
infers an uptick in the number of viral dispersal events on 
February 17 (not detected by the constant-rate model), 
which coincides with the lifting of domestic travel restric
tions within China (except for Hubei, where the travel re
strictions were enforced through late March).

Discussion
Phylodynamic methods increasingly inform our under
standing of the spatial and temporal dynamics of viral 

spread. The vast majority of discrete-geographic phylody
namic studies assume—despite direct (and compelling) 
evidence to the contrary—that disease outbreaks are in
trinsically constant: ≈98% of all such studies are based 
on the constant-rate models. These considerations have 
motivated previous extensions of phylodynamic models 
that allow either the average (Membrebe et al. 2019) or 
relative (Bielejec et al. 2014) dispersal rates to vary, and 
our development of more complex phylodynamic models 
that allow both the average and relative dispersal rates to 
vary independently over two or more pre-specified inter
vals. By accommodating ubiquitous temporal variation in 
the dynamics of disease outbreaks—and by allowing us 
to incorporate independent information regarding events 
that may impact viral dispersal—our new interval-specific 
phylodynamic models are more realistic (providing a bet
ter description of the processes that gives rise to empirical 
datasets), thereby enhancing the accuracy of our epi
demiological inferences based on these models.

Our simulation study demonstrates that (in principle): (1) 
we are able to accurately identify when phylodynamic mod
els are correctly specified, overspecified, or underspecified 
(fig. 4); (2) when the phylodynamic model is correctly speci
fied, we are able to reliably estimate parameters of these 
more complex interval-specific models (fig. 3), and; 
(3) when the phylodynamic model is underspecified, failure 
to accommodate interval-specific variation in the study 
data can bias parameter estimates and mislead inferences 
about viral dispersal history based on those biased estimates 
(fig. 3).

Our empirical study of SARS-CoV-2 data from the early 
phase of the COVID-19 pandemic demonstrates that (in 
practice): (1) our interval-specific phylodynamic model 
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FIG. 6. Patterns and correlates of variation in global viral dispersal rate early in the COVID-19 pandemic. The COVID-19 pandemic emerged in 
Wuhan, China, in late 2019, and established a global distribution by March 8, 2020. Our phylodynamic analyses of this critical early phase of the 
pandemic provide estimates of the average rate of viral dispersal across all 23 study areas, μ (posterior mean [solid lines], 95% credible interval 
[shaded areas]). By assumption, the constant-rate (1μ1Q) model infers a static rate of global viral dispersal (orange). By contrast, the preferred 
interval-specific (4μ4Q) model reveals significant variation in the global viral dispersal rate (dark blue). Notably, the global viral dispersal rate 
decreases sharply on February 2, which coincides with the onset of international air-travel bans with China. The efficacy of these air-travel re
strictions is further corroborated by estimates of daily global viral dispersal rates (light blue)—inferred under a more granular, interval-specific 
(71μ4Q) model—that are significantly correlated with independent information on daily global air-travel volume (dashed line, obtained from 
FlightAware).
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(where both the global rate of viral dispersal and the rela
tive rates of viral dispersal vary over four distinct intervals) 
significantly improves the relative and absolute fit to our 
study dataset compared to constant-rate phylodynamic 
models (Lemey et al. 2009; Edwards et al. 2011) and to phy
lodynamic models that allow either the average dispersal 
rate (Membrebe et al. 2019) or the relative dispersal rates 
(Bielejec et al. 2014) to vary over the same four intervals; 
(2) the preferred interval-specific phylodynamic model 
provides qualitatively different insights on key aspects of 
viral dynamics during the early phase of the pandemic— 
on global rates of viral dispersal (fig. 6), viral dispersal 
routes (fig. 7), and the number of viral dispersal events 
(fig. 8)—compared to conventional estimates based on 
constant-rate (and underspecified) phylodynamic models, 
and; (3) inferences under the preferred interval-specific phy
lodynamic model support qualitatively different conclusions 
regarding the impact of mitigation measures to limit the 
spread of the COVID-19 pandemic; e.g., the variation in global 
viral dispersal rate, viral dispersal routes, and number of viral 
dispersal events revealed by the interval-specific model (but 
masked by the constant-rate model) collectively support the 

efficacy of the international air-travel bans in slowing the pro
gression of the COVID-19 pandemic.

Our interval-specific models promise to enhance the ac
curacy of phylodynamic inferences not only by virtue of their 
increased realism, but also by allowing us to incorporate add
itional information (related to events in the history of disease 
outbreaks) in our phylodynamic inferences. The ability to in
corporate independent/external information is particularly 
valuable for phylodynamic inference—where many para
meters must be estimated from datasets with limited infor
mation—which has also motivated the development of 
other innovative phylodynamic approaches for incorporating 
external information (Lemey et al. 2014; Bielejec et al. 2016). 
The potential benefit of harnessing external information is 
evident in our empirical study: our inference model 
—4μ4Q, with four intervals that we specified based on exter
nal evidence regarding events that might plausibly impact vir
al dispersal dynamics—is decisively preferred (2 ln BF = 27.3) 
over a substantially more complex model, 5μ5Q∗, with five 
arbitrarily specified (14-day) intervals.

