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a b s t r a c t

The bone microenvironment provides a fertile soil for cancer cells. It is therefore not surprising that the

skeleton is a frequent site of cancer metastasis. It is believed that reciprocal interactions between

tumour and bone cells, known as the ‘‘vicious cycle of bone metastasis’’ support the establishment and

orchestrate the expansion of malignant cancers in bone. While the full range of molecular mechanisms

of cancer metastasis to bone remain to be elucidated, recent research has deepened our understanding

of the cell-mediated processes that may be involved in cancer cell survival and growth in bone. This

review aims to address the importance of the bone microenvironment in skeletal cancer metastasis and

discusses potential therapeutic implications of novel insights.

Crown Copyright & 2012 Published by Elsevier GmbH. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bone metastases are a major cause of cancer-related pain and
can result in pathological fractures, paralysis and life-threatening
hypercalcaemia. Less than 20% of patients survive for five years
after the discovery of bone metastasis [1–4]. In other types of
cancers, such as liver and lung malignancies, the incidence of
bone metastasis has increased in recent years, possibly due to the
effect of improved treatment regimens on life expectancy [5,6].

Metastasis of tumour cells to bone depends on a complex
cascade of events which includes the detachment of individual
cancer cells from the primary tumour site; invasion into the
vasculature; migration and adherence to distant capillaries within
the bone; extravasation and initial survival within the new
environment; proliferation to micrometastases; recruitment of
blood supply to the tumour for further expansion; and invasion
beyond the adjacent tissues [3,4,7]. The ability of cancer cells to
survive and expand in the bone marrow cavity has long been based
on the ‘‘seed and soil’’ theory: In 1889, Sir James Paget proposed
that bone acts as a fertile environment (‘soil’) for cancer cell (‘seed’)
colonization and growth [8]. Many years later, Mundy and collea-
gues greatly broadened our understanding of the mechanisms that
govern the growth of bone metastases by developing a concept
012 Published by Elsevier GmbH.
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widely known as the ‘‘vicious cycle’’ [7,9–11]. This theory elegantly
explains how cancer metastases, once established in bone, modify
their immediate environment to support their own survival and
growth. Thus, tumour-derived factors such as parathyroid
hormone-related protein (PTHrP) up-regulate the expression of
Receptor Activator of Nuclear Factor KB Ligand (RANKL) by cells of
the osteoblast lineage (i.e., osteoblast precursors, osteoblasts and
osteocytes). RANKL then binds to the Receptor Activator of Nuclear
Factor KB (RANK) on osteoclasts and osteoclast precursors to
increase osteoclast recruitment and formation, and to activate
bone resorption. Accelerated bone resorption then triggers the
release of growth factors embedded in the bone matrix, which in
turn act on cancer cells to promote their further growth [7,10,12]
(Fig. 1). This model has been extremely useful in elucidating some
of the mechanisms that support and maintain established cancer
metastases in bone. It is, however, less clear how individual cancer
cells survive and proliferate within the bone environment at the
very early stages of colonisation, i.e., before reaching a critical mass
that allows them to manipulate resident bone cells in a significant
way. We would therefore predict that additional mechanisms are
at work at the early stages of bone metastases that involve more
direct signalling pathways than those described by the classical
vicious pathway.

Numerous animal studies have demonstrated beyond doubt
that effective inhibition of osteoclastogenesis or osteoclast function
significantly reduces metastatic tumour growth in bone [13–20].
Likewise, clinical trials in patients with non-metastatic or meta-
static cancers established that treatment with ‘‘anti-resorptive’’
agents such as bisphosphonates or the anti-RANKL antibody,
This is an open access article under the CC BY-NC-ND license
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Fig. 1. Schematic representation of the ‘vicious cycle’. Up-regulation of RANKL in bone cells and subsequent osteoclast activation is driven primarily by tumour-derived

factors such as PTHrP and IL-6. Accelerated bone resorption then triggers the release of growth factors from the degraded bone matrix, which in turn promote further

tumour growth.
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denosumab, resulted in significant reductions in the incidence,
progress or complications of bone metastases [21–23]. Despite
these significant developments, complications of bone metastases
still occur in up to 50% of patients even whilst receiving anti-
resorptive therapy [1,4], indicating that there are still significant
unmet needs in the prevention and treatment of metastatic bone
disease.
2. Types of bone metastasis

