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Abstract: As more chemotherapy-treated cancer patients are reaching survivorship,  
side-effects such as cognitive impairment warrant research attention. The advent of 
neuroimaging has helped uncover a neural basis for these deficits. This paper offers a 
review of neuroimaging investigations in chemotherapy-treated adult cancer patients, 
discussing the benefits and limitations of each technique and study design. Additionally, 
despite the assumption given by the chemobrain label that chemotherapy is the only 
causative agent of these deficits, other factors will be considered. Suggestions are made on 
how to more comprehensively study these cognitive changes using imaging techniques, 
thereby promoting generalizability of the results to clinical applications. Continued 
investigations may yield better long-term quality of life outcomes by supporting patients’ 
self-reports, and revealing brain regions being affected by chemotherapy. 
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1. Introduction 

Recent advances in the diagnosis and treatment of cancers are allowing more patients to achieve 
complete physical recovery. With this positive trend has come growing concern about the long-term 
side-effects of treatment. Many patients report experiencing cognitive changes while undergoing 
chemotherapy. In some patients, these changes persist for years post-treatment, and can seriously 
affect their quality of life as well as that of family and friends. Patients have coined terms like chemo 
fog and chemo brain to refer to these changes, indicating their assumption that chemotherapy is the 
causative factor.  

Results of objective neuropsychological assessments, however, do not always corroborate the 
deficits reported by patients, and thus such cognitive deficits have historically been dismissed as a 
consequence of stress alone. This can lead to further patient frustration as they do not feel justified in 
their complaints and continue to suffer without confirmation of their impairment. One must keep in 
mind that even subtle changes may have significant functional implications for persons confronting 
high cognitive demands. Over the last decade, several studies have been conducted in cancer patients 
to investigate the effects of chemotherapy on cognition, most finding that chemotherapy-treated 
patients perform more poorly on neurocognitive tests than non-exposed controls [1–20]. Even 
prospective studies [3,9,14,15,19,21–24], which additionally include pre-treatment baseline testing and 
closely matched controls, reveal subtle cognitive declines after chemotherapy exposure (of note, two 
studies reported no increase in the frequency of cognitive impairment in chemotherapy-treated breast 
cancer (BC) patients compared to healthy individuals [12,25]).  

The estimated prevalence of cognitive deficits in chemotherapy treated populations is highly 
variable, with a range from 17% to 75% reported across studies [26]. Such variability makes it difficult 
to convince those outside the patient population of the reality of cognitive impairments found in cancer 
patients undergoing or having completed chemotherapy. The considerable variability in results from 
one study to the next are due to differences in key study design factors including: (1) sample size 
(many studies use only a small number of patients), (2) differences in the nature of the 
neuropsychological battery used (e.g., targeted tests or complete battery) resulting in differential 
sensitivity to subtle cognitive changes, (3) increased sensitivity of computerized testing in conjunction 
with pencil and paper assessments, (4) nature of the control group (example: healthy controls vs.  
non-chemotherapy patient group), (5) definition and/or criteria of cognitive impairment adopted,  
(6) effects of anesthesia on cognition for patients who also underwent surgery [27], (7) stress of cancer 
diagnosis and treatment, (8) existence of pre-treatment differences in cognition between BC patients 
and controls [28–31], (9) possible negative effects of endocrine treatment on cognition [23], and  
(10) data analysis methods used, in particular, whether impairment is defined at the group or individual 
level and, in the case of longitudinal studies, whether or not the analyses control for practice effects 
associated with repeated testing. These factors must be systematically controlled in future studies if 
progress is to be made in understanding the effects of cancer treatments on cognition. There are many 
reviews on neuropsychological assessments in cancer and chemotherapy-treated patients. For further 
and more detailed readings on the neuropsychological findings in chemotherapy-treated patients, 
please refer to the following most recent reviews [32–34]. 
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The following review article will review the limited imaging research on chemotherapy-related 
cognitive impairments (or CRCI) in adult samples only. There will be a particular focus on women 
with BC since most CRCI imaging investigations are conducted in this population and investigations 
in brain tumour cancer populations present their own unique challenges. Both structural and functional 
imaging studies will be described and synthesized in separate summary tables, possible confounding 
variables to be considered in future studies will be discussed, as well as the need for better control 
groups and the challenge of translating current data to clinical practice. 

 
2. Findings from Imaging Studies 
 

Even with use of increasingly sophisticated performance-based assessments, there is still the 
concern that subtle chemotherapy-induced deficits are not being recognized or acknowledged. 
Additionally, the neural structures and/or circuits that are being affected by chemotherapy treatment 
are still relatively unknown. In an attempt to provide empirical evidence for chemotherapy-related 
CRCI, neuro-imaging tools are increasingly being used to examine the effects of chemotherapy on the 
brain and cognition [33,35,36]. Application of such tools could help uncover a neural basis for the 
subtle cognitive deficits in affected patients. However, there are only a handful of imaging studies that 
have examined the CRCI phenomenon and thus further brain imaging research is required. This has 
been acknowledged and a task force has been developed to discuss methodologies and application 
issues, including translational potential for the research to clinical practice [37,38]. At the March 2012 
conference (Paris, France), the taskforce once again acknowledged the small number of studies in the 
field, yet the overlap in the regions reported to be affected in those studies were positively  
noted. However, many of the studies used a similar working memory task and therefore, these 
similarities between studies could be task specific. More discussion on this point will occur later in  
the paper.  

 
2.1. Structural/Anatomical—Neural Changes 
 
2.1.1. Advantages 
 

There are many techniques that can help uncover structural changes in the brain. The least invasive 
and best quality images are produced with magnetic resonance imaging (MRI). MRI can produce 
excellent two- or three-dimensional images of brain structure without the use of ionizing radiation or 
radioactive tracers. The detection mechanisms of this non-invasive technique are so precise that 
changes in neural structures (both cortical and subcortical) can be detected over time [39]. The main 
techniques applied to uncover tissue density (e.g., grey matter) or volume differences are manual 
segmentation protocols, automated methods (e.g., Freesurfer) and voxel-based morphometry (VBM) 
tools. Manual segmentation protocols are highly specific and there are validated sets of instructions 
concerning individual brain regions (e.g., hippocampus, amygdala) which require extensive training as 
well as inter-researcher reliability. Meanwhile, voxel-based morphometry (or VBM) techniques are a 
widely used automated technique that divides the brain into grey matter, white matter and 



Sensors 2013, 13 3172 
 

 

cerebrospinal fluid (CSF) and can provide tissue density and/or volumes for whole brain or region of 
interest investigations. 

Another technique requiring MRI technology is diffusion MRI, which allows further structural 
assessment of the brain- producing in vivo images of biological tissues weighted with the local  
micro-structural characteristics of water diffusion. Within this, there are two distinct classes of 
application. Diffusion weighted MRI, or DWI, provides information about damage to parts of the 
CNS. This technique measures the rate of water diffusion at a specific location and is best applied in a 
tissue where the diffusion rate typically appears to be the same when measured along any axis (e.g., 
grey matter). The second diffusion technique is called diffusion tensor MRI, or DTI, which provides 
information about connections among brain regions. This technique capitalizes on the magnitude and 
direction of diffusion through a particular internal structure. Water will diffuse more in the direction 
aligned with the fibers and less when perpendicular to the preferred direction. This technique is 
therefore best when examining tissues with an internal fibrous structure such as white matter tracts. An 
extended application to this last technique is the ability to derive neural tract direction information, 
with the assumption that the diffusion within each voxel is homogeneous and linear. A particular 
measure called fractional anisotropy (FA) assesses whether water movement in a certain voxel is 
unrestricted (water movement can occur along all axes) or restricted (water movement only occurs 
along 1 axis). A FA score closer to 1 means greater integrity of the tissue in that particular voxel  
(or restricted water movement) while a score closer to 0 means less integrity (or unrestricted water 
movement). Additionally, DTI techniques can be used to infer the white matter connectivity of the brain, 
otherwise known as tractography, which reveals brain region connections. Overall, both diffusion 
techniques can help uncover structural neural changes over time and possible differences between groups 
concerning neural tissue integrity. These are a measure of the efficiency of neural communication.  
(For a review on Diffusion MRI techniques, please refer to Johansen-Berg Behrens [40]). 

 
2.1.2. Review of Anatomical Findings 
 

Structural brain changes have been associated with chemotherapy in cancer patients. Cerebral white 
matter is vulnerable to neurotoxins, such as chemotherapy agents, and use of MRI techniques has 
increased recognition of white matter changes related to drug intake (e.g., leukoencephalopathy in 
leukemia patients after taking immunosuppressive drugs). Furthermore, these white matter changes are 
strongly correlated with grey matter volume changes. Overall, it is thought that both white matter and 
grey matter changes can be reversible. The regions reported in the structural studies outlined below are 
also reported in Tables 1 and 2. 
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Table 1. showing increased (↑) and decreased (↓) volume and/or tissue integrity in 
chemotherapy-treated patients compared to matched controls from papers reporting 
detailed regional differences.  

