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The haptoglobin-hemoglobin receptor
(HpHbR) of African trypanosomes

plays a critical role in human innate
immunity against these parasites.
Localized to the flagellar pocket of the
veterinary pathogen Trypanosoma brucei
brucei this receptor binds Trypanosome
Lytic Factor-1 (TLF-1), a subclass of
human high-density lipoprotein (HDL)
facilitating endocytosis, lysosomal traffick-
ing and subsequent killing. Recently, we
found that group 1 Trypanosoma brucei
gambiense does not express a functional
HpHbR. We now show that loss of the
TbbHpHbR reduces the susceptibility of
T. b. brucei to human serum and TLF-1 by
100- and 10,000-fold, respectively. The
relatively high concentrations of human
serum and TLF-1 needed to kill trypano-
somes lacking the HpHbR indicates
that high affinity TbbHpHbR binding
enhances the cytotoxicity; however, in the
absence of TbbHpHbR, other receptors or
fluid phase endocytosis are sufficient to
provide some level of susceptibility.
Human serum contains a second innate
immune factor, TLF-2, that has been
suggested to kill trypanosomes indepen-
dently of the TbbHpHbR. We found that
T. b. brucei killing by TLF-2 was reduced
in TbbHpHbR-deficient cells but to a
lesser extent than TLF-1. This suggests
that both TLF-1 and TLF-2 can be taken
up via the TbbHpHbR but that alternative
pathways exist for the uptake of these
toxins. Together the findings reported
here extend our previously published
studies and suggest that group 1 T. b.
gambiense has evolved multiple mechan-
isms to avoid killing by trypanolytic
human serum factors.

Introduction

African trypanosomes are eukaryotic patho-
gens that cause important human and
animal diseases. These parasites have
evolved a variety of mechanisms to escape
innate and acquired immunity, including
the use of the variant surface glycoprotein
(VSG) coat to cover the plasma membrane
of the parasite providing a barrier against
attack by complement.1 The VSG coat
also serves as the molecular decoy during
antigenic variation, presenting an ever-
changing target to the adaptive immune
system of the mammal, thus allowing the
parasites to evade antibody-mediated kill-
ing.2 The subspecies of trypanosomes
that infect humans face the additional
challenge of encountering a unique innate
defense mechanism mediated by two related
serum proteins complexes. In the circulation
of humans, TLF-1 is a minor subclass
of HDL containing apolipoprotein A-1
(apoA-1), the defining protein of all
HDLs, and two primate specific pro-
teins, apolipoprotein L-1 (apoL-1) and
haptoglobin-related protein (Hpr).3-7 In
addition to these apolipoproteins, Hpr
binds free hemoglobin (Hb) in the circula-
tion, which is likely released from ery-
throcytes during early infection.8 The
heterodimeric Hpr/Hb complex is proposed
to be bifunctional, serving both as the ligand
for the T. b. brucei HpHbR9,10 and directly
contributing to high specific activity killing
by catalyzing the peroxidation of lysosomal
membrane lipids.6,7,11 The other primate
specific apolipoprotein in TLF-1, apoL-1,
is also directly involved in T. b. brucei
killing.5,12,13 An ion channel forming
protein, apoL-1 undergoes conformation
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changes at lysosomal pH and can integrate
into membranes.5,12,14 The combined action
of Hpr/Hb and apoL-1 results in the
osmotic lysis of the parasite.15,16 The other
trypanolytic serum complex is called TLF-2
and, while largely devoid of lipids it contains
Hpr and apoA-117 and apoL-1 (this paper)
suggesting that these complexes share a
common origin and perhaps have a similar
mechanism of trypanosome killing.18

The two subspecies of human sleeping
sickness trypanosomes have evolved distinct
mechanisms to survive in the human host.
Trypanosoma brucei rhodesiense produces the
serum resistance associated (SRA) protein
that binds and inhibits TLF-1.19-21 SRA, an
intracellular protein largely found in endo-
somes, co-localizes with TLF-1 in early
endosomes and traffics to the lysosome.22

Thus, T. b. rhodesiense survives in humans
largely because it is able to produce an
antidote to TLF-1. While untested, it is
likely that TLF-2 is inhibited by SRA by the
same mechanism since both serum com-
plexes contain apoL-1. In contrast, we
recently showed that group 1 T. b.
gambiense does not bind or take up
TLF-1, suggesting that these cells have
evolved a different mechanism to avoid the
cytotoxicity of TLF-1.23 The underlying
basis for reduced TLF-1 uptake is 2-fold.
First, TbgHpHpR is expressed at very low
levels by group 1 T. b. gambiense and
second, TbgHpHbR contains a number of
point mutations within the coding sequence
that render the receptor non-functional.23