Importantly, comparison of alternative phylodynamic 
models provides a powerful framework for testing 
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hypotheses about the impact of various events (i.e., assessing 
the efficacy of mitigation measures) on viral dispersal dynam
ics. Our empirical study allows us, for example, to assess the 
impact of domestic mitigation measures imposed in the 
Hubei province of China. This simply involves comparing 
the relative fit of our data to two candidate phylodynamic 
models: 4μ4Q and 5μ5Q. The 5μ5Q model adds an interval 
(corresponding to the onset of the Hubei lockdown on 
January 26) to the otherwise identical 4μ4Q model. In con
trast to the international air-travel ban, this domestic mitiga
tion measure does not appear to have significantly impacted 
global SARS-CoV-2 dispersal dynamics: the 5μ5Q model is 
decisively rejected when compared to the 4μ4Q model 
(2 ln BF = −15.9).

We have focused on interval-specific models where 
each interval involves a change in both the average and 
relative dispersal rates. For example, the scenario depicted 
in figure 1 involves two events that define three intervals, 
where both Q and μ are impacted by each event, such that 
the interval-specific parameters are (Q1, Q2, Q3) and 
(μ1, μ2, μ3). However, our interval-specific models also al
low the average and relative dispersal rates to vary inde
pendently across intervals. For example, under an 
alternative scenario for figure 1, the first event may have 
impacted both the relative and average dispersal rates, Q 
and μ, whereas the second event may have only changed 
the relative dispersal rates, Q; in this case, the interval-specific 
parameters would be (Q1, Q2, Q3) and (μ1, μ2, μ2). 
Allowing dispersal rates to vary independently enables these 
models to accommodate more complex patterns of variation 
in empirical datasets (and thereby improve estimates from 
these more realistic models), and also provides tremendous 
flexibility for testing hypotheses about the impact of various 

mitigation measures on either the relative and/or average 
rates of viral dispersal.

Nevertheless, this flexibility comes at a cost: interval- 
specific models are inherently more complex than their 
constant-rate counterparts, with many parameters that 
must be estimated from minimal data (i.e., the geographic 
location of each virus). Accordingly, careful model selec
tion and validation is necessary to avoid specification 
of an over-parameterized model (although the Kullback– 
Leibler divergence between the posterior and the prior reveals 
similar amounts of information gain under the constant-rate 
and interval-specific models; see supplementary section S3.3, 
Supplementary Material online for detailed descriptions of 
the KL-divergence computation and results). Moreover, 
the space of phylodynamic models expands rapidly as we 
increase the number of intervals. For a model with three 
intervals, for example, we can specify five allocations for 
the average dispersal rate parameter, μ—(μ1, μ1, μ1), 
(μ1, μ1, μ2), (μ1, μ2, μ1), (μ1, μ2, μ2), and (μ1, μ2, μ3)—and, 
similarly, five allocations for the relative dispersal rate par
ameter, Q: (Q1, Q1, Q1), (Q1, Q1, Q2), (Q1, Q2, Q1), 
(Q1, Q2, Q2), and (Q1, Q2, Q3). We can therefore specify 
25 unique three-interval phylodynamic models (represent
ing all combinations of the two parameter-allocation vec
tors), 225 unique four-interval models, 2704 unique 
five-interval models, 41,209 unique six-interval models, 
etc. Accordingly, the effort required to identify the best 
interval-specific phylodynamic model quickly becomes 
prohibitive, particularly because this search requires that 
we estimate the marginal likelihood for each candidate 
model using computationally intensive methods (Xie 
et al. 2011; Baele et al. 2012). Nevertheless, our interval- 
specific models establish a foundation for developing 
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FIG. 8. Variation in the number of viral dispersal events out of China early in the COVID-19 pandemic. Our phylogenetic analyses of SARS-CoV-2 
genomes sampled during the early phase of the COVID-19 pandemic allow us to estimate the number of viral dispersal events from China to all 
other study areas (posterior mean [solid lines], 95% credible interval [shaded areas]). The constant-rate (1μ1Q) model implies that the number 
of viral dispersal events emanating from China remained relatively high following the onset of international air-travel bans on February 2 (or
ange). By contrast, the preferred interval-specific (4μ4Q) model reveals that the number of viral dispersal events emanating from China de
creased sharply on February 2 (blue), which supports the efficacy of these international air-travel restrictions. The preferred model also 
infers an uptick in the number of viral dispersal events on February 17 (not detected by the constant-rate model), which coincides with the 
relaxation of domestic travel restrictions in China. Note that sampling lag causes the number of dispersal events near the end of the sampling 
period to be underestimated.
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more computationally efficient methods; e.g., we could 
pursue a finite-mixture approach (Kazmi and Rodrigue 
2019) that averages inferences of dispersal dynamics over 
the space of all possible interval-specific phylodynamic 
models with a given number of intervals.

We are optimistic that—by increasing (and providing a 
means to assess) model realism, incorporating additional 
information, and providing a powerful and flexible means 
to test alternative models/hypotheses—our phylodynamic 
methods will greatly enhance our ability to understand the 
dynamics of viral spread, and thereby inform policies to 
mitigate the impact of disease outbreaks.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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