Study Tool 
GM 
and/or 
WM 

Time 
Post-
Chemo-
Therapy 

Frontal, 
limbic, 
Diencephalon, 
Midbrain 

Temporal Parietal Occipital Cerebellum 

Inagaki  
et al., 2007 

VBM  GM and 
WM 

1 year  GM 
↓ R prefrontal 
cortex 

GM 
↓ R para-
hippocampus 

 
 
 

  

 WM 
↓ B middle 
frontal gyri,  
R cingulate 
gyrus 

WM 
↓ L para-
hippocampus 

WM 
↓ L 
precuneus 

  

3 years  None None None   
Abraham  
et al., 2008 

FA  WM 22 months ↓ genu of 
corpus 
callosum 
 

    

McDonald 
et al., 2010 

VBM GM 1 month ↓ B middle 
frontal gyri 

   ↓ L 
cerebellum 

Deprez  
et al., 2010 

FA  WM 
 

4.8 
months 

↓ tissue 
integrity 

↓ tissue 
integrity 

   

MD  ↓ tissue 
integrity 

    

Koppelman 
et al., 2012 

VBM GM and 
WM 

21.1 years ↓ whole brain grey matter and total brain volume (GM +WM) 

Kesler  
et al., 2012 
(discussed 
under the 
cytokine 
section) 

Free-
surfer 

GM and 
WM 

4.8 years  ↓ L 
hippocampus 

   

McDonald  
et al., 2012 

VBM GM 1 month ↓ left middle 
frontal gyrus 

    

de Ruiter  
et al., 2012 

VBM GM 9.5 years   ↓ L 
parietal, 
B 
precuneus 

↓ L 
occipital 
cortex 

↓ B 
cerebellum 
(most in L) 

FA WM 
 

↓ tissue integrity L corona radiata, L external capsule, L stratum, B 
thalamic radiation 

MD ↓ tissue integrity B internal capsule, B posterior thalamic radiation, B 
statum, R internal capsule, B corona radiata, B superior longitudinal 
fasciculus, B corpus callosum (body and genu) 

RD ↓ tissue integrity 
L corona radiata, L external capsule, L stratum (incl inferior longitudinal 
fasciculus and fronto-occipital fasciculus), Left internal capsule, B 
thalamic radiation 

Hosseini 
et al., 
2012 

VBM Network 
hubs in 
patients 
(Graph 
theory) 

 L anterior 
cingulate 

 R inferior 
parietal 
lobule, R 
supramar
ginal 
gyrus 
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Table 2. showing increased (↑) and decreased (↓) volume and/or tissue integrity in 
chemotherapy-treated patients over time from papers reporting detailed regional 
differences. 

Study Tool 
GM 
and/or 
WM 

Time Post-
Chemotherapy

Frontal, Limbic, 
Diencephalon 
Midbrain 

Temporal Parietal Occipital Cerebellum

McDonald 
et al., 2010 

VBM  GM 1 month vs. 
baseline 

↓ L middle 
frontal gyrus, B 
superior frontal 
gyri, R medial 
frontal gyrus, R 
precentral gyrus , 
R thalamus 

↓ R superior 
temporal 
gyrus, L 
parahippocam
pus, 

  ↓ B 
cerebellum 

  persisting at  
1 year 

↓ L middle 
frontal gyrus, R 
superior frontal 
gyrus, R medial 
frontal gyrus, R 
precentral gyrus, 
R thalamus 

   ↓ B 
cerebellum 

McDonald 
et al., 2012 

VBM GM 1 month vs. 
baseline 

↓ left middle 
frontal gyrus, L 
superior frontal 
gyrus 

    

a Note: the nature of the control group varies in each study, please see text body for more details. Abbreviations:  

GM = grey matter, WM = white matter, L = left, R = right, B = bilateral, Br.= Brodmann area, VBM= voxel-based 

morphometry, FA = fractional anisotropy, MD = Mean diffusivity, RD = radial diffusivity 

2.1.2.1. Anatomical MRI 

One of the first studies by Brown et al. [41] prospectively assessed white matter volume changes 
induced by high-dose chemotherapy using anatomical MRI techniques. Eight patients with advanced 
BC were scanned prior to beginning chemotherapy, with six patients receiving induction 
chemotherapy. All patients completed the chemotherapy regimen, but only four patients were available 
for the subsequent 1, 3, 6, 9 and 12 months post-chemotherapy follow-ups. Results indicated no 
structural abnormalities at baseline. However, three of the four patients scanned at the 3 month post-
chemotherapy time point showed a progressive increase in abnormal white matter volume, with 
maximal volume changes ranging from 73–166 cm3. These volume changes subsequently stabilized 
from 6 to 12 months after chemotherapy completion. These investigators also conducted brain MR 
spectroscopy (MRS), a technique which is used to non-invasively measure metabolite levels in the 
brain. Results showed little to no change in metabolic ratios from baseline to post-chemotherapy. A 
small transient post-treatment decrease in N-acetylaspartate to creatine ratio (NAA/Cr) in one voxel in 
the right parieto-occipital lobe was suggested to be a reduction in neuronal integrity. Overall, the 
authors conclude that there are treatment-related white matter changes occurring with high-dose 
chemotherapy regimens, which progressively accumulate until around 6 months but are not 
accompanied by persistent neurologic symptoms. Minimal disturbance of the biological marker  
N-acetylaspartate, as indicated by the MRS, may partly explain this good neurological outcome. This 
study was the first to explore chemotherapy-related structural changes in the brain using a prospective 
design. Although the small patient sample resulted in limited power to test assumptions, this study was 
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important because it led the way for subsequent anatomical studies of chemotherapy-related  
brain changes.  

A second VBM assessment of BC patients was completed by Inagaki et al. [42]. They assessed 
volume differences between controls and patients at two different time points. Additionally, they 
controlled for the effects of having cancer itself. At year 1 (range 3–15 months post-chemotherapy), 
the scanned population included 51 adjuvant chemotherapy-treated BC survivors as well as 55 BC 
survivors who received surgical treatment only without chemotherapy. At year 3 (range of 27–39 
months post-chemotherapy), they scanned 73 BC survivors who had received adjuvant chemotherapy 
(some participants also had scan 1, others were new study recruits), and 59 survivors who had received 
local therapy only. These VBM-processed brain images were referenced to images of healthy controls 
(year 1, n=55; year 3, n=37). At the one-year time point, the chemotherapy patients were found to have 
smaller volumes in key areas involved in cognitive processing, including grey matter losses in the right 
prefrontal cortex and para-hippocampal gyrus and white matter decreases in the bilateral middle frontal 
gyri, left para-hippocampal gyrus, left precuneus and right cingulate gyrus. Additionally, there was a 
strong positive correlation between volume loss and performance on tests of attention and memory 
(Wechsler Memory Scale Revised). Interestingly, these results were no longer evident at the 3-year 
follow-up scan. When pooling the cancer groups and comparing to healthy controls, there were no 
regional differences at the 1-year and 3-year scans. A serious weakness of this study was the failure to 
consider the effect of adjuvant endocrine therapy, given that anti-estrogen therapy has also been 
implicated in cognitive dysfunction in BC patients [6]. Another limitation is the lack of a  
pre-chemotherapy baseline, which makes it impossible to assess whether the observed abnormalities 
were present prior to treatment. Despite these limitations, the Inagaki study was one of the first to 
suggest, using an adequate sample, an effect of chemotherapy on brain structure. The areas showing 
differences are important for performance on everyday tasks of working memory and attention and 
help to support anecdotal reports of CRCIs. 

Another study [43] applied the first prospective design to studying CRCI using structural imaging. 
The researchers recruited 17 BC patients who were receiving chemotherapy treatment, 12 BC patients 
who were not treated by chemotherapy, and 18 matched healthy controls. These patients completed 
high-resolution anatomical MRI at baseline (after surgery but before beginning treatment), 1 month 
after chemotherapy completion and 1 year later. VBM techniques were applied to quantify whole brain 
grey matter volume. Results indicated that there were no group differences at baseline. Both cancer 
groups showed grey matter decline at the 1 month mark compared to controls. Chemotherapy-treated 
patients revealed grey matter reductions in bilateral middle frontal gyri and left cerebellum, while  
non-chemotherapy patients had decreased volumes in the right cerebellum (suggestive of cancer itself 
or surgery itself changing the brain). At 1 month after chemotherapy, the treated group showed 
decreased grey matter in bilateral frontal, temporal and cerebellar regions as well as the right thalamus 
compared to baseline. In this same group, recovery of grey matter volume is suggested in the bilateral 
superior frontal, left middle frontal, right superior temporal and cerebellar regions at year 1. However, 
other areas did not recover grey matter volume at this time, including the right thalamus, right medial 
temporal lobe, left middle frontal gyrus, right precentral gyrus, right medial frontal and right superior 
frontal gyri as well as bilaterally in other regions of the cerebellum. A strength of this study’s design 
was the control for the effect of surgery by using the “days between surgery date and baseline MRI 
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scan” as a covariate in the group comparisons. Adding a covariate attenuated the significance of the 
results but they remained significant. The authors additionally applied other factors as covariates to 
reveal possible confounding effects but these were not significant. This indicates that some speculated 
confounding factors do not influence grey matter volume. However, much larger groups are essential 
to dissect the effects of any contributing factors being applied as covariates. Overall, this study is 
strong since it adopts the first prospective design of a structural assessment of the impact of 
chemotherapy on the brain. Additionally, the use of three groups (BC patients with chemotherapy, BC 
patients without chemotherapy and healthy matched controls) is an asset. This grants simultaneous 
comparisons of chemotherapy-treated patients to both healthy controls as well as BC patients without 
chemotherapy, the latter controlling for factors such as the presence of cancer, or stress of a cancer 
diagnosis. One must take into account that BC patients who did not receive chemotherapy underwent a 
different treatment which could present a confound itself, highlighting the importance of having a 
healthy control group in addition to cancer groups in such studies. Finally, the decreased grey matter 
volumes reported in this study overlap with those reported in previous structural studies, notably in the 
frontal and temporal regions [42]. Interestingly, this was the first study to report anatomical changes in 
cerebellar volumes, corroborating with studies revealing functional changes in this region [44].  

