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Abstract 
Background.  Cognitive impairment (CI) significantly impacts the quality of life of glioma patients. The main con-
tributing risk factors include tumor characteristics, treatment-related factors, and their complex interplay. This re-
view explores the role of advanced structural neuroimaging techniques in understanding CI in glioma patients.
Methods.  A literature search was conducted in PubMed, PsycINFO, and ISI Web of Knowledge using specific key-
words. We included studies with advanced magnetic resonance imaging techniques and objective neuropsycho-
logical exams.
Results.  At diagnosis, during the pre-surgery phase, associations between glioma characteristics and cognitive 
outcomes have been described. Specifically, patients with isocitrate dehydrogenase (IDH)-wild-type gliomas ex-
hibit more adverse cognitive outcomes, accompanied by disruptions in gray (GM) and white matter (WM) networks 
when compared to IDH-mutant. In addition, pre- and post-surgery imaging analyses highlight the importance of 
preserving specific WM tracts, such as the inferior longitudinal and arcuate fasciculus, in mitigating verbal memory 
and language processing decline. Furthermore, examining gliomas in perisylvian regions emphasizes deleterious 
effects on various cognitive domains. Additionally, it has been suggested that neuroplastic reorganization could 
serve as a compensatory mechanism against CI. Lastly, a limited number of studies suggest long-term CI linked to 
GM atrophy and leukoencephalopathy induced by radiotherapy ± chemotherapy in glioma survivors, highlighting 
the need for improving treatment approaches, particularly for patients with extended survival expectations.
Conclusion.  This review underscores the need for nuanced understanding and an individual approach in the man-
agement of glioma patients. Neuroplastic insights offer clinicians valuable guidance in surgical decision-making 
and personalized therapeutic approaches thus improving patient outcomes in neuro-oncology.

Key Points

• Tumor location and isocitrate dehydrogenase status are relevant factors for cognition.

• Preserving strategic white matter tracts in glioma surgery protects cognition.

• Chemoradiation induces long-term diffuse brain changes and cognitive decline.

Gliomas are the most common type of malignant primary 
brain tumors.1 Due to improvements in the existing multi-
modal treatments, patients’ survival rates have significantly in-
creased over the last few decades. Specifically, new emerging 
oncological schedules have proven to be efficient in extending 
overall survival (OS). Currently, grade 2 and grade 3 1p/19q 
codeleted oligodendrogliomas2,3 exhibit a 10-year OS of 80% 

and 60% (according to the World Health Organization – WHO – 
2007 classification), respectively, while grade 3 astrocytoma4 
shows a 5-year OS of 82%. Interestingly, a recent phase III trial 
in Isocitrate dehydrogenase-mutant (IDH-mt) grade 2 gliomas 
treated with an oral inhibitor of IDH1 and IDH2 enzymes, 
vorasidenib, showed promising results.5 Furthermore, in the 
coming years, it is likely that new targeted therapies can lead 
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to increased survival and long-term remissions in different 
histomolecular subtypes of gliomas.

The estimated prevalence of cognitive impairment (CI) 
in adult WHO 2007 grades 1-3 glioma patients ranges be-
tween 27% and 83%.6 This wide range can be attributed to 
diverse study methodologies, including different cogni-
tive assessments and varying definitions of CI. The cogni-
tive domains most frequently affected include executive 
functioning, psychomotor speed, attention, and memory.7 
The tumor itself and glioma-directed therapies could con-
tribute to these impairments, significantly affecting the 
quality of life for patients and their caregivers. Therefore, 
understanding and identifying the mechanisms that lead to 
CI in these patients is increasingly crucial. In fact, cognitive 
outcomes are frequently assessed as secondary endpoints 
in current neuro-oncological trials.

In neuro-oncology, brain morphological evaluation 
through neuroimaging studies has been crucial for the 
diagnosis and for classifying, managing, and monitoring 
brain tumor patients. Traditionally, these evaluations have 
relied on subjective and qualitative observations made by 
imaging experts based on their clinical expertise.8 Over the 
past decade, though, the advancement in imaging post-
processing has enabled automatic analysis for structural 
quantitative assessment of the brain, allowing a straight-
forward interpretation of how brain tumors alter the brain’s 
structural architecture and connectivity. In addition, these 
quantitative imaging methods reduce methodological 
biases, enhancing reproducibility across studies and sites. 
This knowledge is essential for tailoring effective treatment 
strategies, optimizing surgical outcomes, and predicting 
potential cognitive deficits, ultimately leading to improved 
patient care and quality of life.9,10

The purpose of this review is thus to summarize the cur-
rent literature on brain structural morphometric changes 
in adult patients with glioma, and their potential associ-
ation with CI focused on: (1) tumor-related metrics such 
as molecular, histological, or tumor location; (2) surgical 
resection-related brain changes; and (3) alterations associ-
ated to chemoradiation therapy.