Bone metastases have generally been characterized as osteo-
lytic or osteoblastic based on their radiographic appearance [1].
Osteolytic lesions are caused by increased osteoclast activity
accompanied by a concomitant absolute or relative decrease in
osteoblast number or activity. This results in net bone resorption
[7,24] with little or no associated bone repair. In contrast,
osteoblastic lesions are characterized by abnormal bone forma-
tion around tumour cell foci, but this typically also co-exists with
increased osteoclast activity. Thus, both types of cancer metas-
tasis to bone are characterised by significantly accelerated bone
resorption with the radiographic appearance depending on the
concurrent levels of bone formation. These tumour-induced
changes in bone metabolism can clinically be identified and
monitored through the measurement of bone turnover markers,
which correlate with both tumour burden and therapy-induced
reductions in skeletal related events [1,25–35]. Thus, the classi-
fication of metastatic bone lesions into osteolytic and osteoblastic
represent no less than the two extremes of a continuum in which
the normal bone remodelling process becomes dysfunctional.
Furthermore, patients can present with both osteolytic and
osteoblastic lesions, and in fact, many bone metastases are mixed
in nature, containing both lytic and blastic elements [12]. For
example, breast cancer predominantly causes osteolytic metas-
tases but at least 20% of patients present with mixed osteolytic-
osteosclerotic lesions [2]. Conversely, prostate cancer presents
mostly with osteoblastic lesions although a concurrent increase in
bone resorption invariably occurs [2,4,36]. In patients with
advanced bone metastases, high circulating levels of bone resorp-
tion markers, such as the aminoterminal telopeptide of type I
collagen (NTX), were seen regardless of whether the lesions were
radiographically lytic, blastic or ‘‘mixed’’ [30,37,38]. This indicates
that all types of bone metastases contain an element of osteoclast
activation, and this has been confirmed histologically. The role of
osteoclasts in the spectrum of metastatic bone lesions is also
supported by the fact that anti-resorptive therapy effectively
reduces skeletal related events independent of whether there is
predominantly lytic or blastic metastatic bone disease [23,39,40].

Within the bone microenvironment, the establishment of a
tumour thus results in a disruption of the normally well-
coordinated coupling of osteoblast and osteoclast functions. The
resulting abnormal and accelerated bone remodelling then offers
a fertile soil for further tumour expansion. Therefore, when it
comes to the understanding of the mechanisms that enable
cancers to grow in bone, the role of the bone microenvironment
and its manipulation by the cancer cannot be underestimated.
3. The bone microenvironment

The term ‘bone microenvironment’ attempts to describe a
complex structural and biological system which contains both
haematopoietic and mesenchymal cells of multiple lineages, a
sinusoidal blood supply, the bone marrow stroma and the bone
extracellular matrix. In the context of skeletal cancer metastases,
the bone matrix serves as a rich source of growth factors, while a
number of different cells types inside, or recruited to the bone
marrow cavity function to orchestrate the bone-tumour interac-
tions. The cells within the bone microenvironment include
resident bone cells (osteoclasts, osteoblasts and osteocytes) as
well as various other cell types such as myeloid and immune cells,
platelets, bone marrow endothelial and haematopoietic cells and
bone marrow-derived mesenchymal stem cells, all of which may
engage with the metastatic process to varying degrees.

3.1. Role of the bone matrix

Over the past 30 years it has become apparent that the bone
matrix is extremely rich in growth factors. Many of these, including
TGFb, IGFs, FGFs, PDGF and BMPs not only promote the growth of
metastatic cancer cells in bone, but also increase the production
and release of cytokines and other bone resorbing factors from
tumour cells [1,41]. Growth factors released by the bone matrix are
able to change the phenotype of tumour cells to cause more
aggressive metastatic lesions [3,7]. To again use Paget’s analogy:
The bone ‘soil’ is ‘fertilized’ by matrix-derived growth factors to
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facilitate the growth of the cancer ‘seed’ [1,3,7]. These factors can
be released into the bone microenvironment during bone remodel-
ling [7,12,42,43]. Physical properties of the bone matrix, its
structure and local changes associated with remodelling activity,
including hypoxia, acidosis, and high extracellular calcium con-
centrations, create an environment favourable for tumour cells and
their growth [12,44,45]. Finally, the bone matrix contains numer-
ous non-collagenous proteins (e.g., osteopontin, vitronectin) which
are able to interact directly with adhesion molecules on cancer
cells, commonly via RGD sequences, and thus alter cancer cell
behaviour.

3.2. Bone remodelling and bone cells

Bone is continuously moulded, shaped and repaired through
the actions of different bone cells [46]. During development and
growth, the skeleton is built up to achieve its shape and size by
the removal of bone from some sites and deposition (synthesis) of
bone at other sites; this process is called bone modelling [47,48].
Once the skeleton has reached its mature size and structure,
another life-long process termed remodelling commences,
resulting in the continuous replacement of ‘old’ bone by newly
formed tissue in the same location. Bone remodelling generally
occurs at a micro-scale throughout the skeleton, carried out by
the coordinated activity of juxtaposed osteoblasts and osteoclasts,
an entity also known as a ‘basic multicellular unit (BMU)’ [47].