A recent study was the largest investigation of neuroanatomical differences between chemotherapy-
treated breast cancer survivors and healthy controls to date. In particular, Koppelmans et al. [45] 
extracted total and tissue segmented volumes from 184 survivors and 368 controls using VBM 
techniques to reveal global structural differences. Survivors revealed smaller total grey matter volume 
compared to controls and no white matter differences. Additionally the authors reported that survivors 
revealed smaller total brain volume, likely due to grey matter reduction. The only regional 
investigation involved hippocampal segmentation on 177 cancer patients compared to healthy controls 
using an in-house automated method. This targeted segmentation did not reveal any differences 
between groups. The obvious strength of this paper is the unusually large sample size. Another 
strength is the homogeneity of the population for treatment regimen and number of treatment cycles. 
Both groups are relatively well-matched on many factors, yet survivors have a higher education level 
compared to controls. This may be a bias to study participation since individuals with higher 
functioning are more likely to report even mild cognitive decline. One factor that was not reported was 
menopausal status. This factor would have been particularly interesting considering the possible 
neuroprotective nature of estrogen on grey matter volume, particularly in the hippocampus. Please 
refer to the estrogen section later in this review for more on this subject. 

The most recent anatomical assessment in breast cancer patients is a prospective study using VBM 
techniques to examine 27 chemotherapy-treated BC patients, 29 non-chemotherapy-treated breast 
cancer patients and 28 matched healthy controls [46]. Chemotherapy-treated patients revealed reduced 
grey matter volume, following treatment, in the left middle frontal gyrus and the left superior frontal 
gyrus. Similarly, these patients showed significantly smaller grey matter volume in the left middle 
frontal gyrus when compared to healthy controls post-treatment. These results were accompanied by 
increased Behavior Rating Inventory of Executive Function for adults (BRIEF) scores in treated 
patients over time indicating more self-reported cognitive impairment, particularly with the ability to 
initiate problem-solving or activity. When these domain scores were considered as a covariate in the 
post-chemotherapy analysis, a negative correlation was observed indicating that reduced density in the 
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left middle frontal gyrus is associated with higher levels of cognitive complaints. The authors also 
innovatively investigated a relationship between grey matter and executive functioning changes in 
relation to APOE E4 genetic status. No significant results were observed. However, it was noted that a 
greater percentage of chemotherapy-treated patients were E4 allele carriers (grouping patients with both 
1 or both E4 alleles copies) compared to non-chemotherapy patients and healthy controls. Overall, this 
paper supports earlier findings from the same laboratory [43] of frontal lobe grey matter decreases after 
chemotherapy. As well, novel consideration of APOE E4 in the model attempted to uncover an 
individual risk factor that could predispose certain patients to more significant side effects of 
treatment. This type of pioneering investigation is required to advance research in this field. 

Another VBM study with a novel approach to data analysis was the first to apply graph theoretical 
analysis to assess grey matter structural networks in 37 BC patients with a history of chemotherapy-
treatment compared to 38 healthy controls [47]. A description of these analyses is beyond the scope of 
this review, however, can be read in the original manuscript [47]. Very briefly, this paper demonstrates 
changes in large scale brain network properties in BC survivors who received chemotherapy treatment. 
There is a more randomized configuration in patient brain networks compared to controls, translating 
into weaker regional connectivity and disrupted global neural organization. These results support 
previous VBM findings of diffuse anatomical atrophy after treatment. As well, results suggest 
compensatory mechanisms, which have been suggested by fMRI research (a discussion about these 
fMRI studies takes place below). The cross-sectional nature of this paper obviously makes it difficult 
to ascertain if these differences were present at baseline or an effect of treatment. As well, the rather 
large range of time since treatment for the breast cancer patients may cause some blending of short 
term and long term effects. Also, there is little data and discussion concerning demographic and 
neuropsychological states of each group which would be beneficial to compare these novel findings to 
more traditional measures used in this population. Yet these limitations are out-weighed by the novelty 
of this kind of investigation and the authors aptly mention the need for prospective studies using  
this technique. 

2.1.2.2. Diffusion MRI 

Three studies have investigated cognitive impairment and brain connectivity in a chemotherapy-
treated population using DTI. One study [48] measured white matter integrity (FA scores) in the genu 
and splenium of the corpus callosum. They recruited 10 chemotherapy-treated BC patients who 
reported cognitive problems, although unfortunately complaints were not formally assessed. Patients 
were enrolled in the study for an average of 22 months (range: 3–32 months) after therapy completion. 
They also scanned nine healthy, age- and education-matched women as controls. Participants 
completed a digit symbol test which assessed processing speed. Results showed slower processing 
speed in chemotherapy-treated participants. Chemotherapy treatment was also correlated with lower 
FA scores in the genu of the corpus callosum, indicating that adjuvant chemotherapy affects white 
matter integrity in this area. This area of the brain is important for communication between the 
hemispheres and may well explain the reduced processing speed reported in the chemotherapy-treated 
patients. Moreover, this decreased white matter integrity was significantly correlated to cognitive 
deficits reported by chemotherapy-treated BC patients. The BC patients in this study were all on  
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anti-estrogen agents at the time of scanning but, like the anatomical studies above, the effects of 
endocrine treatment were not considered in the analysis and there was no pre-chemotherapy baseline. 
This study was, however, the first to indicate changes in white matter integrity following 
chemotherapy, as well as a correlation between decreased performance and this white matter damage. 

A larger study [49] examined cerebral white matter integrity in 17 BC patients post-chemotherapy 
compared to 10 non-chemotherapy treated BC patients and 18 healthy matched controls. These 
researchers used DTI in combination with comprehensive neuropsychological testing and a self-report 
questionnaire concerning cognitive failure. The authors applied FA techniques but additionally 
measured mean diffusivity (MD), which quantifies water diffusion within a tissue and is affected by 
the cellular size, shape and integrity of that tissue [50]. MD values decline with increasing tissue 
barriers, such as cell membranes and myelin sheaths [51]. Water runs into less obstruction with edema, 
demyelination and axonal loss [52,53] and can travel further, thus a larger value is indicative of  
more free water and decreased tissue integrity. Deprez et al. [49] reported that, compared to  
non-chemotherapy patients and healthy controls, chemotherapy-treated BC patients showed decreased 
FA in frontal and temporal white matter tracts, as well as increased MD in frontal white matter. A 
voxel-based correlation analysis between FA scores and individual neuropsychological test scores 
revealed significant correlations between neuropsychological tests (attention and processing speed) 
and FA scores in the temporal and parietal white matter tracts. Furthermore, self-report cognitive 
failure questionnaire (CFQ) scores were also negatively correlated with frontal and parietal white 
matter FA scores. Overall, chemotherapy-treated BC patients performed worse on the 
neuropsychological tests than the other two groups, with seven of these patients classified as clinically 
impaired on follow-up analysis. Compared to controls, these “impaired” chemotherapy patients had 
lower FA values than their “unimpaired” chemotherapy-treated counterparts. Due to the limitations of 
their study design, this group of researchers performed a further longitudinal study whereby  
pre-chemotherapy and post-chemotherapy DTI, neuropsychology, depression and intelligence data was 
collected and reported [54]. Data from 34 premenopausal women with early-stage BC were compared 
with two control groups, one with 16 BC patients not exposed to chemotherapy and the other 19  
age-matched healthy controls, before and 3-4 months after treatment. Results showed that white matter 
organization, particularly in the frontal, parietal and occipital white matter tracts, was negatively 
impacted by chemotherapy and that this correlated strongly with cognitive functioning scores. Like 
Abraham et al. [48], these authors suggest that micro-structural white matter changes or abnormalities 
may underlie reported cognitive dysfunctions found in chemotherapy-treated cancer patients.  

de Ruiter et al. [55] published a study that used multiple techniques, including measures of VBM as 
well as diffusion. In addition to FA and MD score, they considered radial diffusivity (RD)  
which had not been investigated to date. Seventeen long-term BC survivors (mean = 9.5 years  
post-chemotherapy treatment) completed neuropsychological testing and multimodal neuroimaging 
sessions, and their data was compared to 15 survivors who did not receive chemotherapy. 
Chemotherapy-treated patients revealed more subjective cognitive complaints and a significantly 
poorer performance in the word fluency professions test. As well, treated patients made more errors 
during a Flanker task and a Tower of London task, both administered in an fMRI assessment presented 
in an earlier paper [56]. The authors skillfully compared the anatomical results from this paper to 
functional assessments, the latter discussed in the fMRI section below. First, grey matter VBM 



Sensors 2013, 13 3179 
 

 

analysis revealed decreased density in left parietal and occipital cortices, as well as bilateral precuneus 
and cerebellum in chemotherapy patients compared to non-chemotherapy controls. When the reduced 
grey matter maps were overlaid on the hypoactivation fMRI maps acquired during a paired  
association memory test, there was overlap in the left lateral posterior parietal cortex. Second, three 
DTI assessments revealed possible chemotherapy-related side effects on white matter tracts  
post-chemotherapy. FA was decreased in the left corona radiata, external capsule, stratum as well as 
bilaterally in the thalamic radiation. Larger MD scores were shown in bilateral internal capsule, 
posterior thalamic radiation, stratum, corona radiata, superior longitudinal fasciculus, and the corpus 
callosum. Increased RD was revealed in the bilateral posterior thalamic radiation, left corona radiata, 
left external capsule, left sagittal stratum, and left internal capsule. Overlayed MD and RD maps on 
fMRI maps uncovered decreased white matter integrity located adjacent to areas showing 
hypoactivation of the lateral posterior parietal cortex during the encoding phase of the paired 
association memory test. Third, a 1H-MRS assessment revealed decreased NAA/Cr ratio for 
chemotherapy treated patient compared to controls. A negative correlation was found between 
NAA/Cr ratios and both MD and RD scores in chemotherapy group. In particular, MD scores 
negatively correlated with NAA/Cr in the left centrum semiovale as well as white matter regions in the 
bilateral corona radiata, superior longitudinal fasciculus and left internal capsule. Overall, this paper is 
the first to show anatomical repercussions of adjuvant chemotherapy-treatment in long-term breast 
cancer survivors using a combination of imaging and neuropsychological assessments. These results 
support the trend to include both structural and functional assessments in the study of CRCIs. This 
multimodal approach demonstrating anatomical changes due to chemotherapy, in relation to biological 
markers as well as functional and psychological capacities is a major strength of this particular study. 
This is the most comprehensive assessment to date in the study of CRCIs, a study design that would be 
particularly interesting to apply in a prospective study. Another strength of this study is the 
homogeneity of the chemotherapy-treated group concerning time since treatment. This is notable since 
many other studies of CRCIs have a patient population with a rather large range of times since 
treatment. This limited range increases confidence in the results truly representing side-effects of 
chemotherapy in long-term survivors.  