Materials and Methods

This systematic review was conducted in accordance with 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guideline11 (see Supplementary 
File 1). A comprehensive literature search was performed 

on September 1, 2024, using PubMed, PsycINFO, and 
ISI Web of Knowledge databases. The following search 
strategy was used: (“cognitive” OR “cognition” OR 
“neuropsychological” OR “neurocognitive”) [All Fields] 
AND (“glioma”)[All Fields] AND (“Magnetic Resonance 
Imaging” (MRI) [All Fields]). Filters were applied for arti-
cles published in English or Spanish, studies involving pa-
tients aged over 18 years, and humans only. We excluded 
articles in which the study sample included tumors with 
histological variants other than gliomas without a separate 
analysis. Reviews or articles with a short series of patients 
(≤5) were also excluded. We selected and included articles 
that: (1) referred to advanced structural MRI techniques: 
including (i) anatomical brain changes, including neuro-
imaging techniques such as MRI volumetry, voxel-based 
morphometry (or similar techniques), or surface-based 
methods such as FreeSurfer, and (ii) microstructural brain 
changes, including neuroimaging techniques such as diffu-
sion tensor imaging (DTI) (or similar techniques), or voxel-
based lesion-symptom mapping (VLSM); accompanied 
by (2) an objective neuropsychological examination (in-
cluding Montreal Cognitive Assessment-MoCA and Mini-
Mental State Examination-MMSE), ensuring an unbiased 
evaluation.

As summarized in Figure 1, our search initially identified 
a total of 607 records, of which only 25 met the inclusion 
criteria. Descriptions of the various advanced neuroim-
aging techniques used in the selected studies are provided 
in Supplementary Table 1. We group the selected articles 
based on the timing of neuroimaging analysis: pre-surgery, 
post-surgery, or post-radiotherapy (RT) or chemoradiation; 
with the aim of identifying the factors that may be involved 
in cognitive decline throughout the natural history of 
glioma patients.

Results

Pre-Surgery Neuroimaging Techniques: How 
Glioma Itself Affects Cognition

This section explores the multifaceted aspects of pre-
surgery neuroimaging techniques and their relevance in 
understanding how glioma impacts on cognitive function. 
See Table 1 for the summary.

One aspect under investigation is the impact of glioma 
volume on cognition.13–16 One of the first studies, focused 
on WHO grades 2-4 glioma patients, despite not being its 

Importance of the Study

This review integrates advanced structural neuroim-
aging techniques to elucidate the complex interplay be-
tween glioma pathophysiology, treatment effects, and 
cognitive outcomes, providing a comprehensive under-
standing of brain vulnerability in glioma patients at var-
ious stages—pre-surgery, post-surgery, and throughout 
treatment. Despite challenges such as methodological 

heterogeneity, the adoption of standardized assess-
ment and imaging protocols is crucial for future data 
harmonization and comparability. Overall, this review 
underscores the evolving landscape of neuroimaging-
based research in glioma patients in improving patient 
care and quality of life within the neuro-oncology field.
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primary goal, observed that larger tumors were associated 
with poorer outcomes in visual memory. Interestingly, no 
such correlation was found with other evaluated cogni-
tive domains, such as verbal memory.13 A few years later, 
Romero-Garcia et al.15 demonstrated, in patients with WHO 
grades 2-4 gliomas as well, that even in the long term (up 
to 12 months post-surgery), there was no correlation be-
tween total memory score results and pre-surgery tumor 
volume.15 The observed heterogeneity in findings may be 
attributed, in part, to patient-related differences within 
the studied samples, cognitive assessment methods, 
and statistical approaches, considering whether to in-
clude covariates such as tumor location, for example.13–16 
Taking this into consideration, it is worth to highlight the 
study by Kesler et al.16 These authors stratified their WHO 
grades 3-4 cohort based on the molecular signature IDH, 
noting that patients with wild-type (wt) gliomas appear to 
exhibit more cognitive deficits than IDH-mt gliomas.27,28 In 
this case, they found that preoperative tumor volume had 
the most significant impact on cognition, categorized as 
CI or not, in IDH1-wt patients, as detailed in Table 1. Other 
factors such as education level, Karnofsky Performance 
Scale score, tumor lobe location, and tumor laterality 
showed no significant correlation with cognition in these 
patients. Conversely, tumor size did not predict CI in the 
IDH1-mt glioma group, despite their larger tumor volumes. 
Furthermore, IDH1-wt tumors exhibited less efficient GM 
networks (refer to Supplementary Table 2 for definitions) 
compared to the IDH1-mt group. Network efficiency, along 

with years of education, emerged as the most significant 
predictors of CI for IDH1-mt patients. In summary, the 
slower growth of IDH1-mt gliomas may offer an advan-
tage for the brain to adapt to tumor presence, resulting in 
a more integrated neural network and less CI. Therefore, 
rather than tumor volume, the growth rate, and invasive 
characteristics of the tumor could serve as predictors 
of CI in glioma patients. Interestingly and to add contro-
versy, previous studies showed that network architecture 
was influenced by age.29 Thus, given that IDH1-mt patients 
are generally younger tan IDH1-wt patients, neglecting to 
include age as a covariate in the statistical analysis may 
lead to confusion when attributing the observed structural 
brain changes solely to the mutation itself. On the other 
hand, the network analysis in Kesler et al.,16 had limita-
tions, including the selection of appropriate thresholds for 
different networks.