The combination of mutations to the
TbgHpHbR and reduced expression abol-
ished TLF-1 binding and uptake resulting
in resistance to TLF-1. Thus, in contrast to
T. b. rhodesiense, it appears the mechanism
of group 1 T. b. gambiense resistance to
TLF-1 involves reduced uptake and avoid-
ance of the toxin. To date no evidence for an
inhibitory protein with SRA-like character-
istics has been described in T. b. gambiense.
In this short addendum to the Kieft et al.
paper23 we now show that while the
TbbHpHbR enhances susceptibility to
human serum, TLF-2 and TLF-1 other
receptors or fluid phase endocytosis also
contribute to trypanosome killing. Further,
our results suggest that the resistance of
group 1 T. b. gambiense to human serum
and TLF involves other mechanisms
beyond the simple loss of a single receptor.

Materials and Methods

TLF-1 and TLF-2 purification. Total
serum was obtained from a healthy human
donor. As previously described, two
sequential flotations on sodium bromide
gradients (ρ = 1.063 and 1.26 g/ml)
resulted in an HDL-rich fraction (TLF-1;
top third of the gradient) and a lipoprotein-
deficient fraction (TLF-2; bottom third of
the gradient).4 The TLF-1 fraction was
passed over an anti-IgM column (Sigma,
A9935). The unbound material was then
passed over an anti-Hpr column, washed
with PBSE (137 mM NaCl, 2.7 mM KCl,
10 mM Na2HPO4, 10 mM KH2PO4,
3 mM EDTA) and bound protein was
eluted in 100 mM glycine (pH 2.5) and
neutralized with 1 M Tris (pH 7.5). The
TLF-2 fraction was passed over an anti-Hpr
column and washed with PBSE. Bound
protein was eluted in 100 mM glycine
(pH 2.5), neutralized with 1 M Tris
(pH 7.5) and immediately added to an
anti-IgM column and washed with PBSE.
Bound protein was eluted in 100 mM
glycine (pH 2.5), neutralized with 1 M Tris
(pH 7.5). All protein samples were ali-
quoted and stored at 280°C.

Size exclusion chromatography and
protein gel blot analysis. Size exclusion
chromatography was performed on a 1 X
PBSE equilibrated Superose 6 10/300 GL
column (GE Healthcare). Individual pro-
tein standards were used to estimate the
molecular weights of TLF-1 and TLF-2.
Samples of TLF-1 and TLF-2 from
immuno-affinity purification (70 mg) were
run on the Superose 6 column at a flow
rate of 0.5 ml/min. Fractions were collected
(0.5 ml), proteins concentrated 6-fold
with microspin S-300HR columns (GE,
27513001) and the distribution of Hpr,
apoL-1 and IgM determined by SDS-
PAGE, silver staining and protein gel
blot analysis. Characterization of antibodies
against Hpr and apoL-1 has previously been
described.7 Anti-IgM was purchased from
Sigma and used according to the manufac-
turer’s recommendation (Sigma, I0759).

Results

TLF-1 resistant T. b. brucei. During the
course of our studies on the mechanism
of TLF-1 resistance in group 1 T. b.

gambiense we developed a laboratory
model for TLF-1 resistance using well-
characterized clonal cell lines of T. b.
brucei that had been selected for resistance
to human HDLs.23,24 We isolated TLF-1
resistant (R) or susceptible (S) T. b. brucei
lines expressing either the VSG800 or
VSG060.23 The T. b. brucei 427-800R

and T. b. brucei 427-060R lines showed
reduced uptake of TLF-1 relative to the
TLF-1 susceptible parental T. b. brucei
427-221S cells and TLF-1 susceptible cells
expressing either VSG800 or VSG060. In
addition, we showed that the expression of
TbbHpHbR mRNA was reduced approxi-
mately 20-fold in resistant cells.23 These
findings led us to examine group 1 T. b.
gambiense where we found that not only
was expression of the TbgHpHbR mRNA
reduced but that mutations to the gene
abolished function.23