During bone remodelling, osteoblasts and osteoclasts are in
intimate contact with the bone marrow, from which their
precursors are derived. The differentiation of osteoclasts from
the macrophage/monocyte lineage and their subsequent activa-
tion initially result in bone resorption, either on the bone surface
or by tunnelling into the bone matrix [49]. A reversal phase then
follows and a cement line is deposited. During the final stages of
bone remodelling, osteoblasts (cells of mesenchymal origin) lay
down new bone matrix which subsequently becomes mineralised
[42]. Osteocytes are cells derived from osteoblasts [50] which
become embedded in the newly formed bone matrix. Bone
surfaces then remain in a resting state of variable duration until
the next remodelling cycle begins [48].

During adult life, balanced bone remodelling is the major
process by which healthy bone structure and function are main-
tained. In the young adult, several million bone remodelling units
work their way through the skeleton at any one time, resorbing
old bone and replacing it with an equal amount of new bone, such
that total bone mass remains unchanged. During aging (which for
the skeleton starts around 40 years of age), bone remodelling
becomes increasingly imbalanced, and a shift in favour of net
bone resorption occurs [46,48].

The bone remodelling process is under the control of osteoblasts
which integrate the signalling input from systemic hormones, locally
acting growth factors and cytokines, and mechanical stress. Forma-
tion of osteoclasts occurs through a sequence of events that includes
proliferation, differentiation, fusion and activation [12,43,51]. These
events are regulated via the RANKL/ RANK/OPG signalling system
(see below) [49].

3.3. The RANKL/RANK/OPG system

The receptor activator of NF Kappa B (RANK) ligand (RANKL)
belongs to the TNF super family and is expressed by several cell
types within the bone environment, including osteoblasts, other
cells of the osteoblast lineage and T-cells. RANKL has been
identified as the key signal in the regulation of osteoclastogenesis
and bone resorption [52–55]. Specifically, RANKL binds to its
receptor, RANK, a transmembrane signalling receptor expressed
by haematopoietic osteoclast precursor cells [52] and induces
their differentiation into functional, multinucleated osteoclasts.
RANKL also promotes osteoclast activation and survival [1,7].
Gene knockout experiments further reveal the physiological
importance of RANK and RANKL and their interactions. Thus,
mice deficient in either RANK or RANKL are phenotypically
identical, each presenting with profound osteopetrosis and an
absence of osteoclasts. These phenotypes clearly demonstrate the
essential role of this receptor-ligand pair in bone modelling and
remodelling [56,57].

The RANK–RANKL system is further regulated through osteopro-
tegerin (OPG), which acts as a decoy receptor to RANKL, preventing
RANKL from binding to RANK. Interestingly, OPG is expressed also
by osteoblasts as a secreted soluble protein. Through its ability to
block osteoclast differentiation and activation (i.e., bone resorption),
OPG becomes an important counter-regulator of bone metabolism
[54,58]. When administered systemically, OPG has been shown to
inhibit both physiologic and pathologic bone resorption in various
animal models, including those of metastatic bone disease
[15,20,58–61]. However, it is the ratio of RANKL to OPG rather than
the absolute levels of either that determines the level of osteoclas-
togenesis in vivo [54,58].

Numerous osteotropic hormones and cytokines are able to
influence the expression levels of both OPG and RANKL [62,63].
Systemic factors such as parathyroid hormone (PTH), interleukins
and tumour necrosis factor a (TNF-a) increase the osteoblastic
expression of RANKL relative to that of OPG, thereby promoting
osteoclast activity [7]. Conversely, treatment with OPG has been
shown to effectively inhibit bone resorption in humans [64,65].
Importantly, the same RANKL/RANK/OPG pathways are opera-
tional in humans and rodents.
4. The ‘vicious cycle’ of metastatic tumour growth in bone

The concept of a ‘vicious cycle’ supporting and maintaining
metastatic tumour growth in bone was first introduced by Mundy
and Guise in 1997 [66]. The model successfully explains how
bone and cancer cells interact in a feed-forward loop to allow and
perpetuate cancer cell growth within the bone microenviron-
ment. In its essence, the model describes how tumour cells
communicate with osteoblasts, which ultimately leads to osteo-
clast activation and accelerated bone resorption. This not only
makes room for the cancer to grow, but also triggers the release of
growth factors embedded into the degraded bone matrix. These
growth factors then promote further tumour growth, resulting in
the production of more pro-resorptive signals by the cancer
(Fig. 1).