Another important pre-surgical factor that plays a crucial 
role in surgical decision-making is the tumor’s location. 
However, only a few studies have employed morphometric 
imaging analysis to precisely pinpoint regions associated 
with CI in glioma patients, thus identifying distinct regions 
at risk for CI within the same brain lobe. Almairac et al.,17 
and Banerjee et al.,18 focused their studies on the language 
domain and, as expected,30,31 found correlations with brain 
regions or WM fiber-pathways primarily located in, or run-
ning through, the temporal lobe.

The study by Habets and collaborators,19 involving WHO 
grades 1-4 gliomas, revealed significant associations 

Records identified (n = 607) from
PubMed (n = 408)
PsycInfo (n = 46)
ISI Web of Knowledge (n = 153)

Records removed before screening: Duplicates (n = 83)

Records identified after duplicates
were removed

(n = 524)

Records excluded (n = 295): 
110 show results for histological variants other than
gliomas or articles focused on anti leucin righ glioma
inactivated protein 1 encephalitis

163 case-reports (≤ 5 patients)

22 reviews or guidelines
Records assessed for eligibility

(n = 229)

Records excluded (n = 204):
141 do not use advanced structural MRI techniques

62 do not perform a neuropsychological study or do not
correlated it with structural neuroimaging findings

1 article excluded for incomplete data

Studies included in review

(n = 25)
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Figure 1. Flowchart Depicting the Systematic Search and Study Selection, Adapted from PRISMA Flow Diagram12

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf003#supplementary-data
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between cognitive performance across many different do-
mains including attention, visual and verbal memory, ex-
ecutive functioning, and processing speed, and left gray 
matter (GM) regions such as frontal and parietal cortex 
(principally precentral and postcentral gyri), as well as 
left-sided white matter (WM) tracts like the arcuate fascic-
ulus (AF) and corticospinal tract. WM tracts located in the 
central part of the brain – including the cingulum and the 
corpus callosum – were associated with visual and verbal 
memory impairments.

On the other hand, Guarracino and colleagues re-
search20 focused on WHO grade 2 gliomas also revealed 
that gliomas located in subcortical frontal and parietal 
regions, inferior frontal gyrus and insular cortex correl-
ated with deficits in working memory and executive func-
tioning. They also demonstrated that larger WM tracts 
– such as the left superior corona radiata and the left su-
perior fronto-occipital fasciculus – were associated with 
executive functioning and verbal comprehension scores, 
while the uncinate fasciculus (UF) was correlated with 
working memory skills. The association of prefrontal and 
frontal brain regions with attention, working memory, or 
executive functioning is well documented in the general 
population.32,33

A noteworthy remark from the studies mentioned above 
was that patients with left hemisphere diffuse glioma were 
at the highest risk of neurocognitive deficits. Furthermore, 
the correlation of the left AF with attention or executive 
functions, despite its primary association with language,34 
sparked interest. The authors themselves attribute these 
observations to the reliance of the neuropsychological 
battery employed relies on verbal comprehension and 
response, potentially biasing the identification of left-
hemisphere regions with CI or the left AF involvement in 
non-language cognitive domains.

Additionally, while the study from Habets et al.,19 and 
Guarracino et al.,20 had primary tumor locations in sim-
ilar brain regions, they found different results (see Table 1) 
probably because the first study combined findings from 
both low-grade (LGG) and high-grade glioma (HGG), while 
the second study exclusively focused on LGG. Tumor be-
havior and growth rate exhibit variations depending on 
the WHO grade. Previous studies had observed that HGG 
was more likely to cause cognitive deficits than LGG due to 
faster tumor growth and a lower functional compensation 
from unaffected brain regions.35,36 Additionally, challenges 
in defining the exact boundaries of LGG due to the absence 
of contrast enhancement in MRI should be considered.36,37

Expanding on the influence of tumor location on CI, ad-
ditional studies, through DTI analysis (see supplementary 
table 1), have investigated the impact of glioma on micro-
structural WM damage, particularly in WM tracts involved 
in language. These tracts include the inferior longitudinal 
fasciculus (ILF), which connects the occipital visual cortex 
with anterior portions of the temporal lobe; the infe-
rior fronto-occipital fasciculus (IFOF), which connects the 
frontal lobe with occipital and parietal cortices; the above 
mentioned UF, which connects the prefrontal cortex and 
anterior portions of temporal lobe; and AF, which roughly 
connects Broca’s and Wernicke’s areas.38 The focus on 
these tracts likely reflects the critical need to preserve lan-
guage function during surgery, especially when tumors 

are located near eloquent areas. The extensive use of 
intraoperative imaging techniques, such as functional MRI 
(fMRI) and DTI-based tractography, has been shown to play 
a key role in mapping language-related networks to mini-
mize surgical damage. Additionally, identifying which WM 
tracts are compromised by glioma and how this affects 
language function can crucially inform surgical planning. 
Also, understanding how language networks reorganize 
post-surgery sheds light on mechanisms of neural plas-
ticity, offering valuable insights regarding patient recovery.