2.1.3. Use of Functional Neural Imaging  

Anatomical assessments of the brain using MRI can indicate structural neural changes over time, as 
well as indicate differences between groups. As observed with the above mentioned study, however, 
combining structural MRI with functional imaging techniques is a more ideal approach to  
studying CRCIs. 

2.2. Functional Neural Changes 

2.2.1. Advantages 

Functional neuroimaging provides insight into the working brain. Several techniques can be used to 
obtain information about neural activity, for example, electroencephalography (EEG), positron 
emission tomography (PET) and functional magnetic resonance imaging (fMRI). 
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EEG is an imaging technique that is used to measure electric fields in the brain with use of 
electrodes carefully placed on the scalp. Whenever there is electrical activity in brain regions near the 
surface, this can be recorded by the electrodes. The P300 is a brain wave measured as an event-related 
potential (ERP), elicited by infrequent task-relevant stimuli, dependent on the participant’s reaction to 
the stimuli and most strongly obtained by electrodes at the central vertex (border of the frontalparietal 
lobes; or Cz scalp location) [57,58]. The magnitude, timing and topography of an ERP are metrics of 
cognitive function. Another example is the N100 that is elicited by an unpredictable stimulus in the 
absence of task demands. EEG offers high temporal resolution (on the order of milliseconds) despite 
poor spatial resolution.  

PET uses radioactively-labeled and metabolically-active chemicals (administered intravenously) to 
view metabolically active brain regions during a cognitively engaging task. The emissions from these 
radioactive chemicals are detected by the sensors in the scanner and then this data is computer 
processed to reveal their distribution throughout the brain. The most commonly used ligand to examine 
neurotransmitter activity is a form a glucose, called fludeoxyglucose (or FDG). The greatest benefit of 
using PET is the ability to show both blood flow changes as well as brain tissue metabolism  
(in particular both oxygen and glucose) in a “working brain”. As well, it is particularly useful in cases 
where damage is diffuse, with few apparent changes to gross brain volume and structure.  

fMRI techniques also provide a window into the working brain as it is a non-invasive neuroimaging 
technique that localizes brain function in response to motor, sensory or cognitive tasks. The basis for 
fMRI is that increased neural activity in a region is accompanied by a substantial increase in local 
blood flow rich in oxygen (leading to a reduction of deoxyhemoglobin), which results in an increase of 
magnetic resonance (MR) signal intensity. This is called the blood oxygen level dependent (BOLD) 
effect [59,60] allowing for safe brain imaging with no exposure to ionizing radiation (as with PET). 
This technique offers excellent spatial resolution (2–3 millimeters) and moderately good temporal 
resolution (slower than EEG but faster than PET).  

2.2.2. Review of Functional Findings 

In addition to the small number of structural imaging studies, a limited number of functional 
imaging studies has assessed neural changes in chemotherapy-treated cancer patients. The regions 
reported in both PET and fMRI studies outlined below are also reported in Tables 3 and 4. 

Table 3. showing increased (↑) and decreased (↓) activity in chemotherapy-treated patients 
compared to matched controls during active PET and fMRI investigations. 

Study Tool Tasks 
Frontal, Limbic, 
Diencephalon, 
Midbrain 

Temporal Parietal Occipital Cerebellum

Silverman 
et al., 
2007 

[O-
15] 
PET 

Delayed-
recall word 
memory task 

↑ L inferior 
frontal gyrus  
(near Br. 44 45), 
R superior frontal 
gyrus 

 ↓L Br. 45 
(lateral to 
precuneus), 
supramarginal 
gyrus 

↓ R 
primary 
visual 
cortex 

↑ R 
posterior 
lobe 

[F-18] 
FDG-
PET 

None 
(resting 
metabolism) 

↓ L inferior gyrus     
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Table 3. Cont. 

Study Tool Tasks 
Frontal, Limbic, 
Diencephalon, 
Midbrain 

Temporal Parietal Occipital Cerebellum

Ferguson 
et al., 
2007  

fMRI Verbal  
N-back 
(working 
memory) 

↑ B frontal 
widespread  

 ↑ B 
widespread 

  

Saykin  
et al., 
2006 

fMRI Auditory  
N-back 
(working 
memory) 

↑ B posterior 
frontal gyri 
↓ B anterior 
frontal gyri 

 ↑ B posterior 
parietal 
lobules 

  

Kesler  
et al., 
2009 

fMRI Verbal 
declarative 
memory- 
encoding 

↓ L superior 
frontal gyrus, R 
superior frontal 
gyrus, B middle 
frontal gyri  

 ↓ L postcentral 
gyrus 

  

Verbal 
declarative 
memory- 
recall 

↑ B basal ganglia, 
R precentral 
gyrus, R superior 
and middle frontal 
gyri, B inferior 
frontal gyri, R 
cingulate gyrus, B 
insula 

↑ R superior 
temporal gyrus, B 
fusiform, L 
hippocampus, B 
parahippocampus

↑ B precuneus, 
B superior 
parietal lobule 

↑ B 
lingual 
gyri, B 
cuneus 

↑ B 
cerebellum 

de Ruiter 
et al., 
2010 

fMRI Tower of 
London 
(planning) 

↓ L dorsolateral 
prefrontal cortex 

 ↓ B posterior 
parietal lobule 

  

 Paired-
associates 
task 
(working 
memory) 

↓ R dorsal 
striatum 

↓ R 
parahippocampus, 
L middle 
temporal gyrus 

↓ B lateral 
posterior 
parietal lobule, 
L precuneus, R 
inferior 
parietal lobule 

  

Kesler  
et al., 
2011 

fMRI Card-sorting 
(judgment, 
working 
memory) 

↓ L caudal lateral 
prefrontal cortex 

    

McDonald 
et al., 
2012 

fMRI Auditory  
N-back  
 
BASELINE 

↑ B frontal gyri, 
R inferior frontal 
gyrus 

 ↓ L parietal 
lobule 

  

1 MONTH   ↓ L parietal 
lobule 

  

1 YEAR ↑ B frontal gyri, 
R inferior frontal 
gyrus, B middle 
frontal gyrus 
↓ L inferior 
frontal gyrus 

    
 

Lopez 
Zunini  
et al., 
2013 

fMRI Verbal recall 
(working 
memory) 

↓ B insula, R 
inferior orbito-
frontal gyrus, R 
medial frontal gyrus

↓ R superior and 
middle temporal 
gyrus, L superior 
temporal pole 
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Table 4. showing increased (↑) and decreased (↓) activity in chemotherapy-treated patients 
over time from active-task fMRI papers reporting detailed regional differences. 

Study Tool 
GM 
and/or 
WM 

Time post-
chemotherapy 

Frontal, 
limbic, 
diencephalon, 
midbrain 

Temporal Parietal Occipital Cerebellum

McDonald 
et al., 
2012 

fMRI Auditory 
N-back  

1 month vs. 
baseline 
(compared to 
controls) 

↓ L inferior 
frontal cortex, 
B frontal 
regions 
↑ L thalamus, 
L inferior 
precentral 
gyrus 

↑ L posterior 
middle 
temporal gyrus, 
L middle 
temporal gyrus 

  ↑ R 
cerebellum 

  persisting at  
1 year 
(compared to 
controls) 

↓ B middle 
frontal gyrus 

    

Lopez 
Zunini  
et al., 
2013 

fMRI Verbal 
recall 
(working 
memory) 

1 month vs. 
baseline 
(patients over 
time) 

↓ B insula, L 
inferior 
orbitofrontal 
cortex 

    

b Note: the nature of the control group varies in each study, please see text body for more details. 
Abbreviations: L = left, R = right, B = bilateral, Br.= Brodmann area. 