4.1. The vicious cycle

Factors secreted by tumour cells play a critical role in cancer
bone metastasis. Thus, it has been well established that breast or
prostate cancer cells are able to produce and release signalling
molecules that have the potential to modulate normal bone remo-
delling. These include parathyroid hormone-related protein (PTHrP),
interleukins 6 (IL-6), 8 (IL-8) and 11 (IL-11), as well as vascular
endothelial growth factor (VEGF) [3,12,67–71]. Among these factors,
the most extensively studied is PTHrP, which initially was identified
as the causal factor in humoral hypercalcemia of malignancy (HMM)
[69,72–75]. PTHrP shares a common receptor with parathyroid
hormone (PTH) [76], and although the protein sequence of PTHrP
is different from PTH, there is an approximately 70% sequence
homology between the two hormones across the first 13 amino
acids at the N-terminus, resulting in similar biological activities [77].
Tumour-derived PTHrP can indirectly activate osteoclastogenesis via
osteoblasts by stimulating osteoblasts and stromal cells to increase
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RANKL and suppress OPG expression [78–80]. Mouse models of
bone metastasis provide solid evidence that PTHrP plays a critical
role in breast cancer bone metastasis [81] (Fig. 2). Blocking PTHrP
with neutralizing antibodies reduced osteolytic lesions in the MDA-
MB-231 mouse model [82]. Interestingly, however, patients with
PTHrP-positive primary breast tumours were found to be at lower

risk of developing bone metastasis and to have a better overall
prognosis than patients with tumours that express no or little PTHrP
[71,83]. These intriguing results suggest that increased expression of
PTHrP by breast cancer is correlated with a less invasive phenotype,
indicating that PTHrP may have other effects on tumour cell
behaviour which are independent of their local effects on bone
following bone metastasis [39,71].

Other factors able to stimulate osteoclast formation and subse-
quently osteolytic activity include interleukins 6, 8, 11, TNF-a, M-CSF
and endothelial growth factor (VEGF) [12,84]. IL-6, IL-11 and VEGF all
increase osteoclast formation and activity via the RANK ligand
pathway, while macrophage colony stimulating factor (M-CSF) and
IL-8 act directly to stimulate human osteoclast formation [85–87].

Up-regulation of RANKL in osteoblasts and other cells of the
osteoblast lineage leads to osteoclast activation and increased
bone resorption. This has two effects: First, it removes existing
bone, thus eliminating an important barrier to further tumour
expansion. Second, and as mentioned above, the bone microen-
vironment is a fertile soil for metastatic tumour cells, given its
abundance in growth factors and cytokines. Breakdown of the
bone matrix during bone resorption results in the release of
potent growth factors, which in turn stimulate tumour growth.
Fig. 2. Overexpressing PTHrP in MDA-MB-231 cells accelerates bone metastases. MDA

negative of the TGF-b type II receptor rendered the human breast cancer cell line MDA-

overexpress PTHrP (TbRIIDcytþPTHrP; two clones) or the empty vector (TbRIIDcytþp

bearing two different TbRIIDcytþPTHrP clones or TbRIIDcytþpcDNA3.1zeo control 3

(B) Osteolytic lesion number and area on radiographs as measured by computerized im

on day 0. Values represent the mean7SEM (n¼5) per group.

From Ref. [81] with permission from the Publisher.

Fig. 3. Effect of OPG treatment on histomorphometric indices of skeletal Colon-26 tumo

tumour area at each dose. *, Significantly different from 0 mg/kg OPG. Data represent

From Ref. [13] with permission from the Publisher.
Among the factors, TGF-b is of particular importance as it has
been shown to increase the production of PTHrP in breast cancer
cells [70,81]. Preclinical studies indicate that blocking TGF-b
signalling may have clinical benefits in patients with bone
metastases [88–91]. Likewise, various other studies suggest that
targeting bone-derived IGF-I, PDGF and BMP and their associated
signalling pathways may offer potential therapeutic value in the
treatment of bone metastasis [92–96].

It is clear that disruption of the vicious cycle at any level
should result in an inhibition of metastatic tumour growth, and in
contrast, increased bone resorption is likely to enhance cancer
growth in bone [7,24].

4.2. Anti-resorptive treatments reduce metastatic tumour growth

in bone

Xenograft models of malignant bone disease have provided
clear evidence that inhibiting osteoclast activity and hence bone
resorption strongly affects the ability of cancer cells to grow within
the bone environment [13–20]. Currently, two main classes of anti-
resorptive treatments are available: Bisphosphonates and the anti-
RANKL antibody, denosumab. While initially developed for the
management of osteoporosis, these agents were subsequently
found to also reduce skeletal-related events in patients with
metastatic bone disease. Bisphosphonates have successfully been
used in the treatment of malignant hypercalcemia and skeletal
metastasis in breast and prostate cancers [18,97]. Both animal and
human studies have demonstrated that bisphosphonates not only
/TbRIIDcyt cells were created in MDA-MB-231 cells that expressed the dominant–