Purification and characterization of
TLF-1 and TLF-2. In order to determine
whether loss of TbbHpHbR was sufficient
to provide complete protection from
human serum, TLF-1 and TLF-2 activity
we developed a purification protocol
exploiting physical and compositional
differences in these human serum innate
immune complexes (Fig. 1). Freshly
collected human plasma was initially
separated by density gradient ultracentri-
fugation to produce HDL-enriched
(ρ 1.063–1.26 g/ml) and lipoprotein-
deficient fractions (ρ , 1.063 g/ml) that
were used as the starting materials for
TLF-1 and TLF-2 purification respec-
tively. During the purification of TLF-1
small amounts of contaminating TLF-2
were removed from the HDL-containing
fraction by absorption with anti-IgM.
TLF-1 was subsequently bound to anti-
Hpr resin, washed extensively at neutral
pH to remove human HDLs lacking Hpr
and eluted at low pH. TLF-2 was purified
from the lipoprotein-deficient serum by
sequential affinity chromatography with
anti-Hpr followed by binding and elution
from an anti-IgM column. The purity of
TLF-1 and TLF-2 was evaluated by size
exclusion chromatography on Superose 6
and protein gel blot analysis with anti-
Hpr, apoL-1 and IgM (Fig. 1A and B).
Based on size exclusion chromatography,
TLF-1 and TLF-2 have estimated rela-
tive sizes of 576 kDa and 1.6 MDa
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respectively.17 Superose 6 chromatography
of purified TLF-1 and TLF-2 revealed
somewhat dispersed distributions consist-
ent with particle heterogeneity but there
was minimal overlap of the TLF-1 and
TLF-2 absorbance peaks at 280 nM
(Fig. 1A). Protein gel blot analysis revealed
no contaminating TLF-2 in our purified
TLF-1 preparations based on the lack of
anti-IgM reactive material on protein gel

blots (Fig. 1B; data not shown). TLF-2
preparations were highly enriched in
particles containing Hpr, apoL-1 and
IgM; however, these preparations also
contained small amounts of IgM deficient
complexes with an elution time (~28 min)
from the Superose 6 column consistent
with TLF-1. Based on the distribution of
the Hpr dimer and IgM across the size
exclusion fractions we estimate the

amount of contaminating TLF-1 in these
preparations to be ~10%.

Susceptibility of T. b. brucei to human
serum, TLF-1 and TLF-2. Our previous
studies compared the short-term killing of
trypanosomes to TLF-1.23 Here we have
re-examined the susceptibility of these
T. b. brucei lines using a long-term growth
assay (Fig. 2). Consistent with previous
studies, the parental T. b. brucei 427-221S,

Figure 1. Characterization of purified
TLF-1 and TLF-2. (A) Superose 6 size
exclusion chromatography of TLF-1
and TLF-2. Absorbance profiles
(280 nM) of TLF-1 and TLF-2, super-
imposed on individually ran marker
proteins [1, thyroglobulin (660 kDa);
2, apoferritin (480 kDa); 3, conalbu-
min (67 kDa); 4, ovalbumin (45 kDa)].
(B) Analysis of individual Superose 6
column fractions of TLF-1 and TLF-2
separated on non-denaturing 12%
SDS-PAGE and silver stained (top
panel). Hpr, apoL1 and IgM were
detected by protein gel blot. NA, not
analyzed.
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T. b. brucei 427-800S, and T. b. brucei
427-060S were highly susceptible to TLF-
1 with a calculated LG50 of 0.8–6 ng/ml.
T. b. brucei 427-800R and T. b. brucei
427-060R were . 10,000-fold more
resistant to TLF-1 than wild-type T. b.
brucei, suggesting the TbbHbHbR is
important in TLF-1 susceptibility.
However, concentrations of . 10 mg/ml
overcame the TbbHpHbR deficiency lead-
ing to reduced survival (Fig. 2A). Since the
concentration of TLF-1 needed to kill
T. b. brucei 427-800R and T. b. brucei
427-060R is similar to that found in
human serum it is likely that

TbbHpHbR-independent mechanisms of
TLF-1 uptake play a significant role in
trypanosome killing.

Based on our studies with both the
group 1 T. b. gambiense and the TLF-1
resistant T. b. brucei lines we predicted
that loss of a functional TbgHpHbR
played a critical role in human infection
by African trypanosomes.23 The dramatic
reduction in susceptibility to TLF-1 in the
TbbHpHbR-deficient cell lines supports
this prediction (Fig. 2A). However, the
possibility remained that human serum
contained additional innate immune fac-
tors, such as TLF-2, that might not require

the TbbHpHbR. To test this possibility,
we treated TLF-1 resistant and susceptible
T. b. brucei lines with human serum
(Fig. 2B). We found that T. b. brucei
427-800R and T. b. brucei 427-060R were
approximately 100-fold more resistant to
human serum killing than either T. b.
brucei 427-800S or T. b. brucei 427-060S

(Fig. 2B). Based on these results, we con-
clude that loss of TbbHpHbR expression
contributes to the overall resistance of
these cells to human serum; however the
level of resistance is much less than the
high level of resistance seen for TLF-1
(10,000-fold). A possible interpretation of
these findings is that other human serum
components, such as TLF-2, are less
dependent on TbbHpHbR binding than
TLF-1.