2.2.2.1. Electroencephalography (EEG) 

Due to the high temporal resolution of EEG, this is a useful imaging technique for quantifying 
subtle differences in timing of neuronal firing. This electrical activity can be extracted and can 
partially explain subtle cognitive differences precipitated by chemotherapy treatment. One EEG 
laboratory has performed three separate ERP studies [60–62] with different BC comparison groups, 
including populations such as those non-exposed to chemotherapy but with radiation therapy and those 
who received chemotherapy-treatment (both high and low doses, differing regimens). Researchers first 
used an information processing task with three conditions with varying levels of difficulty measuring 
at the Cz scalp location and investigating the P300 wave [61,62]. There were no group differences in 
task accuracy, yet chemotherapy-treated patients revealed slower reaction times compared to  
non-chemotherapy controls when age was added as a covariate for one study [62]. Each of these two 
studies revealed chemotherapy treated BC patients having attenuated P300 waveforms compared to 
untreated controls. The authors suggested that the decreased P300 amplitude in chemotherapy patients 
indicates a decrease in the timing of mental processes, as smaller P300 amplitude is associated with 
more difficulty performing a task. In particular, high dose chemotherapy-treated patients revealed 
smaller P300 amplitude compared to non-treated controls yet standard dose patients did not [62]. This 
suggests an allocation problem concerning processing resources, particularly in patients receiving 
higher chemotherapy doses, which indicates that different regimens may have differential effects on 
the P300 component. In both studies, self-reported cognitive complaints did not correlate significantly 
with any of the behavioural or neuropsychological measures. Authors also applied an auditory oddball 
task [63] and investigated both the N100 and P300 waves. Differences continued to be revealed along 
the P300 component with chemotherapy-treated patients showing lower amplitude compared to non-



Sensors 2013, 13 3183 
 

 

chemotherapy control. Additionally, the surprising finding of CMF-treated patients (regimen: 
cyclophosphamide, methotrexate and fluorouracil) revealing shorter P300 latency compared to high-
dose chemotherapy patients suggested that this could be the result of cognitive speeding due to 
decreased response inhibition capacities. Again, there were no task performance differences between 
groups. Conclusions drawn from these studies included that chemotherapy treatment can have effects 
on brain functioning and that a different regimen can cause differential effects. Limitations of each of 
these studies included the lack of a pre-treatment assessment, no comparisons to healthy controls, and 
high task complexity which may have led to stress and rumination, confounding the interpretation of 
results. Additionally, patients who received radiation may simply benefit more from task training 
sessions, which means that this group does not require as much energy expenditure to complete the 
task. These papers are the first to examine CRCIs using EEG technology. Additionally, while power is 
decreased with separate consideration of chemotherapy-treated patient groups, this highlighted the 
importance of considering type of treatment e.g., dose and content of regimen. 

Finally, one prospective study using EEG methodologies is currently underway under the 
supervision of Halle Moore (Cleveland Clinic’s solid tumor oncology unit). This study is comparing 
eight early-stage BC patients with matched controls using EEG tools and cognitive tests at three time 
points (before, during and after chemotherapy). While this participant number is very small, it will be 
the first prospective study using EEG tools investigating the chemotherapy-treated BC patient’s brain. 

2.2.2.2. Positron Emission Tomography (PET) 

One PET study of CRCI has been published to date. Silverman et al. [44] recruited 16 long-term 
chemotherapy treated BC survivors with memory problems (minimum 5 years post-chemotherapy; 11 
patients also had tamoxifen) and eight non-chemotherapy-treated controls (five were BC survivors and 
three never had BC). A previously acquired standard reference group of 10 healthy controls who 
underwent a [F-18] fluorodeoxyglucose-PET study were also used. Investigators used [O-15] PET to 
study blood flow during a delayed-recall word memory task. Delayed recall questions activated a 
larger portion of the inferior frontal cortex in chemotherapy patients compared to untreated patients. 
Additionally, [F-18] fluorodeoxyglucose-PET was used to assess resting metabolism between 
chemotherapy treated patients and controls. Results demonstrated that chemotherapy patients showed 
lower resting brain metabolism, particularly in the left inferior frontal gyrus and in the contralateral 
cerebellum.  

Furthermore, with more impaired performance on the delayed recall task, there was lower resting 
metabolism in the frontal cortex (the inferior frontal cortex is already less metabolically active under 
healthy circumstances). Also, basal ganglia metabolism was decreased in patients treated with both 
chemotherapy and tamoxifen. Overall, study results suggest that the frontal cortex required additional 
neural effort to successfully perform the task in the chemotherapy-treated subjects. While, this study 
does not have a pre-chemotherapy baseline assessment, it does consider the effects of combination 
treatment in the analysis (chemotherapy + tamoxifen). These alterations in brain activity in 
chemotherapy-treated patients are an indication that the brain is working differently, either through 
new neural recruitment or compensation, to accomplish the same performance [64–67]. This may alter 
subjective experience of cognitive efficiency, such that cognitive activity is more effortful and results 
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in greater fatigue, and thus may underlie patients’ cognitive complaints. This might explain why many 
chemotherapy-treated BC (and other cancer) patients fail to return to premorbid levels of 
social/occupational functioning despite excellent physical recovery, thus reducing quality of life. 

2.2.2.3. Functional Magnetic Resonance Imaging (fMRI) 

Resting State 

There is only one resting state paper investigating treatment effects in breast cancer patients to date. 
Resting state fMRI is interesting since it is task independent and less vulnerable to confounds related 
to task performance and individual aptitudes. As well, disruption to resting state activation patterns 
could help explain active state activity. Bruno et al. [68] investigated 34 BC survivors, previously 
treated with chemotherapy, and 27 healthy controls. Menopausal status was appropriately controlled 
for in all analyses, with more patients being post-menopausal. Patients showed decreased self-reported 
executive functioning and memory abilities compared to controls. In addition, patients displayed 
altered organization of global brain networks, indicated by decreased global clustering and disrupted 
network characteristics in the frontal, temporal and striatal regions. Therefore, the authors suggest 
disruptions in topological organization after chemotherapy treatment, which may lead to subjective 
cognitive complaints. This paper is particularly novel in the study of CRCIs since it is the only resting 
state fMRI paper. Understanding altered network organization after treatment could help better explain 
functional changes.  

Active Tasks 

An interesting case study by Ferguson et al. [69] involved a pair of monozygotic twins, only one of 
whom had received chemotherapy treatment for BC. While no significant performance differences 
were revealed on memory and executive functioning assessments, the chemotherapy-treated twin 
reported subjective cognitive complaints. Additionally, structural brain differences between the twins 
were assessed (anatomical MRI) and revealed that the chemotherapy treated twin had greater white 
matter lesion volume than the untreated sibling. Finally, fMRI during a working memory task revealed 
larger and more diffuse areas of activation in bilateral frontal and parietal regions in the chemotherapy 
treated twin. While the small population size is an obvious drawback, the differences between these 
two genetically identical individuals may reflect the effects of chemotherapy on one member of the 
pair. It also suggests that a larger scale twin study could reveal much about the neural underpinnings of 
CRCI, particularly if a pre-chemotherapy baseline assessment were included in the study design. 
Recruiting such a population would be ambitious. 

Using fMRI during a working memory task, Saykin et al. [70] imaged fifteen chemotherapy-treated 
BC patients, seven local therapy only BC patients and seven healthy controls. Groups were matched 
for age, sex (all women), education, and estimated baseline intellectual ability. Working memory was 
assessed using an auditory N-back task with variable processing load requirements (0, 1, 2, and 3-back 
conditions). This was the first prospective functional neuroimaging study to establish an appropriate 
baseline by scanning participants prior to beginning chemotherapy or radiation treatments. Repeat 
scanning (time 2 scan) was conducted within one month of the completion of the chemotherapy 
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treatment and at the same time point for non-chemotherapy exposed participants. The authors reported 
no group differences in task performance with the expected main effect of working memory load on 
performance across groups and time. All groups showed expected activation patterns for the most 
challenging load (3-back), with bilateral activations of frontal, parietal, and cerebellar regions (baseline 
and time 2 scan). However, fMRI results from the time 2 scan revealed that chemotherapy-treated 
patients showed increased activation in posterior frontal and parietal regions compared to controls and 
local therapy patients and less bilateral activity in more anterior frontal regions. Therefore, as seen in 
fMRI studies of other disorders associated with mild cognitive impairment, compensation may allow 
performance levels to be functionally maintained in spite of changes in brain activation. These findings 
illustrate that the cognitive changes associated with chemotherapy may be too subtle to reliably detect 
with standard neuropsychological assessments and underscore the importance of and potential for 
using fMRI to elucidate underlying neurobiological changes. In addition to highlighting the benefits of 
fMRI, this study [70] also demonstrated a practice effect whereby all groups showed improved 3-back 
task performance at the time 2 scan. Interestingly, this improvement over time correlated with 
increased bilateral prefrontal activations in all groups. Without a control group at both time points, this 
change in activation may have been wrongly attributed to the effects of chemotherapy. This 
emphasizes the importance of having a matched control group at each testing time point when 
examining a clinical population. 

Another fMRI study [71] investigated verbal declarative memory in fourteen BC women  
(8 metastatic, 6 locally advanced) who had a history of adjuvant chemotherapy treatment (mean time 
since last treatment was 3.3 ± 3.3 years, range: 0.5–10.3 years). Patients were age and education-
matched to healthy female controls. Participants completed salivary cortisol sampling and other 
questionnaires, both considered as distress measures, as well as an fMRI adapted verbal declarative 
memory encoding and recall task while in the scanner. Results indicated that there were no between 
group differences in any of the distress measures. While both patients and controls revealed similar 
response accuracy on the encoding component of the task, a trend revealed that patients had faster 
reaction times. Patients showed less activity in bilateral superior and middle frontal gyri and left 
postcentral gyrus. During the recall component, both groups revealed similar response accuracy yet BC 
patients had slower reaction times compared to controls. Patients showed greater activation in right 
superior temporal gyrus extending to bilateral fusiform, bilateral lingual gyri, left hippocampus, 
bilateral basal ganglia, right precentral gyrus, right superior and middle frontal gyri, bilateral inferior 
frontal gyrus, right cingulate gyrus, bilateral insula, bilateral parahippocampal gyrus, bilateral cuneus, 
bilateral precuneus, bilateral superior parietal lobe and bilateral cerebellum.  