MB-231 unresponsive to TGF-b. MDA-MB-231 and MDA/TbRIIDcyt cell clones that

cDNA3.1zeo) were used. (A) Representative radiographs of hindlimbs from mice

1 days after tumour inoculation. Osteolytic lesions are indicated by the arrows.

age analysis of forelimbs and hindlimbs. Respective tumour cells were inoculated

ur burden. OPG treatment (1 mg/kg and 3 mg/kg) significantly reduced the average

the means7SE (n¼10 mice/group).
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reduce osteolysis and bone pain associated with cancer metastasis
but also decrease skeletal tumour burden. One area of contention is
whether these effects are solely due to inhibiting bone resorption,
and thus through altering the ‘‘vicious cycle’’, or whether any of
these treatments have direct cytotoxic effects on cancer cells. As
discussed below, bisphosphonates and OPG (or indeed denosumab)
inhibit bone resorption by different mechanisms, and may there-
fore possess different anti-tumour potential. Earlier studies with
OPG had already demonstrated a functional role for RANKL-
induced osteoclastogenesis in humoral hypercalcemia of malig-
nancy and solid malignancies of bone [13,58] (Fig. 3). Beneficial
effects of anti-resorptive treatments on malignant bone lesions
have been reported across the continuum of lytic to sclerotic
lesions for diverse tumour types including prostate, breast, lung
and other epithelial tumours [12,98–102].
4.2.1. Bisphosphonates

Bisphosphonates are analogues of the naturally occurring com-
pound pyrophosphate (P–O–P) in which the oxygen in ‘P–O–P’ has
been replaced by a carbon atom, resulting in a ‘P–C–P’ structure
[103–105]. Bisphosphonates bind preferentially to bone minerals
at sites of active bone resorption, where they are taken up by
resorbing osteoclasts. Once within the cell, the newer nitrogen-
containing bisphosphonates inhibit farnesyl pryrophosphate synthase
and prevent protein prenylation, which interferes with normal cell
metabolism and induces a profound decline in osteoclast-mediated
bone resorption [104,106,107]. Some bisphosphonates (e.g., ibandro-
nate) have also been shown to exert direct anti-tumour effects
in vitro, albeit at micromolar, i.e., exceedingly high concentrations
[108,109]. However, since sequestered bisphosphonate can be
released from the bone matrix during bone resorption, some cancer
cells may indeed be exposed to relatively high BP concentrations
in vivo. For example, alendronate is believed to reach concentrations
of greater than 100 mM within the sealed zone of an osteoclast during
Fig. 4. Osteoprotegerin and ibandronate treatment completely inhibits the enlargemen

tibiae of nude mice before treatment (Day 10; a–c) or after treatment (Day 17; d–f) w

distinct osteolytic lesions (arrows) are detected in the tibiae (a–c). The size of these osteo

contrast, in all treated bones, increase in size of these lytic lesions is inhibited (e–f

progression of established osteolytic bone lesions. Data are mean7SD and n¼10 in ea
#different to Day 10 (po0.01).

From Ref. [15] with permission from the Publisher.
bone resorption [110], potentially producing transient high levels that
may affect cancer cells immediately adjacent to osteoclasts. Whether
bisphosphonates do posses direct anti-tumour effects in vivo remains
an open question.

Alternatively, it has been suggested that the anti-resorptive
activity of bisphosphonates mediate an indirect anti-tumour
effect via the vicious cycle. In a study comparing ibandronate
and OPG in a breast cancer bone metastasis in mice, we found
similar inhibition of tumour growth with both agents, suggesting
that their common anti-resorptive actions are dominant in their
anti-tumour effects [15] (Fig. 4).

For more than two decades, bisphosphonates have been used
as highly effective therapies for the treatment of skeletal malig-
nancies and the prevention of secondary complications
[97,111–113]. Anti-resorptive treatment of patients with early,
non-metastatic breast cancer with clodronate has been reported
to have beneficial effects on both the development of bone
metastases and patient survival [38,114–118]. Furthermore, oral
clodronate, when given as adjuvant therapy over 5 years, was
shown to significantly reduce the rate of bone metastasis in
women with breast cancer receiving standard treatment
[115,119]. Although one clinical trial reported that clodronate
had no effect on metastases and even a negative effect on survival
[118,120], bisphosphonates have been widely adopted in clinical
practice [121,122] based on further positive outcomes from
studies with zoledronic acid [123–134] and ibandronate
[135,136] suggesting that bisphosphonates limit the progression
of breast or prostate cancer in bone and other tissues [104,114].