In cases where the glioma infiltrated the AF and ILF, 
deficits in speech repetition and lexical retrieval for visual 
stimulus (picture naming of objects), were observed, re-
spectively.21,22 Interestingly, in a subgroup of patients with 
infiltrated ILF but without deficits in lexical retrieval (n = 9), 
the posterior part of the AF remained intact, suggesting 
that the AF could serve as an alternative pathway when the 
ILF is damaged.22 Further, changes in the microarchitecture 
of both the IFOF21 and temporal part of the right superior 
longitudinal fasciculus (SLF, n = 11)23 due to tumor infil-
tration have been correlated with cognitive deficits. The 
IFOF is correlated with both verbal learning and attention/
executive functioning, while the SLF with visuospatial 
deficits.21,23 As previously elucidated, both IFOF and SLF 
represent extensive bundles of association WM fibers, in-
tricately involved in multiple cognitive functions.17,39,40

Finally, and quite notably, some studies have investigated 
morphological changes that extend beyond the tumor 
margins, providing insights into potential mechanisms for 
preserving cognitive function. Previous studies in general 
population demonstrated a certain degree of compensa-
tory functional neuroplasticity after brain damage.41–43 First 
study in glioma patients with left-hemispheric gliomas 
(WHO grades 2-4) involving language network brain areas, 
showed greater GM volume in the medial part of bilateral 
cerebellar regions compared to healthy control group. 
However, this increased volume in the cerebellum did not 
correlate with cognitive functioning, which was only as-
sessed via the MMSE.24 Conversely, few years later, Hu et 
al.,25 evidenced a compensatory GM increase in the contra-
lateral temporal lobe of unilateral temporal lobe gliomas. 
Notably, the contralateral GM increase was positively cor-
related with memory but negatively correlated with the 
visuospatial abilities. Thus, this contralateral GM volume 
increase in temporal regions appears to compensate only 
for deficits in certain cognitive domains, and it might not 
fully counterbalance the brain structural damage caused 
by glioma. While other studies do not directly correlate 
brain structure and cognitive outcomes, they also demon-
strate that glioma induce volumetric changes in GM both 
in the affected hemisphere and contralaterally, as a func-
tional compensatory mechanism.43–45 Lastly, and in light 
with these findings, Jütten et al.,26 showed a generalized 
disruption of normal-appearing WM (NAWM) in glioma 
patients. The more the disruption of NAWM the worse the 
cognitive outcome. Interestingly, they also observed that 
patients with IDH-mt glioma exhibited a more preserved 
NAWM integrity compared to IDH-wt tumor patients. This 
is in line with the aforementioned discussion regarding the 
slower tumor growth and additional plasticity of the sur-
rounding nervous tissue in IDH-mt gliomas, which would 
be advantageous in preserving cognition in these patients.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf003#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf003#supplementary-data
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Given the significant impact of damage or infiltration 
of certain GM regions and WM tracts on cognitive func-
tions, along with the interindividual variability in compen-
satory neuroplastic mechanisms that may be induced by 
the tumor itself, the integration of advanced neuroimaging 
techniques should be considered in the perioperative plan-
ning process.

Post-Surgery Neuroimaging Techniques: 
Unraveling the Impact of Surgical Interventions 
on Glioma-Related Cognitive Changes

Investigating the postoperative impact of glioma surgery 
on cognitive function is pivotal for understanding the com-
plex interplay between surgical interventions and cog-
nitive outcomes. Table 2 summarizes the findings of the 
studies evaluated in this section.

There was consensus in describing that the volume of 
the resected glioma cavity did not exhibit a correlation with 
cognitive scores after surgery, including verbal and visual 
memory (LGG), or executive functioning (WHO grades 2-4 
gliomas).15,47,48 Conversely, Romero-Garcia et al.,15 demon-
strated a negative correlation between the volume of the 
post-surgery cavity overlapping with the default mode net-
work (DMN) (refer to Supplementary Table 2 for definition) 
and memory scores at a long-term follow-up (3 and 12 
months after surgery). The DMN has been showed as func-
tional essential network for the preservation of cognition.53

Furthermore, the extent of ILF resection was associated 
with verbal memory decline only in a subgroup of patients 
in whom there was no pre-surgery tumor infiltration, sug-
gesting that patients with preoperative affected tracts 
might undergone a brain network reorganization as a com-
pensatory mechanism to mitigate language deficit.22,49 In 
line with these findings, Ng et al.,52 observed an associa-
tion between the degree of lexical retrieval recovery and 
damage to the left ILF and posterior corpus callosum – 
using the support vector regression-based lesion-symptom 
mapping analysis (see supplementary Table 1) at 3 months 
post-surgery in LGG (n = 400) patients. This study also 
pointed out that damage to areas surrounding the glioma, 
such as parts of the left temporal gyrus, in addition to the 
left UF, were associated with limited recovery in language 
tasks. Hence, the extent of recovery in semantic fluency ap-
peared to be influenced by resection of peri-tumoral areas 
within the left posterior precuneus, suggesting that, in 
terms of cognition, the specific brain regions affected by 
surgery are more critical than the size of the surgical cavity.