The authors suggested that quicker reaction times during encoding along with decreased prefrontal 
activations could be indicative of increased impulsivity in patients compared to controls. Also, while 
task accuracy is similar for both groups, patients require greater and more global neural effort than 
controls when attempting to recall task information, perhaps explaining the greater fatigue and 
frustration reported by patients post-treatment. The type of chemotherapy regimen was shown to 
contribute to differential patient verbal memory impairments; CMF treated patients showed lower 
prefrontal cortex activity during encoding compared to ACT treated patients (ACT regimen: 
adriamycin, cyclophosphamide, taxol/taxotere). This study was the first to examine verbal encoding 
and memory capacities of chemotherapy-treated patients in an fMRI setting, while also investigating 
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distress variables. Additionally, it demonstrates differential neural activations with varying 
chemotherapy regimens, highlighting the importance of distinguishing between type of chemotherapy-
treatment. Finally, the limitation of a small sample size in this cross sectional design is exacerbated by 
the rather large span of time since treatment completion, ranging from 6 months to 10.3 years after 
treatment. While the authors report no relationship between increased time since treatment and 
improved brain function, one must be careful to collapse short-term and long-term patients into one 
population, especially when a population is small and subject-driven effects are more probable. As 
well, many of the BC patients also underwent other cancer-related treatments such as radiation and 
tamoxifen administration which are additional confounding variables. 

Another comprehensive fMRI study [56] examined 19 high dose adjuvant chemotherapy BC 
survivors (only 16 used in the fMRI analysis) and 15 non-chemotherapy treated BC survivors at  
10 years after treatment completion. The authors measured performance on 16 neuropsychological 
tests as well as BOLD fMRI activation and task performance during two tasks, applying both age and 
estimated IQ as covariates. Overall, the chemotherapy group was more impaired than the control group 
on the neuropsychological tests. The chemotherapy group performed significantly worse on the word 
fluency proficiency test and showed a trend for slower reactions on the motor speed domain. Although 
not significant, these patients also performed numerically worse than controls on 13 of the remaining 
14 tests. The first fMRI task was an adapted Tower of London task which extracts executive 
functioning involving planning capacities. The second task was a paired-associates task which assesses 
episodic memory. The fMRI data revealed that the chemotherapy group performed more poorly and 
quicker on the Tower of London task than controls. Additionally, the chemotherapy group showed 
hyporesponsiveness of the dorsolateral prefrontal cortex in an ROI analysis, as well as decreased 
activation in the bilateral posterior parietal cortex in a whole brain analysis. Additionally, this 
hyporesponsiveness was maintained in the chemotherapy treated group during the paired associates 
task compared to non-chemotherapy treated survivors in the parahippocampal gyrus in an ROI analysis 
as well as bilateral lateral posterior parietal cortex, left precuneus, right dorsal striatum, right inferior 
parietal cortex and left middle temporal gyrus in a whole brain analysis. The authors reported that the 
chemotherapy-treated group showed borderline significant impairment on recognition memory. 
Overall, the authors suggest that high dose adjuvant chemotherapy is associated with long-term 
cognitive impairments, linking dorsolateral prefrontal cortex hypoactivation with impaired planning 
behaviour observed in the chemotherapy-treated BC patients. Additionally, the authors indicate that 
quicker reaction times in patients, along with poorer accuracy could be an indication of increased 
impulsivity due to impaired attentional abilities. Both tasks, although very different paradigms, 
revealed parietal hypoactivation, which supports the idea that chemotherapy-treatment induces  
long-term effects on attentional abilities. This study is the first to examine fMRI data in a patient group 
10 years after-treatment, thereby examining long-term negative effects of chemotherapy on cognitive 
function and linking it with regional brain activity. However, this is a cross-sectional design; a 
prospective long-term study could have provided more than a snapshot by dynamically showing how 
the chemotherapy-brain changes from baseline, as well as which neural activity is maintained, 
recuperated or continuously lost after treatment and over an extended period of time. Additionally, this 
study could have benefitted from comparisons with a matched healthy control group along with the 
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non-chemotherapy survivor group to control for possible long-term effects related to differential 
treatments. 

Kesler et al. [72] examined prefrontal executive abilities in 25 breast cancer survivors who had 
previously received surgery and chemotherapy treatment [mean time since treatment (SD) = 4.7 years 
(5.9)] compared to 19 surgery-only BC survivors [5.0 years (7.7)] and 18 healthy controls. All 
participants were female, matched for age, education level and menopausal status. The fMRI paradigm 
was a card-sorting task, requiring participants to determine implicit rules governing the computer’s 
categorization of geometric figures. Results indicated that BC survivors overall demonstrated reduced 
activity compared to healthy controls in the left dorsolateral prefrontal cortex and the medial frontal 
gyrus. Chemotherapy-treated participants showed reduced activity in the left lateral prefrontal cortex, 
along with increased perseverative errors and slowed processing speed compared with both non-
chemotherapy and healthy participants. As well, this reduction in activity was significantly correlated 
with higher disease severity and higher self-reports of cognitive deficits in the chemotherapy group. 
Also, increased cognitive deficits in the chemotherapy group correlated with older age and lower 
educational level. This paper presented a novel fMRI investigation in this population as it investigated 
activation during decision making processes rather than during working memory, a type of processing 
that has been repeatedly focused on. In addition, the balance of tamoxifen use in both of the cancer 
groups makes them more comparable. A limitation of this study is the obvious cross-sectional design 
as well as the large range of time passed since chemotherapy treatment in a small population. Other 
factors such as cancer stage at diagnosis and menopausal status were significantly discrepant between 
groups but since chemotherapy patients are more likely to have a higher disease stage and are more 
likely to have treatment-induced menopause, these are somewhat unavoidable. However, future studies 
should attempt to control for these factors, for example by collecting estrogen measurements and 
adding them as covariate in the analyses. 

A more recent working memory study applied a verbal auditory n-back task in 16 chemotherapy-
treated BC patients, 12 non-chemotherapy BC patients and 15 healthy controls [73]. This prospective 
study scanned chemotherapy patients at baseline (after surgery, before chemotherapy), 1 month and  
1 year after treatment, yoking intervals for the two other groups. No performance differences on the 
fMRI task were revealed between groups, yet chemotherapy patients revealed a decrease in 
performance on high load task conditions at month 1 compared to baseline, with an improvement at 
year 1. All time points revealed differences in blood flow between patients and controls, as well as 
between chemotherapy treated patients and those patients not treated with chemotherapy. More 
specifically, at baseline the patients had significantly more activity in bilateral frontal lobes compared 
with controls and the chemotherapy treated patients had more activity than non-treated patients in the 
right inferior frontal lobe. Concurrently, the chemotherapy-treated patients revealed less activity in the 
left parietal lobule compared to healthy controls at all three scanning sessions. Both cancer groups 
showed decreased left inferior frontal activity immediately after chemotherapy compared to baseline. 
Chemotherapy patients revealed increased left thalamic and posterior middle temporal activity 
compared to controls and increased right cerebellar, left inferior precentral and left posterior middle 
temporal gyrus activity compared to non-chemotherapy patients. Activation in the middle frontal gyrus 
remained attenuated in the patients at the final imaging session. This paper was the first to present both 
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pre- and post-chemotherapy effects concerning working memory, and aptly suggested this be 
conducted in larger cohorts. 

A second prospective study [74], closely examined both pre- and post-chemotherapy effects while 
investigating verbal memory retrieval and related brain activity in 21 early-stage BC patients and 21 
individually-matched healthy controls. Participants were scanned at baseline (prior to chemotherapy) 
and 1 month after treatment on an fMRI verbal recall task. Several results are of interest. First, fatigue, 
anxiety, depression, anger and confusion, as well as vigor were different between the groups at 
baseline and post-treatment. These factors were thus included as covariates in the fMRI model and 
fatigue, depression and anxiety significantly altered blood flow during the verbal memory task. 
Second, pre-chemotherapy, patients revealed increased right anterior cingulate activity, however this 
effect was decreased with the consideration of fatigue scores. Consideration of anxiety and depression 
also reduced activity in the left anterior cingulate. Post-treatment patients showed decreased activity in 
bilateral insula, right inferior orbitofrontal gyrus, right medial frontal gyrus, right superior and middle 
temporal gyri and left superior temporal pole. Fatigue scores largely removed these group differences, 
yet uncovered increased activity in patients in the left hippocampus and superior occipital gyrus. Third, 
when considering changes over time, controls did not show any differences in activation. Meanwhile 
patients had decreased activity from pre- to post-treatment in the bilateral insula and left inferior 
orbitofrontal cortex. In addition, consideration of days since surgery as a covariate eliminated this time 
effect. Fourth, regression analysis in patients revealed that a lower number of days since surgery was 
associated with hyporesponsiveness in bilateral insula and left inferior frontal cortex. Increased anxiety 
and fatigue scores both correlated with more activity in the right medial frontal gyrus, in addition to 
increased left hippocampal activity associated with higher fatigue scores. Major strengths of this study 
are the comprehensive prospective design, the unique assessment of verbal recall in this population, 
individually matched controls (compared to group matching) as well as the consideration of fatigue as 
a covariate. As well, consideration of days since surgery as a covariate, continues to reveal that there 
may be a window of vulnerability after surgery, whether due to anesthesia and/or stress which may 
predispose patients to structural and functional neurological changes during and following 
chemotherapy. This point will be discussed further in this review.  