Recent results from clinical trials (e.g., AZURE, ABCSG-12,
ZO-FAST) suggest that zoledronic acid may have more pro-
nounced effects on the prevention and treatment of breast cancer
patients within a low-estrogen environment, i.e., in postmeno-
pausal women [126–134]. This effect is likely due to increases in
local and systemic bone resorption in the setting of sex hormone
deficiency, as high bone turnover is potentially associated with
t of osteolytic bone lesions. (A) Representative radiographs of osteolytic lesions in

ith vehicle (PBS) osteoprotegerin (OPG) or ibandronate (IBN). At day 10, small but

lytic lesions in untreated bones is markedly increased 7 days later, at day 17 (e). In

). (B) Effects of osteoprotegerin (OPG) and ibandronate (IBN) treatment on the

ch group. *significantly different from vehicle-treated group at Day 17 (po0.01),



Table 1
Levels of serum calcium, parathyroid hormone and bone markers in mice

maintained on a normal or a low calcium diet.

Serum assay Normal-Ca Low-Ca

Day 0 (n¼5)

Calcium (mmol/l) 2.2270.04 2.1170.02*

PTH (pg/ml) 31.0174.50 63.13716.99*

mTRAP5b (b U/l) 8.6670.61 11.7871.17*

Y. Zheng et al. / Journal of Bone Oncology 2 (2013) 47–5752
cancer metastasis (see 4.3 below). In addition to its effects on
bone resorption, zoledronic acid may or may not have direct
anticancer activity. This, however, is a complex question requiring
further research. Indeed, clinical data [130,132,133,137] suggest
that both hormone suppression and a reduction in bone turnover
may be required to achieve sufficient suppression of dormant
micrometastases in patients with early-stage breast cancer in the
menopausal women.
Osteocalcin (ng/ml) 179.24713.92 267.81716.91*

PTH, serum intact parathyroid hormone; mTRAP5b, serum mouse tartrate-

resistant acid phosphatase 5b; OPG, osteoprotegerin.

Data are expressed as mean7SE.

po0.05 v.s. Normal-Ca.

From Ref. [158] with permission from the Publisher.

Table 2
Bone histomorphometry of the tibiae of mice maintained on a normal or low

calcium diet.

Normal-Ca Low-Ca

BV/TV (%) 11.6770.47 9.0370.62*

No/BS 7.1970.23 9.3370.35*

Oc.S/BS (%) 40.4171.46 52.6871.53*

Ob.S/BS (%) 24.6071.37 38.0372.31*

BV/TV: Bone volume % tissue volume.

N.Oc/BS: Osteoclast number per mm bone surface.

Oc.S/BS: Osteoclast surface % bone surface.

Ob.S/BS: Osteoblast surface % bone surface.

Data are expressed as mean7SE, * po0.05 v.s. Normal-Ca, n¼5/group.

From Ref. [158] with permission from the publisher.
4.2.2. Anti-RANKL treatments

As a decoy receptor for RANKL, OPG has potent anti-resorptive
effects without direct cytotoxic actions [13,20,98]. Binding of
RANKL to its cognate receptor RANK on the surface of osteoclast
precursor cells is essential for osteoclast differentiation. By
sequestering RANKL, OPG inhibits osteoclastogenesis and thus
bone resorption in vitro and in vivo [55,56,58,138,139]. In clinical
trials, recombinant OPG constructs and anti-RANKL antibodies
(denosumab) were demonstrated to reduce bone resorption
effectively in patients with multiple myeloma or bone metastasis
from breast cancer[140,141]. In prostate cancer, treatment with
denosumab has been reported to delay the appearance of bone
metastases [142]. Further studies demonstrated that denosumab
significantly decreased skeletal complications and reduced bone
pain [23]. Interestingly, a recent paper highlights the bone-
independent role of RANKL in mammary gland development in
mice, where it appears to mediate progesterone-induced prolif-
eration. This data implies that denosumab may be effective in
directly targeting subtypes of breast and prostate cancers that
express RANKL [143]. Both bisphosphonates and denosumab have
been shown to be effective in reducing cancer-induced bone pain
[34,144,145]. It is likely that these effects, too, are related to the
strong anti-resorptive activity of these agents.

4.3. High bone turnover is causally associated with cancer

metastasis

While many studies demonstrated that blocking bone resorp-
tion inhibits or even prevents the establishment and growth of
tumour cells in the bone environment, investigations into the
effects of accelerated bone resorption on tumour growth are
scarce. One study reported enhanced cancer cell growth in bone
following ovariectomy [146]. Other groups found faster tumour
growth during treatment with G-CSF [147] or 17-allylamino-17-
demethoxygeldanamycin (17-AAG) [148], although whether the
effects on tumour growth were caused by an increase in bone
resorption or mediated via other effects related to the bone
marrow environment remained uncertain.