Surgical planning in glioma is crucial for improving 
the quality of life of these patients. The goal is maximum 
tumor resection while maintaining functional and cogni-
tive integrity to improve patient survival.54,55 By employing 
intraoperative brain mapping techniques, awake sur-
gery allows for the monitoring of motor, sensory, and/
or language functions, thereby demonstrating a safe 
and well-tolerated approach.56 Language remains the 
most extensively cognitive domain tested during awake 
brain surgery, and its mapping continues to be refined.57 
However, other cognitive domains may also be affected 
post-surgery. For instance, studies converge on assessing 
executive functions, particularly when there is a risk of 

damaging the fronto-temporo-parietal cortical GM regions 
linked by the perisylvian WM.46–48,50,51 Therefore, there is 
a clear need to develop new or revised tests and neuro-
surgical protocols,58–60 in order to achieve more extensive 
cognitive monitoring to increase the quality of life after 
awake craniotomy.

As illustrated in Table 2, there is variability in the asso-
ciation of certain cognitive domains with glioma laterality 
and the specific structures affected. This variability may be 
attributed to the fact that each study encompasses distinct 
WHO glioma grades, consequently different growth rate 
and compensatory neuroplasticity mechanism and varied 
analysis times. Some evidence indicates that cognitive 
function may experience a slight decline shortly after sur-
gery; however, this typically improves and resolves com-
pletely within three to six months following surgery.61,62 
In addition, the fact that similar cognitive deficits arise 
from tumors in different locations,47,49,50 aligns with the 
understanding that cognition depends on distributed net-
works rather than isolated areas, allowing impairments 
to emerge from tumors in various regions. These findings 
point to the need for multicenter studies to establish firm 
conclusions and protocol the study of cognitive functions 
through intraoperative tasks to prevent postoperative CI.

See Figures 2 and 3 for illustrations of the GM regions 
and WM tracts, respectively, which have been damaged by 
the glioma or resective cavity and have been significantly 
associated with CI by different studies.

Long-Term Glioma Survivors and Cognition: 
Neuroimaging Changes Due to Adjuvant 
Treatments

Following surgery, the standard of care for gliomas in-
volves RT and/or chemotherapy (CT), with temozolomide 
(TMZ) and PCV (Procarbazine, Lomustine, and Vincristine) 
being the most frequently used schedules with demon-
strated improvement in patient outcomes.2–4

The main concern of RT is its potential cognitive tox-
icity especially in those patients with prolonged survivals. 
Preclinical models have shown that RT decreases neural 
proliferation and differentiation in the hippocampus, and 
causes vascular disturbances and microglia activation.64,65 
While the relevance of the topic is evident, only a limited 
number of studies have assessed cognitive outcomes in 
long-term glioma survivors after RT (±CT). Most studies 
corroborate that RT has detrimental effects on cognition. 
Findings in LGG treated with RT and followed up for 12 
years revealed worse cognitive outcomes compared to 
those who did not undergo RT.66–68

In recent years, interest in the potential impact of CT 
on cognition has increased. Consequently, the term 
“chemobrain” has been coined to refer to the alterations 
in cognitive functioning reflecting the central nervous 
system’s toxic effect of systemic CT.69 In preclinical models, 
TMZ, a DNA cross-linking agent, has been implicated in the 
impairment of hippocampal neurogenesis,70 while vincris-
tine, by disrupting microtubule dynamics and axonal trans-
port, induced lesions in the subfields of hippocampus thus 
impairing working memory.71 To date, several studies and 
phase II and III trials have been conducted to analyze the 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf003#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf003#supplementary-data
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impact of these CT agents on cognition in gliomas. However, 
definitive conclusions have not been reached, largely due 
to methodological disparities and insufficient neuropsy-
chological assessments.72–81 Ongoing trials like RTOG 0424 
(NCT00114140),74 POLCA (NCT02444000), and the NOA-18 
ImproveCodel (NCT05331521) may provide more insights.

Table 3 summarizes the reviewed studies regarding neu-
roimaging changes resulting from RT (±CT) in cognitively 
impaired glioma patients.

Broadly, advanced neuroimaging techniques have re-
vealed that RT (±CT) is associated with loss of NAWM and 
normal-appearing GM (NAGM), with a strong correlation 

observed between regions exposed to the highest RT 
dose.86–89 Despite the limited literature on this topic, these 
changes appear significantly linked to CI.82–84 Notably, 
these alterations persist over an extended period (more 
than 5 years after RT), with noticeable deficits specifically 
in executive functioning and visual memory.82 Such find-
ings carry substantial implications for the overall quality of 
life experienced by long-term survivors.