2.2.3. Limitations of Functional Assessments 

Although functional neuroimaging provides a view into the working brain, all of these techniques 
sacrifice either temporal or spatial resolution at the expense of the other. Ideally, a multi-modal 
imaging study of the CRCI would capitalize on the high sensitivity of both the spatial and temporal 
resolutions of two different but complimentary tools, for example, a combined EEG/fMRI study. 
Another important factor to mention concerning functional imaging studies in this field is the 
consistent use of small samples. Defining an appropriate sample size is difficult because it is 
dependent on the scale of the effect being measured and a prominent issue in this rather new field of 
study is that exact effects are still unknown. However, for standard neuroimaging studies, one must 
strive to assess no less than 20 participants [75]. More recent studies have begun to study larger groups. 
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3. Multifactorial Approach 

3.1. Other Factors to Consider in the Study of CRCI 

Research into the biological mechanisms underlying cognitive deficits in cancer patients must 
address a myriad of potential confounds and thus requires a multivariate, multi-technological 
approach. One possible factor mediating the impact of cancer and chemotherapy on cognition is stress.  

3.1.1. Stress and Glucocorticoids 

Undoubtedly, a cancer diagnosis gives rise to intense chronic stress for many individuals,  
especially those who are subjected to prolonged treatments. Stress is routinely measured in CRCI 
studies through self-report, and this measure correlates highly with complaints of cognitive 
disturbances [3,6,9,11,14,17,76,77]. Stress is associated with increases in glucocorticoids (GCs), such 
as cortisol due to increased activity of the hypothalamic-pituitary-adrenal (HPA) axis. Increased levels 
of GCs, which can also result from therapeutic GC administration as part of the immunosuppressive 
therapy used in cancer treatment, have themselves been shown to affect brain anatomy [78–80] as well as 
memory functions such as working memory [81–83]. It is hypothesized that the hippocampus is 
particularly vulnerable to glucocorticoid-mediated excitotoxicity due to its high number of glucocorticoid 
(GC) receptors. In fact, smaller hippocampal volumes are seen in populations with higher stress 
reactivity profiles suggestive of higher circulating GCs [84–86]. One MRI study has shown transient 
smaller volumes in key cognitive regions (such as the hippocampus) in BC survivors treated with 
chemotherapy compared to those treated with surgery alone. These structural differences corresponded to 
lower scores in attention, visual memory, and concentration 1 year after chemotherapy [42].  

It is not only the effect of GCs on structures like the hippocampus that may play a role in CRCI. 
The presence of higher circulating GCs expected during cancer diagnosis and treatment may also 
contribute to an increase in capillary permeability of the blood brain barrier [87] that could lead to 
augmented accessibility of chemotherapy agents to the brain. Contrary to previous thinking, 
antineoplastic agents (widely used in chemotherapy) appear to be able to pass through the blood brain 
barrier to penetrate the brain. This has been demonstrated in studies revealing higher than expected 
concentrations of antineoplastic agents in both brain tissue and cerebrospinal fluid (CSF) of treated 
patients [87,88]. Therefore, increased GC levels could potentially exacerbate the adverse effects of 
chemotherapy on the brain.  

To date, a “flattened cortisol secretion pattern” has been reported in patient populations with  
BC [89,90]. Such a flattened pattern of cortisol secretion has been associated with impaired negative 
feedback of the HPA axis [91]. Meanwhile, significant group differences concerning diurnal cortisol 
reactivity between chemotherapy-treated patients and healthy controls are not always revealed [71]. 
Future research should sample diurnal cortisol and other distress variables in a larger sample, 
additionally controlling for other confounding variables such as surgery and type of chemotherapy 
regimens. Overall, given the possible role of GCs in cognitive disturbances related to cancer and 
cancer treatment, quantifiable measures of stress should be considered in future studies of CRCI. 
Similarly, suggestions for stress reduction may be useful as a means to assist patients with this 
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potentially very difficult time in their lives. This may include yoga, meditation, deep breathing 
techniques or other forms of relaxation. 

3.1.2. Hemoglobin and Fatigue 

Another factor postulated to underlie fatigue and cognitive symptoms in cancer patients  
is chemotherapy-induced anaemia, although empirical evidence on this relationship has been  
conflicting [3,6,9,10,13,16,17,92–98]. While it is usually assumed that cognitive disturbance is 
secondary to fatigue, it could also be the case that an increase in neural effort required to complete day 
to day tasks gives rise to fatigue. fMRI may yield some objective evidence on this issue, provided that 
good measures of fatigue and anaemia are included in functional neuroimaging studies of CRCI. One 
fMRI study considered fatigue scores as a covariate in their analysis of brain activity related to verbal 
working memory [74]. This factor not only influenced group differences but also uncovered additional 
differences, suggesting that patient fatigue is significantly impacting neural functioning.  

3.1.3. Estrogen 

It has also been suggested that chemotherapy might affect cognition by lowering estrogen levels. 
Treatment-induced menopause has been identified as a risk factor for development of cognitive deficits 
in BC patients [9], and the deficits reported by chemotherapy-treated BC patients are similar to those 
reported after natural or surgical menopause [99]. The brain is rich in estrogen receptors, including 
areas involved in memory and executive functioning [96]. Estrogen has beneficial effects on cognitive 
function as it helps in neurogenesis, promotes synaptogenesis in the hippocampus CA1 region, and has 
a role in neuroprotection [2,100–102]. Decreased estrogen levels in healthy post-menopausal women 
have been associated with poorer verbal learning and memory [2,98,103]. Previous research suggests a 
“neuroprotective” role of estrogen in key memory structures such as the hippocampus [104]. Growing 
recognition of the effects of estrogen on cognition has led to examination of the cognitive impact of 
adjuvant hormonal therapies for BC. In cases where the breast tumour expresses estrogen and/or 
progesterone receptors, such hormonal therapies are administered for long periods of time (five years 
or longer). These therapies act either by selectively blocking estrogen receptors (selective estrogen 
receptor modulators, or SERMS such as tamoxifen) or by prohibiting estrogen synthesis (aromatase 
inhibitors such as arimidex). Some studies have shown that BC patients who received anti-estrogen 
therapy (in particular in tamoxifen-users) have increased memory problems, [105,106], but others find 
no such relationship [107–109]. While estrogen and cognition is extensively studied in an aging 
population and is applicable in a mostly older cancer patient group [110–113], more research focused 
on estrogen and cognition particularly in the chemotherapy-treated population, including younger 
patients, is needed (for more information, see [114] for a review on the cognitive effects of hormonal 
therapy in BC patients). 

3.1.4. Cytokines 

Changes in cytokine activity related to cancer and cancer treatment is another potential mechanism 
for CRCI as such changes can result in fatigue and cognitive dysfunction. Cytokines are any number of 
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small proteins that are secreted by the immune system and that interact with and modulate the activity 
of other cells in the immune system (i.e., they are immunomodulatory proteins). Overproduction or 
inappropriate production of certain cytokines can result in disease, inflammation and tissue 
destruction. Cytokine activity in the hippocampus has been linked to a disruption in memory function, 
in particular memory consolidation [115]. Ongoing studies have reported that levels of multiple 
cytokines are elevated in all cancer patients, not just in chemotherapy-treated patients. These values 
were highest post-surgery and remained higher than controls for 6-60 months after diagnosis [116]. 

One study investigated the contributing role of inflammatory factors on both hippocampal anatomy 
and verbal memory performance in long-term female BC survivors. Using Freesurfer, Kesler et al. [117] 
found smaller left hippocampal volumes and decreased memory performance in 20 survivors  
(4.8 years post-treatment) and larger interleukin-6 (IL-6) and tumor necrosis factor (TNFα) peripheral 
serum levels compared to 23 healthy controls (group matched on age, education, global intelligence). 
In particular, decreased left hippocampal volumes in the BC group correlated with both lower IL-6 and 
higher TNFα levels. Similarly, decreased verbal memory performance correlated with smaller left 
hippocampal volume. Interestingly, elevated levels of TNFα were associated with less time  
post-treatment, indicating a relationship between inflammation and lingering effects of chemotherapy 
treatment. However, there was an important group discrepancy in menopausal status with 79% of the 
survivor sample being post-menopausal compared to 51% of healthy controls. Hormonal changes 
associated with menopausal status may be contributing to increases in self-reported cognitive deficits 
and decreased hippocampal volume. Another point of concern is large survivor sample heterogeneity 
as the analysis includes data from participants with a wide range of time since treatment. This study is 
the first to attempt to correlate peripheral cytokines to both anatomical changes in the post-treatment 
BC brain and memory abilities. Future studies should be conducted in larger samples, potentially 
attempting a prospective design, and examining regional differences between grey and white matter 
and/or subdividing the hippocampus into sections such as the head and tail. 

3.1.5. Cancer Itself 

A major weakness of the majority of previous studies of chemotherapy-related cognitive 
dysfunction is the inclusion of data from post-chemotherapy patients only. A baseline assessment of a 
patient before treatment is essential in order to demonstrate that any changes in cognition are related to 
exposure to chemotherapy. More recent studies of CRCI have adopted this prospective approach and 
report cognitive deficiencies in cancer patients even before exposure to adjuvant treatment.  
Cimprich et al. [28] revealed pre-treatment cognitive impairments in 10 newly-diagnosed female BC 
patients compared to nine healthy controls (women with a negative mammogram in the last year). 
Participants completed a modified Verbal Working Memory task (VMT) during fMRI in order to 
examine selective attention and working memory. BC patients were less accurate and slower than 
controls in the high-demand condition of the VMT task. They also showed larger activation than 
controls in the right inferior frontal gyrus with more cognitive demand, as well as additional 
components of attention/working memory circuitry in both hemispheres.  