It has been proposed that TLF-2 can
bind to T. b. brucei in the absence of
the TbbHpHbR.18 We tested whether
highly purified TLF-2 was able to kill
T. b. brucei 427-800R and T. b. brucei
427-060R (Fig. 2C). Similar to our find-
ings with complete human serum, these
TbbHpHbR-deficient cells were more
resistant to TLF-2 relative to the wild-
type TbbHpHbR-expressing cell lines.
Thus, reduced expression of TbbHpHbR
expression caused a reduced susceptibility
of TLF-2 killing suggesting that TLF-2
can bind to the TbbHpHbR. However,
the toxic concentration of TLF-2 is
.10-fold less than TLF-1, indicating that
TbbHpHbR-independent mechanisms
may play a greater role in TLF-2 binding,
uptake and killing.

Discussion

In the studies presented here human
serum, TLF-1 and TLF-2 susceptibility
was examined in isogenic lines of T. b.
brucei differing in TbbHpHbR expression.
Cells deficient in TbbHpHbR expression
were 10,000-fold more resistant to TLF-1
relative to wild-type susceptible cells.
However, at concentrations of TLF-1
typically found in serum (.10 mg/ml),
both resistant and susceptible cell lines
were killed. Human serum killing was
also reduced approximately 100-fold in
cell lines expressing reduced levels of
TbbHpHbR. However, significant kill-
ing was still observed at human serum

Figure 2. In vitro activity of human serum, TLF-1 and TLF-2. TLF-1 resistant (R) and susceptible (S)
clonal cell lines of bloodstream form T. b. brucei Lister 427 expressing VSG221, 800 and 060 were
prepared as previously described.24,25 The percentage surviving cells was determined, using phase
contrast microscopy, 14 h following the addition of TLF-1, TLF-2 or complete human serum to
exponentially growing cultures at 37°C. (A) TLF-1 susceptibility of T. b. brucei 427-221S (black), T. b.
brucei 427-800S (blue), T. b. brucei 427-800R (red), T. b. brucei 427-060S (yellow) and 427-060R (green).
(B) Normal human serum (NHS) susceptibility of T. b. brucei 427-221S (black), T. b. brucei 427-800S

(blue), T. b. brucei 427-800R (red), T. b. brucei 427-060S (yellow) and 427-060R (green). (C) TLF-2
susceptibility of T. b. brucei 427-221S (black), T. b. brucei 427-800S (blue), T. b. brucei 427-800R (red),
T. b. brucei 427-060S (yellow) and 427-060R (green).
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concentrations above 100 mg/ml. Since
the only difference in the susceptible and
resistance cell lines is the levels of expression
of TbbHpHbR, it seems likely that human
serum contains a second trypanolytic
activity that interacts with T. b. brucei
independently of the TbbHpHbR. Based on
this interpretation of the human serum
killing results we decided to investigate
whether TLF-2 killing of T. b. brucei was
independent on the level of expression of
TbbHpHbR. We found that TLF-2 killing
was reduced 500–1000-fold in cell lines
with reduced levels of TbbHpHbR, suggest-
ing that TLF-2 also binds TbbHpHbR.
These results are in apparent contrast to
previous studies on TLF-2 showing that
TLF-2 killing was not inhibited by the
addition of haptoglobin, an inhibitor of
HpHb binding to the TbbHpHbR.17 These

results have been used subsequently to
argue that TLF-2 does not bind the
TbbHpHbR.10 It is possible that our results
are influenced by the small amount of
contaminating TLF-1 in our TLF-2 pre-
parations. Clearly, a detailed characteriza-
tion of the TLF-2 binding, uptake and
cellular location is needed.

Our results are consistent with previous
findings indicating the importance of the
TbbHpHbR in TLF-1 killing but also
suggest that other mechanisms of TLF-1
binding and uptake may contribute to
trypanosome killing. The most likely path-
ways for TbbHpHbR-independent uptake
of TLF-1 is either by fluid phase endocytosis
or the trypanosome lipoprotein scavenger
receptor18,25. The findings presented here
further support the findings of others that
TLF-2 killing is less dependent on the

TbbHpHbR than is TLF-110,17. Finally, we
propose that group 1 T. b. gambiense have
evolved multiple mechanisms, including
but not limited to the loss of a functional
HpHbR, to avoid the cytotoxicity of the
trypanosome lytic factors. We are currently
exploring these mechanisms.
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