More specifically, Wang et al.,85 analyzed MRI data ap-
proximately 5 years (with a range of 0.6-21.6 years) since the 
last treatment (all but one patient having received RT-CT). 
The results of this study suggested that RT-CT induced 

FP1,2

IFG (pt)1,3 IFG (pt)4,5

R Operculum

z = 6

z = 37 z = 58 x = –56

y = –7

Insula1,4 Insula4,5,7

STG2,7

HPC2,5,8

PHG2,5,8

HG5,7
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1,5

R L

SMG
2,5

SPL
5,8

SMG
2,5

IFG
4,5

(pt)

IFG
2,3

MTG
2,7,8

(po)
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brain regions
cited in only 1 work

common regions
in 2 works
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in � 3 works

(po)

IFG 1,3,4,6

4,7

5,8

Figure 2. Gray Matter (GM) Brain Regions Affected by Tumor-Resective Cavity and Associated Cognitive Deficits. This figure illustrates the main 
brain GM regions affected by the tumor-resective cavity, which are associated with cognitive deficits. Following conventional radiological MRI 
lateralization, left hemisphere of the brain is displayed on the right side of the image while the right hemisphere is on the left side of the image. 
Regions identified represent areas that have been reported by (i) one study, (ii) two studies, or (iii) three or more studies in the current review: (1) 
Hendriks et al.50; (2) Niki et al.51; (3) Puglisi et al.49; (4) Guarracino et al.20; (5) Habets et al.19; (6) Herbet et al.46; (7) Banerjee et al.18; and (8) Ng et al.52 
Abbreviations: CG, Cingulate Gyrus; FP, Frontal Pole; HG, Heschl’s Gyrus; HPC, Hippocampus; IFG (po), Inferior Frontal Gyrus Pars Opercularis; IFG 
(pt), Inferior Frontal Gyrus Pars Triangularis; L, left; MTG, Middle Temporal Gyrus; PHG, Parahippocampal Gyrus; R, Right; R Operculum, Rolandic 
Operculum; SMG, Supramarginal Gyrus; SPL, Superior Parietal Lobe; and STG, Superior Temporal Gyrus. The regions depicted are extracted from 
the Harvard-Oxford Cortical and Subcortical Atlas in the FMRIB Software Library,63 which provides probabilistic maps set to 40% of brain regions 
to capture anatomical variability across individuals
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changes in cortical thickness, with a gradual decrease since 
last treatment. Additionally, the differences observed in the 
degree of correlation of cortical thickness between certain 
brain regions among the CI and non-CI patients (see Table 
3 for more detail) lead to the conclusion that the presence 
of cortical reorganization following tumor resection might 
prevent long-term glioma survivors from experiencing CI. 
However, this cross-sectional study had a small sample size 
and lacked a comparative of the clinical variables that might 
impact CI outcomes, such as the tumor location.

Evaluating the brain damage caused by adjuvant oncolog-
ical therapies will enable better identification of patients at 
higher risk of CI.90 This, in turn, allows for personalize treat-
ments and the implementation of targeted neurorehabilitation 
programs, especially for long-term survivors.

Discussion

Impact of Molecular Characteristics on Cognition

Our review reveals that only a limited number of studies 
have examined the relationship between brain changes 
and molecular characteristics, with particularly few 

focusing on the WHO 2016 classification, where molec-
ular data become an imperative parameter for diagnostic 
criteria. Nonetheless, a consensus seems to emerge re-
garding how IDH-wt gliomas yield more adverse cognitive 
outcomes compared to their IDH-mt counterparts.27,91,92 
IDH-wt gliomas exhibit lower brain network efficiency 
and heightened disruptions in both GM and WM integ-
rity. The more aggressive growth and increased aggres-
siveness observed in IDH-wt patients result in a shorter 
timeframe for the brain network to adapt through compen-
satory mechanisms. This fact, as hypothesized by previous 
studies, negatively influences cognition and prognostics 
of survival.60,93,94 However, the lack of studies within our 
review that differentiate cohorts based on histology and 
molecular markers limits the ability to draw definitive con-
clusions. In fact, several of these studies even combine 
LGG and HGG despite the previously described possibility 
that they display distinct behaviors regarding microstruc-
tural tissue patterns. Future research should focus on in-
tegrating molecular markers as key factors influencing 
tumor behavior, and cognitive outcomes. Such studies 
could provide valuable insights into how molecular charac-
teristics predict brain changes related to CI, offering a more 
nuanced understanding of the cognitive impact of different 
glioma subtypes.