Another aspect of the impact of cancer itself on brain functioning is pre-chemotherapy differences 
in disease severity. Kesler et al. [72] observed a negative correlation between disease stage and neural 
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activity. More recently, Scherling et al. [29–31] have also demonstrated that prior to chemotherapy, 
BC patients have different patterns of neural activity and different volumes of certain brain structures 
compared to non-cancer controls. MRI/fMRI were used to image 23 women with BC before 
chemotherapy but following surgery to remove the breast tumour. Results varied depending on the 
covariates introduced, supporting the need for multifactorial research initiatives to study CRCI that 
include several of the potentially important variables mentioned here. Results also varied according to 
the fMRI task applied. The tasks performed examined novel executive domains, such as visuospatial 
working memory and response inhibition, not previously used in the study of CRCIs. 

These studies are pivotal in highlighting the importance of baseline assessments of cancer patients 
before treatment. Without appropriate baseline assessments and scans, the effects of the disease itself 
could be mistaken for an effect of treatment. The above studies appropriately suggest that stress of a 
new cancer diagnosis, fatigue and potential sleep loss may also contribute to pre-treatment cognitive 
problems. These effects could additionally be exacerbated by the other confounding factors indicated 
above, including anxiety. Similarly, the type of imaging data analysis can impact what is reported as a 
significant effect. Recently, two prospective studies discussed above [73,74] have revealed baseline 
group differences, in addition to differences after chemotherapy treatment using region of interest 
analyses. Due to the large number of voxels considered in whole brain analyses, region of interest 
analyses can identify smaller effects by decreasing the number of multiple comparisons performed. 

3.2. Appropriate Controls Are Required 

Recruitment of chemotherapy-treated cancer patients in neuropsychological and imaging studies 
can be quite challenging and costly. Therefore, chemotherapy-treated study groups tend to be relatively 
small. However, attention must be paid to the fact that most of the studies examining chemotherapy-
treated cancer patients occur in racially and ethnically homogeneous samples, which means that results 
from these studies may not be truly generalizable. Since controls are also matched to these patients, 
having the same background, a much larger and varied sample is required.  

A control group matched to the patient population in question is essential for appropriate 
interpretation of study results. CRCI studies are beginning to adopt a prospective design by following 
the patient group before, during and after chemotherapy. In order to accurately control for potential 
practice effects on tasks over time, one must have a matched control group. In CRCI research, there is 
considerable debate on the best “control” population with the ideal as a “control” population that only 
differs on chemotherapy treatment. Most studies adopt a healthy, matched control group, as it is the 
easiest to form considering how difficult it is to match appropriate controls with chemotherapy-treated 
patients. However, using a healthy control group can present procedural difficulties. Although these 
patients have similar age, sex and education profiles, these healthy participants fail to match on many 
other variables. These groups will have different cancer-related cytokine activity, stressors related to 
cancer diagnosis and treatment, side effects of triggered early menopause and even potential effects of 
anesthesia from surgery.  

Other studies have attempted to control for the “presence” of cancer by not only including a healthy 
control group, but also a cancer group receiving radiation. Participants in the latter group experience 
most of the same “cancer-related” biological and psychological effects, making the groups more 
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homogeneous, but radiation effects themselves must be considered and how comparable these 
radiation patients are to the chemotherapy patients after treatment requires further investigation. 
Research has shown that fatigue is the major symptom associated with radiation treatment in BC 
patients [118] and fatigue is a confound factor which affects task performance. Further research into 
the differences between these two types of treatment in cancer patients outside of brain radiation and 
their potential differential effects on cognition is required. Therefore, admittedly these patients have 
the same cancer profile (e.g., stress, surgery, etc…) but more research is needed to truly identify if 
their different treatment may be a confound itself. Furthermore, previous studies have indicated that 
matching cancer patients (e.g., chemotherapy-treated and cancer controls) along one treatment is a 
taxing recruitment scenario. Yet, the reality for many cancer patients is the application of multiple 
treatment regimens, (e.g., surgery + chemotherapy + radiation or additional hormonal treatments) 
which the field has barely started to investigate. It is difficult to understand the impact of one treatment 
alone and thus multiple treatment regimens are even more challenging and present an even larger 
recruitment issue for appropriate controls.  

Finally, another interesting control group, used in the Inagaki [42] study, is a cancer patient 
population who only underwent surgery, and no other therapies. This is a challenging group to recruit 
since a majority of patients who undergo cancer-related surgery will subsequently undergo another 
treatment (e.g., chemotherapy, radiation, hormonal). Yet, such a group could help identify possible 
confounding variables existing before chemotherapy treatment begins, especially those associated with 
anesthesia-related cognitive deficits. Previous literature has indicated that there may be cognitive 
decline after general anesthesia administration during surgery. One study [27] examined postoperative 
cognitive dysfunction in 1064 major non-cardiac surgery patients. They revealed that such deficits are 
common in adult populations of all ages, but in particular in the elderly (age 60 or older) who are 
additionally more likely to develop long-term deficits. Therefore, there are grounds to acknowledge 
that anesthesia administration has cognitive effects that could be misattributed to CRCI deficits in the 
future, especially since the majority of cancer patients are middle aged to elderly. However, while this 
population can help highlight effects such as stress of diagnosis and effects of anesthesia, finding such 
patients who additionally “match” the patients in the chemotherapy group would be very difficult. 

Clearly, one of the major challenges in CRCI research is the choice of an appropriate control group. 
Recruiting healthy participants is a solid choice since it is already very difficult to find appropriate 
controls matched to chemotherapy-treated patients on many factors (for example: age, education, sex) 
and to find individuals in this increasingly aging population who do not have their own health issues 
(for example: history of mental illness, history of cancer, heart disease, etc…). Some studies have 
included not just one healthy control group but have additionally included a local-therapy group 
(surgery and radiation). Matching two different controls per chemotherapy-treated participant does 
create a stronger study. However, to really identify any effects would require a very large population. 
Additionally, individually matching patients to respective controls creates a much stronger study 
design but is not a commonly applied practice in imaging CRCI studies. To date, most have applied 
group-level matching on factors such as age, sex and education level. Very few studies, with the 
exception of [29–31,74] went one step beyond and meticulously matched each patient on additional 
factors such as menopausal status, marital status and IQ. The latter should be a common practice in this 
multifactorial field. 
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3.3. Consistency in Imaging Results Required 

Currently, the interpretation of findings in CRCI studies, as well as the translation of results to 
clinical practice is restricted since there is still limited research on this topic and a lack of test-retest 
evidence. Anatomical studies do show some overlap in the regions reported as being significantly 
different in cancer patients after chemotherapy treatment and matched controls (see Table 1). In 
particular, bilateral frontal regions are most affected in the post-treatment patient population, which 
corresponds to the executive functioning deficits (such as problems with planning and working 
memory) that are consistently reported by patients. Therefore, it is no surprise that functional imaging 
investigations have largely focused on working memory (see Table 2 for brain regions and studies on 
this). Working memory tasks in studies of CRCIs consistently show neural activation differences 
between chemotherapy-treated patients and controls in frontal, temporal and parietal regions. 
However, the direction of this activity is varied since patients in some studies reveal increased 
activations while activity is lessened in other studies compared to controls and over time. This 
variability in activations related to memory may be due to many factors. First, while many of these 
tasks measure working memory, most have not applied the same task with the same parameters. Even 
a subtle variation within an fMRI task can cause significant differences in the overall study results 
(e.g., auditory vs. visual task stimuli, verbal vs. motor responses, longer vs. shorter task periods, longer 
vs. shorter rest periods, nature of the control condition, etc…). Therefore, although these tasks all 
measure some components within the working memory umbrella, they are essentially different from 
each other in many facets making it difficult to compare and generalize the results. Second, control 
groups are not consistent across studies. Third, there is variability existing within the patient 
population itself, related to such factors as days since surgery for the baseline scan or the time span 
between the end of treatment and scan dates in cross-sectional studies.  

These three factors present a challenge in fMRI and PET studies. Even a slight variation in the task 
protocol or cohort selection can significantly modulate the results, thereby limiting generalizability and 
clinical application of the results. In order to better understand working memory and possible 
confounding variables in CRCI, future studies should adopt similar control groups and use comparable 
imaging tasks (e.g., N-back working memory task), while minimizing variability within the patient 
population on other factors unrelated to chemotherapy-treatment itself. Additionally, investigations of 
other executive functioning components, such as response inhibition, that are known to affect working 
memory should be carefully examined. Overall, “test-retest” reliability is an important component in 
any clinical population in order to compare and/or confirm existing results. This is currently lacking in 
CRCI imaging research, making it challenging to bridge current experimental data to the future 
possibilities of clinical practice. 

4. Conclusions/Outlook 

The cognitive deficits related to CRCI can persist for years and seriously affect the quality of life of 
the affected individual, as well as their family and friends. In light of the increasing survival rates for 
cancer patients, it is essential for patients and their health care providers to understand the potentially 
long-term adverse effects of therapy.  
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While neuropsychological assessments indicate that there are true impairments in chemotherapy-
treated patients, the recent emergence of neuroimaging in this field has revealed further empirical 
evidence of a significant impact of chemotherapy on neural structure and function. Knowing that the 
chemo fog phenomenon is not unidimensional, a multifaceted approach is essential if a thorough 
understanding of the cognitive implications of cancer and cancer treatment is to be achieved. Such 
studies involve: a prospective design, carefully-chosen and doubled control groups (e.g., healthy 
controls as well as cancer patients undergoing radiation treatment), dose-dependent neuropsychological 
testing, multimodal neuroimaging (e.g., EEG, anatomical MRI and fMRI assessments), and biological 
markers sampling (e.g., haemoglobin, cortisol, estrogen). Such multifactorial and multimodal studies 
are most likely to clarify the validity, severity, prevalence, nature, and underlying mechanisms of 
chemotherapy-related cognitive impairments. This information should lead to improved support for 
afflicted patients, including the development of targeted medical as well as cognitive rehabilitative and 
behavioural therapies. 
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