Clinical studies have reported that cancer patients with high
levels of bone resorption at baseline or on treatment are at higher
risk for adverse clinical outcomes, such as SREs or tumour
progression [26–32,37,149–154]. In this context, it is interesting
to note that calcium and/or vitamin D deficiency have their own
and well established effects on bone turnover. Both conditions,
which are common in the general but particularly in the older
population, are often associated with hyperparathyroidism and,
consequently, accelerated bone turnover. Of note, vitamin D
deficiency has been identified in epidemiological studies as a risk
factor for breast and prostate cancer progression [31,32,155–157].
However, very little was known about the effects of calcium
deficiency on skeletal cancer progression.

Over the past years, we have therefore investigated the
complex relationship between tumour growth in bone, vitamin
D or calcium deficiency, and bone turnover. To this aim, we first
created a model of calcium deficiency by restricting dietary
calcium intake in young growing nude mice [158]. Within 3 days,
these mice develop secondary hyperparathyroidism (Table 1) and
accelerated bone turnover, resulting in significant bone loss
(Table 2). Using this model, we were able to demonstrate that
calcium deficiency in mice significantly stimulated the growth of
two human breast cancer cell lines (MDA-MB-231 and MCF-7)
implanted intra-tibially into bone (Fig. 5) [158,159]. Since vitamin
D is a major regulator of calcium homeostasis, we proceeded to
develop a rodent model of vitamin D deficiency [60]. After
weaning, 3-week-old nude mice were provided with either
normal chow (1000 IU/kg cholecalciferol) or chow deficient
in vitamin D. Mice on the latter diet developed marked vitamin
D-deficiency within 6 weeks, as indicated by serum
25-hydroxyvitamin D3 levels of less than 20 nmol/l (normal:
4100 nmol/l) (Fig. 6A). Similar to calcium deficiency, these mice
developed secondary hyperparathyroidism and accelerated bone
resorption as indicated by increased serum bone resorption and
formation markers (Fig. 6B and C). Importantly, vitamin D
deficiency significantly stimulated skeletal tumour growth in a
number of different cancer models, including human breast
(MDA-MB-231 cells [60], MCF-7 cells [160] and prostate cancer
(PC3 cells) (Fig. 7) [24,161].

In the same experiments, we inhibited bone resorption by
administration of OPG to provide further evidence that accelerated
bone resorption was indeed responsible for the enhanced tumour
growth. Mice on OPG maintained normal calcium levels at the
expense of further increases in PTH levels. However, tumour growth
was significantly reduced or even abolished by OPG treatment
independent of whether the animals were fed a normal diet, or a
chow deficient in either calcium or vitamin D [24,60,158–161]. In
contrast, when breast or prostate cancer cells were implanted in the
subcutaneous soft tissues away from bone, tumours grew similarly
in all test groups (controls and calcium or vitamin D deficient mice),
indicating that the effects of vitamin D or calcium deficiency on
skeletal tumour growth are not systemic but related to changes in
the bone microenvironment [24,60,158–161]. Taken together, it



Fig. 5. Low dietary calcium promotes breast cancer growth in bone. Mice fed a low calcium diet and injected intratibially with breast cancer MDA-MB-231 cells develop

larger lytic lesions (left and centre) and larger tumours (right) compared to mice on a normal diet. *po0.01.

From Ref. [158] with permission from the Publisher.

Fig. 6. Biochemical assessment of mice receiving vitamin D deficient or vitamin D sufficient diets. (A) Plasma 25(OH)D levels are profoundly reduced at 6 and 11 weeks.

(B and C) Plasma levels of PINP and TRAcP5b were significantly increased in vitamin D deficient mice at week 6. At week 11, plasma PINP levels were still significantly

higher in vitamin D deficient compared to vitamin D sufficient mice. There was no difference between TRAcP5b levels.

Data are shown as mean7SD for group sizes of n ¼9.

*, Po0.05, **, Po0.01, compared to vitamin D sufficient mice.

From Ref. [161] with permission from the Publisher.

Fig. 7. Radiographic assessment of osteolytic and osteosclerotic lesions in vitamin D sufficient and vitamin D deficient mice. Vitamin D deficient mice had developed

significantly larger osteolytic (B) and osteosclerotic lesions (C) than vitamin D sufficient mice (arrows indicate sclerotic lesions, (A)), when implanted with prostate cancer

PC-3 cell into tibiae of mice.

Data are shown as mean7SE for group sizes of n ¼9.

*, Po0.05, compared to vitamin D sufficient mice.

From Ref. [161] with permission from the Publisher.