1,5

x = –15 x = –47 y = 12z = 10

z = –12 z = –9 z = –4

L Cingulum

R Uncinate Fasciculus

1,4

L Inferior Longitudinal
Fasciculus

L Inferior Fronto-
Occipital Fasciculus

L Arcuate Fasciculus

2,3,5

3,5
2,5

6,9

L Frontal Aslant TractCorpus Callosum

Figure 3. Main White Matter (WM) Tracts Affected by Tumor-Resective Cavity and Correlated with Cognitive Impairment (CI). This figure high-
lights the main WM tracts affected by the tumor-resective cavity that have been associated with CI according to various studies included in the 
present review. The conventional radiological MRI lateralization is used, with the left hemisphere of the brain displayed on the right side of the 
image and the right hemisphere on the left side: (1) Hendriks et al.50; (2) Incekara et al.21; (3) Papagno et al.22; (4) Guarracino et al.20; (5) Habets et 
al.19; (6) Ng et al.52; (7) Banerjee et al.18; (8) Almairac et al.17; and (9) Cochereau et al.47 Abbreviations: L, left; R, right. The WM tracts depicted were 
extracted from the MegaTrack Atlas (www.megatrackatlas.org) provided by NatBrainLab. For more information, please refer to NatBrainLab 
(https://www.natbrainlab.com/)

www.megatrackatlas.org
https://www.natbrainlab.com/
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Influence of Tumor Location on Cognition

The influence of glioma location on CI is clearly depicted 
through findings of how both the gliomas themselves and 
their resective cavities have a significant deleterious ef-
fect on cognition, specially when located in the perisylvian 
region (GM and WM tracts), which affects various cognitive 
domains. For instance, a consistent finding is the identifica-
tion of the AF as an alternative compensatory pathway for 
language processing when the ILF is damaged (by tumor 
infiltration or resective cavity).22 Moreover, the integrity 
of the AF has been associated with performance in non-
language cognitive domains, such as attention, working 
memory, and executive function,34,48,95,96 suggesting that 
language and other cognitive functions may share some 
common neural networks.60

Beyond the AF, the brain exhibits other compensatory 
neuroplastic mechanisms in response to the tumor pres-
ence in order to preserve cognition. Concretely, changes 
are observed in both NAGM and NAWM. The concept of 
brain network reorganization as a compensatory mech-
anism is highly compelling and has also been explored in 
other cerebral damage processes, such as stroke. Although 
scarce, these studies appear to substantiate that both 
right and left-hemisphere brain lesions induce changes 
in GM networks and WM tracts, both ipsilateral and con-
tralateral to the tumor-damaged regions, to support func-
tional recovery of specific behaviors. This indicates that 
neuroplasticity is not confined solely to contralesional 
areas and is influenced by factors such as lesion location 
and lateralization.44,97,98 Nonetheless, studies with larger 
cohorts are needed to establish robust conclusions and 
investigate interindividual variability in neuroplastic re-
sponses further.

Role of Brain Networks in Cognitive Decline

It is worth noting the interesting identification of a positive 
association between neurite density within the DMN and 
Fronto-Parietal Network functional brain networks (refer to 
Supplementary Table 2 for definitions) and memory perfor-
mance in glioma patients.15 Brain tumor locations associ-
ated with CI often encompass GM and WM structures that 
overlap with these well-described functional networks. 
These include regions known as hubs or high-degree 
nodes, which are crucial for communication and informa-
tion processing, as well as for ensuring an efficient cogni-
tive functioning.99,100

Our review also highlights that CI tends to be more 
prominent in gliomas infiltrating regions within the left 
hemisphere, affecting language, verbal memory and exec-
utive functioning. It is important to consider, though, that 
most neurocognitive tests require verbal comprehension 
and language production, which may introduce a bias, 
systematically identifying CI as predominantly associated 
with affected regions on the left hemisphere. However, left-
lateralized gliomas seem to exhibit reduced functional con-
nectivity in the aforementioned hub regions compared to 
right-hemisphere gliomas, regardless of tumor grade and 
treatment,53 although further studies are needed to con-
firm this notion.

These findings underscore the importance of proper pre-
surgery and intraoperative brain mapping to understand 
how the brain behaves under each specific function and 
cognitive requirement. Such mapping can help minimize 
long-term neurological deficits by guiding surgical inter-
ventions in a more precise way.

Impact of Adjuvant Therapies on Cognition

Few studies are focused on CI in long-term survivors fol-
lowing treatment with RT (±CT). Most existing studies are 
cross-sectional, making it difficult to gain insights into 
neurocognitive alterations over time or to attribute these 
changes specifically to RT (±CT). However, studies with 
extended follow-up period (over 10 years after treatment 
completion) suggest that RT (±CT) treatment induces long-
term cognitive toxicity, paired with brain atrophy and WM 
disruption.82 These findings highlight the importance of 
enhancing and advancing treatment approaches for brain 
tumor patients with an expected prolonged survival.

In recent years, emerging irradiation techniques with 
potentially lower cognitive toxicity – such as Proton Beam 
Radiation Therapy (PBRT) or hippocampal sparing (HS) 
– are being explored in glioma patients. PBRT offers im-
proved normal-tissue sparing compared to photon-based 
therapy for brain malignancies by delivering maximum 
dose at the required depth, thus reducing irradiation of 
surrounding tissue.101 Currently, two ongoing trials are 
investigating the efficacy of PBRT in a subset of adult 
gliomas with grades 2-3 IDH mutations (NCT03180502, 
NCT05190172). On the other hand, HS emerges as a new 
potential tool for patients who require whole-brain RT to 
reduce cognitive toxicity. While HS in brain metastases 
may be associated with fewer cognitive symptoms,102,103 
its applicability in glioma patients remains understudied. 
We should therefore await future studies that could dem-
onstrate the applicability of these new RT techniques in 
glioma patients, specifically, to better understand how to 
protect cognition without impairing OS.