Y. Zheng et al. / Journal of Bone Oncology 2 (2013) 47–57 53
seems clear that accelerated bone turnover, and particularly
increased bone resorption are the dominant factors in promoting
breast and prostate cancer growth in bone. These results are
consistent with the concept that the enhancement of a ‘‘vicious
cycle’’ by increased bone resorption supports tumour growth in
bone [7,10,12], which further lays a solid ground for anti-resorptive
treatment targeting the bone microenvironment for patients who
have bone metastasis.
These studies directly link vitamin D deficiency to enhanced
tumour expansion in bone metastatic growth, providing support
for a causal association between low vitamin D status and
enhanced breast and prostate cancer progression as observed in
clinical observational studies. These results also provide a clinical
and therapeutic rational for maintaining vitamin D sufficiency, or
correcting vitamin D deficiency in patients with breast or prostate
cancer-induced bone metastases.
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5. The role of other bone marrow cells in metastatic cancer
growth

Other cell types also that take part in the regulation of the bone
microenvironment, including myeloid and immune cells (T cells),
platelets, bone marrow endothelial and haematopoietic cells, as
well as bone marrow-derived mesenchymal stem cells [3,162].
Some of these cells are likely to participate in the creation of the
pre-metastatic niche [3,162].

Haematopoietic cells (other than osteoclasts) have the ability
to potentially affect bone metabolism, and in particular bone
resorption. For example, T cells produce osteoclast-activating
factors such as RANKL, tumour necrosis factor (TNF) and TGF-b
[91,163,164], It is via this link that these cells may influence
cancer growth in bone. Furthermore, tumour cells are able to
activate platelets to release lysophosphatidic acid (LPA), which in
turn promotes breast cancer growth and skeletal metastasis in
mice via production of IL-6 and IL-8, again potentially augment-
ing the vicious cycle [67].

In addition, myeloid-derived suppressor cells (MDSCs), plate-
lets, bone marrow endothelial and haematopoietic cells as well as
bone marrow-derived mesenchymal stem cells may all be
involved in tumour neovascularisation [162]. These cells may
interact with other bone cells at various levels and participate in
the process of bone metastasis [3,162]. While most of these
events affect tumour growth by changing the bone microenviron-
ment, some may have additional effects on cancer cell metastasis
by co-operating with osteoblasts, osteocytes and osteoclasts in
creating what is known as the pre-metastatic niche.

5.1. The pre-metastatic niche

The vicious cycle, with its associated changes in the bone
microenvironment, has been extremely useful in elucidating
some of the mechanisms that support established cancer metas-
tases in bone [7,8]. However, being mono-directional and depend-
ing on three different cell types to become, and remain activated,
the model is less suitable to explain tumour growth at early
stages of the metastatic process. It is conceivable that such
growth kinetics warrant additional pathways in the form of
amplifying elements, which would initiate, sustain and accelerate
cell growth and expansion within the bone environment. Differ-
ent modes of action to achieve amplification could involve direct
communication between tumour cells and other bone cells
including osteoclasts, osteoblasts and other bone marrow cells,
via the various signalling pathways.

Recent advances in preclinical melanoma and lung cancer studies
have demonstrated that the bone microenvironment may act as a
pre-metastatic niche, through which the primary tumour is able to
prime distant organs to become receptive to metastasising tumour
cells early during tumourigenesis. For example, vascular endothelial
growth factor receptor 1 (VEGFR1)-positive bone marrow-derived
haematopoietic progenitor cells are able to travel to the sites of
future metastasis before tumour cell arrival to facilitate tumour cell
metastasis by increasing production of fibronectin or inflammatory
chemoattractants in tumour target sites [165–168]. Bone is rich in
the chemokine SDF1 and its neutralisation has been reported to
reduce prostate cancer metastasis to bone [169].

In the context of the bone microenvironment, the pre-
metastatic niche may function via endocrine-like actions. Perhaps
similar to the so-called priming in organs such as lung, primary
tumours may be able to set up a pre-conditioning microenviron-
ment through the production of circulating factors, which signal
to various cells in the bone microenvironment. In this way the
primary tumour could make the bone microenvironment con-
ducive to tumour localization and colonization. There are a few
tumour derived factors such as PTHrP [71,170], heparanase [171]
and osteopontin [172,173] which have been reported to increase
bone resorption and promote tumour formation. Intriguingly, matrix
metalloproteinase (MMP) production from osteoclasts can also
support prostate cancer skeletal metastasis [174]. However, the
concept of the pre-metastatic niche itself as a potential therapeutic
target requires further investigation but is provoking interest in
the field.

Furthermore, the possibility of direct crosstalk between
tumour cells and osteoblasts has not been well explored. Direct
interactions, between these cells could short-cut the vicious cycle
and also provide mechanisms relevant to initiation and/or ampli-
fication of cancer growth in bone.
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