Limitations and Future Research Directions

Several critical limitations were identified across the re-
viewed literature. For instance, many reports fail to seg-
regate results based on histological types or molecular 
characteristics, despite the known influence of these 
tumor features on cognition.104,105 Another constraint for 
inter-study comparisons is the high heterogeneity in the 
neuropsychological batteries used across studies. It is im-
portant to acknowledge that several studies included in 
this review used cognitive screening tests, such as the 
MMSE or MoCA. Such tools are generally considered 
only moderately sensitive and may lack the precision 
needed to detect subtle cognitive changes. Additionally, 
they are susceptible to learning and practice effects, with 
further limit their reliability. These shortcomings are es-
pecially relevant in the context of brain tumors, where 
neurocognitive issues can be subtle or confined to spe-
cific cognitive domains.6,106,107 As such, these limita-
tions should be carefully considered when interpreting 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf003#supplementary-data
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findings from studies that rely exclusively on these 
screening measures. Disparities in MRI data, image proc-
essing methodologies, and data collection time points 
among the included studies might also partially explain 
the different findings observed. To address these chal-
lenges, the International Cognition and Cancer Task Force 
(ICCTF) addressed recommendations in 2011 to stand-
ardize neuropsychological tests employed in oncology 
patients.108 This was followed by an analogous guide for 
neuroimaging studies in 2018, albeit focused on non-
central nervous system cancer patients.109 Moreover, it is 
important to highlight the considerable variability present 
in the cohorts of post-surgery and long-term follow-up 
studies. Some studies included patients with prior onco-
logical treatments or recurrent tumors at the time of neu-
roimaging and/or neuropsychological assessments. This 
variability, along with differences in treatment protocols 
between studies, complicates the ability to draw definitive 
conclusions about the specific impact of surgery, RT, and/
or CT on the structural brain changes reported. Therefore, 
more homogeneous studies are needed, with careful con-
sideration of cohort variables that could act as potential 
confounding factors. Further, a key limitation inherent to 
this review is the exclusion of functional imaging studies, 
which offer valuable insights into the neural correlates 
of various cognitive processes. While these studies are 
important, the extensive number of available publica-
tions in this field, as well as their heterogeneity would 
have required a different and more complex analysis that 
was beyond the scope of this review. Additionally, many 
functional imaging protocols, especially those outside of 
motor- and language-related fMRI paradigms, lack stand-
ardization for clinical use at the individual level, limiting 
their applicability in routine clinical settings. Indeed, the 
need for further development of standardized protocols 
to quantify brain function in clinical brain mapping re-
mains an unresolved challenge.

Despite this, we focused here on structural imaging 
methods, which provide highly reproducible and clini-
cally applicable information about anatomical changes in 
patients with gliomas. These techniques are particularly 
valuable in neuro-oncology due to their capacity to de-
tect precise morphological alterations and facilitate lon-
gitudinal tracking of tumor growth or treatment effects. 
Additionally, structural imaging is more time-efficient in 
clinical settings, requiring shorter acquisition durations 
compared to functional methods, which often demand 
extended scanning protocols to achieve reliable data. As 
standardized functional techniques continue to evolve, 
we believe that future research should aim to integrate 
both structural and functional imaging approaches, in-
cluding also other neuroimaging techniques such as 
magnetoencephalography or combined MRI-EEG scans. 
Considering that learning-induced plasticity is a complex, 
dynamic, whole-brain process, multi-modal neuroimaging 
methods can be a powerful tool for understanding how the 
brain adapts in the presence of a tumor. However, to fully 
capture the impact of glioma on cognitive function, it is es-
sential to integrate sensitive neuropsychological assess-
ment with neuroimaging techniques.110 In particular, the 
adoption of a standardized set of neuropsychological tests 
and robust criteria for defining CI, such as those proposed 

by the ICCTF108 and other recent recommendations for the 
glioma population,6 is essential for objectively identifying 
relevant impairments. These definitions, complemented 
by well-designed studies that link cognitive outcomes to 
quality of life and functional scales, will be critically impor-
tant for advancing the field. The future of glioma treatment 
lies in combining innovative technologies with personal-
ized approaches, targeting specific biomarkers and fo-
cusing on minimizing toxicity to the nervous system. This 
multidisciplinary and collaborative approach, based on rig-
orous clinical trials incorporating both cognitive measures 
and protocol-driven advanced neuroimaging techniques 
to monitor treatment effects, will be key to developing 
new therapies that maximize oncological efficacy while 
preserving cognitive function and the well-being of neuro-
oncological patients.
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Oncology Advances (https://academic.oup.com/noa).
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